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ABSTRACT

In the past ten years, the idea of automatic image colorization has attracted attention for a

range of uses, including the restoration of old or damaged photos. This problem is extremely

poorly presented since assigning colour information involves such a wide range of degrees of

freedom. Recent developments in automatic colorization frequently use input images that

share a common theme or data that has undergone extensive processing, like semantic maps.

Using conditional adversarial networks, we attempt to fully broaden the colorization process

and address image colorization issues. Landscape colour and grayscale images from the

publicly accessible Kaggle dataset were used to train the network.

In this study, we perform a colorization task using the L*a*b* colour space. This differs from

the widely used RGB colour space because the L*a*b* colour space features a separate

channel for displaying image brightness while the remaining two channels, a* and b*, are

used to fully represent the four distinct colours of human vision: red, green, blue, and yellow.

The network was trained using the generator and discriminator parts of the GAN network

design. The discriminator assesses the effectiveness of the colorizations and gives feedback to

the generator to help it perform better while the generator creates coloured images. The

network can develop the ability to create more precise and aesthetically pleasing colorizations

by repeatedly training the generator and discriminator.

In general, automatic image colorization has the potential to revolutionise the way we

enhance and preserve historical photographs. It can also be a useful tool for designers and

artists who need to produce coloured images rapidly. Additional study in this field is

anticipated to produce even more remarkable findings and applications.
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Chapter 01:

INTRODUCTION

1.1 Introduction

The "translation" of an input image into a corresponding output image can be

used to describe a variety of image processing, computer graphics, and

computer vision problems. The process of turning a grayscale image into a

colourful RGB image is known as image colorization.

Convolutional Neural Networks (CNNs) have been utilised in the past to

address a variety of applications involving image processing, and the

community has already made major advancements in this field. Finding loss

functions that motivate the CNN to do what we actually want it to is difficult in

the picture colorization process because of the enormous amount of variability

available when assigning colours to images.

Here, we use conditional GANs from the family of generative adversarial

networks to try and convert a grayscale input image into a colour image. This

design is composed of two smaller networks called Generator and

Discriminator. The generator aims to generate outputs that are identical to real

data, as suggested by its name. Identifying whether a sample originated from

the generator's model distribution or the original data distribution is the task of

the discriminator. Up until the generator can consistently produce data that the

discriminator cannot classify, both subnetworks are trained concurrently. At

this stage, the generator can provide a generalised mapping from a grayscale

image to an RGB colour space image, which is known as Nash Equilibrium.
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1.2 Objective

The problem of image colorization is to convert a high-dimensional input into a

high-dimensional output. The input structure and the output structure are very

closely linked in this pixel-wise regression problem. This implies that each pixel

in the grayscale input image must get colour information in addition to having an

output with the same spatial dimension as the input.

Here we try to used L*a*b* instead of RGB colour space this would reduce the

output mapping from three colour spaces to only two which might help to reduce

model parameters which makes training faster, efficient as well as effective

minimisation of cost function.

We are trying to construct the GAN network architecture, which consists of a

generator and a discriminator. The output mapping must meet the requirement

that the generator would produce a colourful image using only the input latent

noise and grayscale image as input data. By penalising picture structure on a

patch-level scale, the discriminator architecture we are using is dubbed

PatchGAN. This discriminator's job is to determine the truthfulness of each NxN

patch in a picture. This makes it easier to create precise, accurate images.

In general, to accomplish successful and efficient training, our method for image

colorization makes use of the advantages of the Lab* colour space and GAN

network architecture, producing precise and accurate images.
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1.3 Motivation

Early in the new millennium, grayscale colorization models initially emerged. In

2002, Welsh et al. unveiled a texture synthesis-based colorization method. By

comparing brightness and texture data from an existing colour image to the

grayscale image to be coloured, the colourized grayscale images were created.

The colorization problem was given a fresh formulation by Levin et al. in 2004.

An inverse technique was used to build the cost function, penalising pixels that

differed from a weighted average of their neighbouring pixels. Both of these

suggested options required a substantial amount of user input, which rendered the

alternatives less than ideal.

