Jaypee University of Information Technology, Waknaghat

Test-1 Examinations, September 2023

B.Tech - III Semester (CSE/IT)

Course Code/Credits: 18B11MA313/3 Course Title: Probability and Statistics Course Instructors: RAD, BKP, SST Max. Marks: 15

Max. Time: 1 Hour

Note: Answer all the questions. Describe random variables along with range where applicable.

Describe the random variables along with range where applicable.

1. Answer the following questions:

(3 Marks) [CO-1]

- (a) Given that E and F are events with $\mathbb{P}(E) = 0.6$, $\mathbb{P}(F) = 0.3$ and $\mathbb{P}(E \cap F) = 0.2$, find $\mathbb{P}(F|E)$.
- (b) Suppose that a is the probability that a leap year selected at random will have 53 Fridays and b is the probability that a non-leap year selected at random will have 53 Saturdays. What is a + b?
- 2. Bowl A contains 2 red chips; bowl B contains two white chips, and bowl C contains 1 red chip and 1 white chip. A chip is selected at random. (4 Marks) [CO-1]
 - (a) What is the probability of selected chip being white?
 - (b) If the selected chip is white, what is the probability that it was taken from bowl C?
- 3. The Department of Energy (DOE) puts projects out on bid and generally estimates what a reasonable bid should be. Call the estimate 'b'. The DOE has determined that the density function of $\mathbf{Y} = \text{winning bid is}$ (4 Marks) [CO-2]

$$f_{\mathbf{Y}}(y) = \begin{cases} \frac{5}{8b} & : \frac{2b}{5} \le y \le 2b \\ 0 & : elsewhere \end{cases}$$

- (a) Compute the cumulative distribution function $\mathbb{F}_{\mathbf{Y}}(y)$.
- (b) Use it to determine the probability $\mathbb{P}(\mathbf{Y} < \mathbf{b})$ that the winning bid is less than the preliminary estimate 'b'.
- 4. You need to pay one dollar to buy an instant lottery ticket. In this instant lottery game, you have 10% chance to win 1 dollar, 5% chance to win 5 dollar, and you will get nothing in the remaining chance. (2 Marks) [CO-2]
 - (a) Define the random variable X of interest.
 - (b) Give the probability distribution table for X.
 - (c) Determine the expected amount you win. Is this lottery game favourable to you?
- 5. Consider the moment generating function of a random variable X: (2 Marks) [CO-2]

$$\mathcal{M}_{\mathbf{X}}(\mathsf{t}) = \frac{1}{10}e^{\mathsf{t}} + \frac{1}{5}e^{2\mathsf{t}} + \frac{3}{10}e^{3\mathsf{t}} + \frac{2}{5}e^{4\mathsf{t}}$$

What is $\mathbb{P}(2 < \mathbf{X} < 6)$?

* * * * * * * *