A colorization method was proposed in light of the comparison of the differences

in colorization between convolutional neural networks and GAN. The models in

the study learn a loss function in addition to the mapping from input to output

picture.

Our main objective is to create a custom conditional GAN network model i.e.

easy to train, optimise, save & light weight to deploy. We would also create an

optimised dataflow pipeline and use various techniques such as spectral

normalisation, label smoothing etc. Finally, we would also compare the results of

different training techniques and hyperparameters such as batching, learning rate

etc.
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1.4 Language Used

● Python

● HTML5

● CSS3

● JavaScript

1.5 Libraries Used:
● Numpy

● Pandas

● Matplotlib

● Tensorflow

● Kaggle

● Tensorflow_io

● Seaborn

● Tensorboard

● ReactJS

● FastAPI

● Nginx

● Netlify

● Pickle
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1.6 Deliverables/Outcomes

Through this project, we hope to develop a custom conditional GAN

network model that is simple to train, optimised, easy to save, and deploy.

A GAN is made up of two smaller networks called the generator and

discriminator. Multilayer perceptron architecture is used by both the

generator and discriminator. Convolutional neural networks (CNNs) are

used for both the generator and discriminator since colorization is a form of

image translation problem.

Additionally, we would present data on the effects of different

hyperparameter tuning on image colorization and develop an optimised

preprocessing and flow pipeline. We offer a self-contained model that can

be used with Tensorflow serving, Tensorflow.js, or even just Tensorflow to

be hosted on any cloud backend.

Additionally, we intend to compare the effectiveness of our model to other

cutting-edge image colorization techniques, including those that are based

on deep learning and conventional image processing methods. This would

allow us to prove our proposed model's superiority and offer a comparative

examination of its capabilities.
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Chapter 02:

LITERATURE SURVEY

2.1 Welsh et al. 2002

By comparing brightness and texture data from an existing colour image to the

grayscale image to be coloured, they developed a texture synthesis-based colorization

process that coloured grayscale images.

The majority of exemplar-based colorization techniques make the assumption that

reference colour pixels with similar neighbourhood or intensities should be used to

assign the colour to the target grayscale pixels. Welsh et al. suggested a colorization

method that merely relies on transferring colour in accordance with the brightness

values that are obtained by averaging nearby pixels in the target image and those in

the reference image.

Even when the correlation is with the same brightness value and equal neighbourhood

statistical variables, mismatching may occur in a different location of the colour

image. As a result, some methods consider each pixel's higher-level content in

addition to brightness. For instance, Irony et al. effectively used textural data and a

supervised classifier to colour a classification image.

In order to identify matching pixels between grayscale and colour images, Gupta et al.

devised a technique that makes use of a cascade feature matching methodology.

Simply said, the major goal of these exemplar-based approaches is to accurately

transfer colour by identifying the reference image's and target image's best-matched

pixels (areas).
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2.2 Levin et al. 2004

They proposed a fresh approach to the colorization issue. An inverse technique was

used to build the cost function, penalising pixels that differed from a weighted average

of their neighbouring pixels. Both of these suggested options required a substantial

amount of user input, which rendered the alternatives less than ideal.

However, colorization offers a considerable barrier due to the fact that it is an

expensive and time-consuming process. For instance, while colouring a still image, an

artist may frequently begin by separating the image into sections before assigning each

section a different colour. Unfortunately, automatic segmentation algorithms

frequently identify fuzzy or complicated region boundaries inaccurately, such as the

line dividing a subject's hair from her face.

Therefore, the task of manually designing intricate borders between sections is

typically left to the artist. Additionally, tracking of areas across multiple shot frames is

necessary for colorization. Current tracking algorithms usually require a lot of user

input because they can't reliably track non-rigid regions.

A neural network can be trained on a large sample of coloured images to segment

images and track non-rigid regions automatically. This approach would considerably

reduce the quantity of user input required and speed up the colorization process. The

drawback is that in order to adequately train the neural network, a large amount of data

would be required, which is usually difficult to obtain in some sectors, such as

historical photos or priceless artworks. Despite these challenges, using a deep learning

approach to colourize presents exciting possibilities for additional research in the field.
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2.3 Phillip Isola et al. 2018

In recent years, conditional adversarial networks have gained popularity as a method

for resolving image-to-image translation issues. These networks learn a loss function

that can be used to train the mapping in addition to learning to map input images to

output images. With this method, a variety of activities can be handled using a single

generic strategy, doing away with the requirement for distinct loss formulas for various

tasks.

This method's capacity to resolve issues like colouring photographs, reconstructing

objects from edge maps, and synthesising photos from label maps, which were

previously challenging or impossible to handle, is one of its key benefits. The

extensive usage of our technology by artists and other internet users, who have

submitted their own testing with our technology and further illustrated its adaptability

and simplicity, has also been facilitated by the publication of the pix2pix programme

linked with this study.

Due to conditional adversarial networks' effectiveness, it is possible that hand

engineering of mapping functions won't be necessary in the future, and that adequate

results could be reached with less parameter fiddling. Therefore, by making a variety

of tasks easier and more accessible for both researchers and practitioners, this

technology has the potential to fundamentally alter how we approach image-to-image

translation challenges.

Additionally, conditional adversarial networks have demonstrated excellent results by

producing stunning images despite the lack of sufficient training data. This is due to

the fact that neural networks can generate precise output images after learning from a

sparse set of paired training data. As a result, problems with image-to-image

translation can be resolved in a variety of situations, including those where it is

difficult or expensive to collect substantial amounts of annotated data.
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2.4 Hong-an Li et al. 2022

Image colour rendering is currently receiving a lot of attention as a significant area of

image processing. Image colour rendering based on neural networks has gradually

grown in popularity as deep learning has progressed. due to the manual nature of

traditional colour rendering techniques and their strict requirements for reference

photos. Furthermore, the colour rendering effect is not perfect when the image's

structure and colour are complicated.

Deep learning-based colour rendering techniques 87 can be quickly implemented in a

real-world production setting, eliminating the drawbacks of the older techniques. The

image can be automatically produced in accordance with the model utilising the neural

network model and the associated dataset training model, free from the influence of

humans or other variables.

In order to achieve colour rendering, Larsson employed the super-column model to

break down the colour and saturation of the image and the convolutional neural

network to take into account the brightness of the image as input. Iizuka used the

fusion layer in the convolutional neural network to combine the low-dimensional

feature and global feature of the image, generating the colour of the image and

processing images of any resolution.

To manage the multi-mode uncertainty in colour rendering and retain the colour

diversity, Zhang created an appropriate loss function. However, up-sampling is used to

make the image size consistent when the grayscale image characteristics are retrieved

using the aforementioned method, which results in the loss of image information.

Additionally, the rendering effect is limited due to the network structure's inability to

accurately extract and comprehend the complex features of the image. To achieve the

image transformation, Isola enhanced conditional generative adversarial networks.
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By learning the mapping relationship between a grayscale image and a colour image,

for instance, the suggested pix2pix model can achieve conversion between different

images. However, the training instability of generative adversarial networks (GAN)

based on the pix2pix model is a drawback. Additionally, producing robust images is a

weakness of the present deep learning-based image rendering techniques.

Gabor filters are effective in extracting texture information from images at all scales

and directions, and they can somewhat mitigate the effects of noise and light fading.

As a result, we suggest an improved pix2pix colour rendering technique based on the

Gabor filter for robust images.

These are this paper's primary contributions:

1) The enhanced pix2pix model not only achieves good visual effects and image

rendering on autopilot, but also more stable training and improved image

quality.

2) The Gabor filter was included to improve the stability of the images produced

by the model.

3) Experimental metrics demonstrate that the proposed method performs better for

a robust image.

10



Chapter 03:

SYSTEM DESIGN & DEVELOPMENT

3.1 Problem Definition
The conversion of an input image into a corresponding output image is a typical

problem in image processing, graphics, and vision. Despite the fact that the challenge

of converting pixels to pixels is typically the same, these challenges are generally

overcome by means that are application-specific.

Conditional adversarial nets are a general strategy that appear to be successful for a

variety of these problems. The restoration of old or damaged photos is one application

for which automatic image colorization has drawn interest. This problem is very

poorly posed because assigning colour information involves such high degrees of

freedom. Recent advances in automatic colorization use complex input arguments,

such as semantic maps..

Convolutional neural networks (CNNs) are currently the industry standard workhorse

powering a variety of image prediction applications because of significant

advancements made by the community in this area. Despite CNNs learning to

minimise a loss function, which evaluates the output's quality, producing good losses

still requires a lot of manual labour.

The findings will be biassed if we employ a simple strategy and instruct the CNN to

minimise the Euclidean distance between predicted and ground truth pixels. This is

because blurring, which reduces Euclidean distance by averaging all realistic outputs,

is the cause of this. For instance, identifying the loss functions that cause the CNN to

produce clear, realistic images is still a work in progress and frequently necessitates

specialised knowledge. Instead, it would be ideal if we could simply define a general

target and then have a loss function that is appropriate for achieving this goal

generated automatically.
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In a conventional GAN, noise data generated at random serves as the generator's input.

This method, however, cannot be used to solve the automatic colorization problem

because the inputs to our issue are grayscale images rather than noise. This problem

was resolved using conditional generative adversarial networks, a subset of GAN.

cGANs are capable of processing conditional data (in this case, a grayscale image),

which they use to perform mapping and cost function minimization.

3.2 Our Solution

The computer vision community has been interested in the problem of image

colorization for a while now. Despite the recent major improvements, there is always

potential for growth, especially when it comes to totally automating the process. In

order to solve this problem, we'll build a dataflow pipeline in this project that

combines image preprocessing stages with a cGAN architecture and trains it on a

publicly available dataset. Additionally, we will look at different picture

representation formats and contrast how well they work in the context of colourizing

images.

We will look into the picture preprocessing techniques required for our task first.

Because it significantly affects the accuracy and calibre of the results, image

preprocessing is a crucial step in the pipeline for colourizing images. The preparation

techniques we may consider include scaling the input images to a standard size,

carrying out colour space conversions, and employing data augmentation techniques

to increase our training dataset.

Following the preprocessing of the images, we can begin building the dataflow

pipeline. We generate colourized images for the training and evaluation stages of the

pipeline using a cGAN architecture. A cGAN is a type of generative model that uses

adversarial training to generate images that are comparable to the training data.
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When building our dataflow pipeline, we must consider a number of hyperparameters

because they could have an impact on how well our model works. The

hyperparameters that we might consider include the learning rate, batch size, and

number of epochs. We can also experiment with other convolutional layers or residual

blocks, for instance, to see which model design best achieves our aim.

In our project, the choice of image representation format is essential. Despite being

the most popular format for displaying coloured images, RGB might not always be

the best choice for our objective. One option that we might consider is the LAB

colour space, which divides an image's luminance (brightness) and chrominance

(colour) components. By separating the brightness information from the colour

information, we might be able to improve the accuracy of our colorization model.

In conclusion, the objective of this research is to fully automate the image colorization

process by creating a dataflow pipeline that combines image pretreatment techniques,

a cGAN architecture, and training it on a dataset that is openly accessible. To

determine which model architecture and hyperparameters are ideal for our purpose,

we will explore other options. We will also compare the performance of other image

representation formats, including RGB and LAB, to determine which one best serves

our goal. With the aid of this project, we want to make significant progress towards

fully automating the image colorization process and improving the accuracy and

quality of the output.
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3.3 Dataset used:

Landscape colour & grayscale images dataset

3.4 Dataset Features

3.4.1 Type of Dataset

This Dataset contains 7129 colourful RGB images & 7129 grayscale images of

landscapes in jpg image format.

3.4.2 Description of the dataset

Dataset Description: This dataset consists of streets, buildings, mountains, glaciers,

trees etc and their corresponding grayscale image in two different folders. The main

objective of creating this dataset is to create a neural network that can colourized

grayscale landscape images.

Total no of files: 14,300 (14.3k) images including both colourful and grayscale.

3.5 Algorithm / Pseudo code of the Project Problem

A conditional GAN's objective could be described as

where G seeks to reduce the goal and D tries to maximise it, i.e.

G* = arg min maxD LcGAN (G, D).𝐺

14



We contrast the unconditional form with a discriminator that does not observe x:

Previous research has shown that it is advantageous to pair the GAN target with a

more traditional loss, like L2 distance. The discriminator's job is unaffected, but the

generator needs to mislead the discriminator and be relatively similar to the ground

truth output in an L2 sense in order to be effective. We also take into account using L1

distance because L1 encourages less blurring.

Our ultimate goal is

Generic artificial neural networks (GANs) are generative models that identify a

mapping, G: z y, from an input picture y to a random noise vector z. A mapping from

the observed picture x and the random noise vector z to y, denoted by G: (x, z) y, is

learned using conditional GANs in contrast.

An adversarially trained discriminator named "D" is instructed to be as skilled as

possible at identifying the generator's "fakes". G has been trained to produce images

that are indistinguishable from "real" photographs. In Figure, this training approach is

displayed.

Fig(3.1) Methodology
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3.6 Network Architecture
3.6.1 Generator U-Net:

The image colorization problem has seen widespread application of

encoder-decoder networks. They are created by downsampling the data

gradually through a sequence of layers, starting with the input image, until it

reaches the bottleneck layer. The input image's most abstract representation

can be found in the bottleneck layer. The image is then recreated by running

the bottleneck representation through a number of upsample layers in reversal

of the previous step.

Each piece of data must pass through each tier of this technique, including the

bottleneck layer, which is a disadvantage. Low-level data required for the

colorization of images may be lost as a result of this. Since a lot of low-level

information is exchanged between the input and output in many picture

translation issues, it is preferable to transmit this information directly over the

network.

To address this issue, skip links are added to the encoder-decoder network.

The U-shaped shape of the skip links is where the term "U-Net" originates.

The deep neural network architecture known as the U-Net generator combines

the encoder-decoder network and skip connections. The skip allows the

generator to quickly transfer low-level information from the input image to the

output image.

The two main parts of the U-Net generator are the encoder and decoder. The

encoder and encoder-decoder networks both use a series of convolutional

layers to gradually downsample the data in the encoder. Although the decoder

component also has a number of upsampling layers, unlike the

encoder-decoder network, the size of the data is gradually increased. The skip

connections are added between each layer i and layer n-i, where n is the total

number of layers. All layers i and n-i channels are concatenated together in a

skip connection.

16



By integrating skip connections, the U-Net generator can more effectively

capture the low-level information included in the input image. The network is

able to transfer this data without passing it through any layers—including the

bottleneck layer—directly to the output image through the use of skip

connections. The final image is hence more accurate and finely detailed.

The U-Net generator has been successfully used to colourize images in

addition to other image translation tasks. The output image's accuracy and

quality have shown a substantial improvement over earlier encoder-decoder

network topologies. Because it has fewer parameters than other generative

models, the U-Net generator is also quicker and more efficient.

In conclusion, the deep neural network architecture known as the U-Net

generator combines the encoder-decoder network and skip connections. The

skip connections enable the network to transmit low-level data directly from

the input image to the output image. The U-Net generator has proven to be a

significant advance over previous encoder-decoder network topologies in

terms of output image quality and accuracy. When compared to other

generative models, it has a very small number of parameters, which makes it

quicker and more efficient. It has been successfully used for a variety of

picture translation tasks, including image colorization.

Fig(3.2) Generator Methodology

17



3.6.2 Discriminator PatchGAN:

The problem of obtaining high-frequency information has been resolved using

a discriminator architecture known as PatchGAN. Because it only penalises

structure at the patch size, the PatchGAN discriminator can determine the

validity of each of the N N patches in a picture. The total number of responses

is then used to calculate the PatchGAN discriminator's final output.

The PatchGAN discriminator provides a number of advantages over

traditional discriminators used in image colorization problems. It has the

advantage of being efficient computationally. Because it only penalises

structure at the patch size, the PatchGAN discriminator uses significantly less

compute than traditional discriminators.

Another advantage of the PatchGAN discriminator is that it is better at

detecting high-frequency characteristics. Traditional discriminators frequently

fail to collect high-frequency information, which reduces the clarity of the

image. The local picture patch organisation, on the other hand, is the main

focus of the PatchGAN discriminator, allowing it to better capture

high-frequency information.

18

Images have been successfully coloured using the PatchGAN discriminator,

among other image translation tasks. It has proven to have a significant

improvement in output image quality and accuracy over conventional

discriminators. Due to the PatchGAN discriminator's relatively low parameter

count when compared to other discriminators, it is also quicker and more

efficient.

In conclusion, the PatchGAN discriminator is an architecture designed to

punish structure at the patch size. This makes it possible for it to more



precisely gather high-frequency data and assess the reliability of each of the N

× N patches in a picture. The PatchGAN discriminator is computationally

efficient and better at capturing high-frequency information than traditional

discriminators used to address image colorization problems. It has shown a

notable improvement over traditional discriminators in terms of the output

image's quality and accuracy, and it has been effectively applied to a number

of image translation applications, including image colorization.

Fig(3.3) Discriminator Methodology
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3.7 Flow graph of the Major Project Problem

The fundamental problem with the project at hand is image colorization, and using a

flow diagram, we can understand how it functions. Both the raw grayscale image and

the desired output image in its original colours are shown at the beginning of the

process. The generator then takes the input image and transforms it into the desired

output image while maintaining the original image by using latent information from

the image.

Utilising an absolute mean error calculator to determine the mean absolute error

between the two photos is the next step in the process. This error, which is measured

in pixels, reveals how accurately and realistically the coloured images produced by

the generator are.

A predicted image from the generator is given to the discriminator, who decides if it is

authentic or fake. The discriminator computes the output for each image and

compares it to a threshold value to determine if the image is authentic or fake. The

generator can alter its workflow and create fake images less frequently in the future if

the discriminator determines that the image is a fake and notifies the generator of this

finding.

The final output error is calculated by adding the outputs of the sigmoid entropy

calculator, the absolute error, and the sigmoid entropy. Given the discriminant output,

the sigmoid entropy calculator's results reveal that the discriminator shouldn't be able

to distinguish between real and fake photos.

Overall, the workflow of this image colorization project is to improve the accuracy

and realism of the output of the generator. The generator takes the input image and

transforms it into an accurate and realistic coloured image while keeping the original

grayscale image. The discriminator evaluates the generator's output and provides

feedback to help it streamline its processes and produce future images that are more

accurate and lifelike.
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This image colorization project can also be applied in the real world to increase the

visual appeal of product images, improve medical imaging, and repair old

photographs. By adding colour, black-and-white images can come to life, becoming

more appealing and accessible to modern viewers. For example, by adding colour to

old photographs, we would be better able to imagine the past and feel more familiar

with and aware about our cultural heritage. Similar to this, colouring medical images

can improve patient outcomes by assisting professionals in identifying and diagnosing

a range of health problems. As a result, this project's process has the potential to have

a substantial impact on various industries, making it a valuable tool for many

professions.



Fig(3.4) Flow Chart
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3.8 Screenshots of the project's various stages

3.8.1 Preprocessing functions for images:

1) Load image: Reads and decodes a jpeg file from a given path as

tensor variable.

2) Resize: Resizes the given image tensor according to the provided

height and width.

Fig(3.5) Image Resizing
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3) Jitter: Adds random cropping and rotation to given image tensor.

Fig(3.6) Adding Random Jitter
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4) RGB to LAB: Converts an RGB image (tensor) into LAB

colorspace image for both visualisation and neural network.

5) LAB to RGB: Converts an LAB colorspace image into RGB

image (tensor) for both visualisation and neural network.

Fig(3.7) LAB to RGB Conversion
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3.8.2 Data Pipelining:

1) Splitting Dataset: Splits dataset based on given train, evaluation

and test sizes.

2) Interleaving Data: Maps map_func across this dataset, and

interleaves the results.

3) Optimising Dataflow: Using tf.data API to build a highly efficient and fast

tensorflow input pipeline.



25

3.8.3 Model:

1) Base Layer:

Down Sampling Layer:

Data input is mapped into a low dimensional latent representation using this

layer.

Fig(3.8) Down Sampling

Up Sampling Layer:

This layer serves as a mapping between input data and the desired output in a

low-dimensional latent form.

Fig(3.9) Up Scaling
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2) Generator:
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Fig(3.10) Generator
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3) Discriminator:
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Fig(3.11) Discriminator
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3.8.4 Training:

1) Losses:

● Generator Loss: This is the GAN loss that penalises possible structure

difference between the generator output and target image

Fig(3.12) Generator Loss

● Discriminator Loss: This is the GAN loss that penalises wrong predictions

made by the discriminator.

Fig(3.13) Discriminator Loss
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2) Optimizers: Optimizers use gradient descent algorithms to reduce residual

errors and help converge the cost function to minima.With various learning

rates, we employed the Adam optimizer for the generator and discriminator.

A lower learning rate is used for the discriminator so that only useful gradients

are propagated back and there is no oscillation during the convergence of

gradient descent.

GANModel:

This model combines both the generator and discriminator, calculates

losses and matrices, performs gradient descent steps and displays

results.
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Fig(3.14) Gan Architecture
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3.9 User Interface

3.9.1 Model Deployment & Communication:

1) Exporting TensorFlow model:

Exporting a TensorFlow model in the SavedModel format is a crucial step

in putting it into production. As a language-independent format for saving

machine learning models, SavedModel is supported by TensorFlow and

enables models to be loaded and used in a variety of programming

languages. When a model is exported in the SavedModel format,

TensorFlow maintains the trained model's graph, variables, and metadata

describing the input and output signatures.

Since the SavedModel format is adaptable and extensible, changing the

model or adding new features is a breeze. While the model's structure is

saved in a protobuf file, the weights of the model are kept in a set of

variables. The input and output tensors of the model, as well as their data

types and formats, are also described in the protobuf file. The metadata for

the saved model, which is kept separately in a file, includes details like the

model's training parameters and the version of TensorFlow that was used

to construct the SavedModel.

Once the model has been exported in the SavedModel format, it can be

loaded and used in other programming languages like Python, C++, Java,

and Go. Since different frameworks or programming languages are used in

real-world settings, this makes it simple to deploy the model there.

Additionally, the SavedModel format is made specifically for delivering

models in applications in the real world.
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2) Build a web API:

To deploy a TensorFlow model, you must construct a web API that can

answer questions and make predictions. An assortment of protocols and

building blocks known as a web API can be used to develop web-based

services and applications that can communicate with one another. You can

use well-known web frameworks like Flask, FastAPI, or Django to build a

web API. These frameworks provide a quick and efficient way to create a

RESTful API that can accept input data, process it using a deployed

TensorFlow model, and output model predictions..

Your TensorFlow model may be made available as a web service by

developing a web API, making it simple for other applications or services

to use. Users can create, read, update, and delete resources using HTTP

methods when using a RESTful API. When deploying a TensorFlow

model, the API will be in charge of taking input data in a specific format,

preprocessing it, feeding it to the deployed model, and delivering the

model's predictions in the output format.

There are many benefits to creating a web API to launch your TensorFlow

model. First of all, it makes it possible for you to swiftly integrate your

model into other applications or services without having to provide users

direct access to the model itself. This can be quite useful when you need to

hide your model from end users due to security or intellectual property

issues.

It can be easier to update and maintain your model over time using a

well-designed API. By separating the model from the application code,

you may make changes to the underlying model without having to rewrite

the entire programme. This can expedite the procedure while lowering the

likelihood of making errors or defects.
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3) Deploying the API on Nginx:

Once a web framework has been used to create a web API that can accept

requests and return predictions, the next step is to deploy the web API on a

web server like Nginx. Nginx, a well-liked open-source web server, is

praised for its dependability, scalability, and speed. Nginx is used to

deliver online applications, including web APIs, in many production

settings.

When you install your API on Nginx, you can use a reverse proxy to

forward incoming requests to your API. Between a client and an API

server, there is a server known as a "reverse proxy" that routes incoming

requests depending on the URL of the request or other criteria to the

correct server.

4) Configuring Nginx:

Setting up Nginx to send requests to your API is necessary for deploying

your TensorFlow model in a production environment. The Nginx

configuration file contains directives that describe how Nginx ought to

respond to incoming requests and communicate with your API server.

To configure Nginx to forward requests to your API, you must make

changes to the configuration file. The location directive specifies the URL

endpoint for your API.
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In addition to the location directive, you might also need to set the server



block and the proxy_pass directive in the Nginx configuration file. While

the server block specifies the IP address and port number that Nginx

should listen to for incoming requests, the proxy_pass directive routes

incoming requests to the API server. You might also need to specify

additional parameters, such as SSL certificates and caching, depending on

your specific use case. Test your deployment after setting up Nginx by

sending requests to the API endpoint and ensuring that the responses are

correct.

5) Testing the deployment:

Testing the deployment of a TensorFlow model on an API server is an

essential step in the deployment procedure. Testing demonstrates that the

deployed model is functioning as expected and that the API server is

configured properly to manage incoming requests and produce the desired

outcomes.

To test the deployment and see if the response contains the expected

predictions, you may make test requests to the API endpoint. You may use

a variety of tools, such as web browser extensions and command-line

utilities like curl and Postman, to send queries to the API. Testing the API

under various conditions is essential, including delivering different input

data types, searching for errors and exceptions, and testing edge situations.

When evaluating the TensorFlow model's deployment on an API server, it

is critical to take the system's performance and scalability into account.

This involves looking for any bottlenecks or potential performance

concerns and evaluating how the system responds to the increasing number

of incoming requests.
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3.9.2 Frontend



1. About ReactJS:

ReactJS, more often known as React, is an open-source JavaScript library

developed by Facebook for single-page user interfaces (UIs) and

applications. Since it makes it possible to create reusable UI components

and manage application state effectively, React is a preferred option among

developers worldwide.

One of React's primary features is its component-based design. Developers

may create unique UI elements that can be utilised across several pages or

even whole projects. This reduces the amount of code required to construct

an application and makes it simpler to maintain and update.

Another feature utilised by React is a virtual DOM (Document Object

Model), which is a condensed version of the real DOM. Thanks to the

virtual DOM, React is incredibly efficient and quick because it only

updates the components that need to be updated. This results in a speedier

website load time and a better user experience.

The state of an application may also be managed via React. React provides

a simple and obvious way to manage the state of an application using

props and state. State controls a component's internal data, whereas props

are used to convey data between components.

React also provides a declarative UI development approach. The user

interface (UI) may be designed by developers, while React takes care of

the rest. As a result, there is a lower possibility of defects and mistakes,

and understanding the code is also made easier. Many libraries and

technologies that are compatible with React have been developed with the

help of the large and active React community.

38

2. Control Flow:



2.1. User Upload Image:

The user selects an image file from their local device and uploads it to the

website server. Once submitted, the image is then momentarily stored on

the server.

2.2. The image preview is shown on the website:

A preview of the image is displayed on the website after it is posted so that

the user can confirm that it was uploaded properly. The picture file is

rendered on the page in this preview using HTML and CSS.

2.3. On clicking the submit button, three background processes occur:

The provided picture is moved from its temporary place on the server to a

web hosting platform where it is saved and made accessible to other users

and operations.

2.3.1. First image is hosted on an online hosting platform:

The provided picture is moved from its temporary place on the server

to a web hosting platform where it is saved and made accessible to

other users and operations.

2.3.2. Then this hosted image is processed through our API &

colourized by the model:

The hosted image is processed using an API, and then colorization is

added using a machine learning model. In this process, computer vision

algorithms are used to find and anticipate the image's most likely

colour applications.
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2.3.3. The B&W image is replaced by the coloured image in the



preview:

After the colorization process is complete, the black and white (B&W)

image that was visible in the preview is replaced with the newly

coloured image. This action, which dynamically updates the preview

picture without requiring a page reload, is performed using JavaScript.

2.4. The download button is available to download the coloured image:

The colourized image may be downloaded by the user by clicking a

download button once it has been displayed. This button initiates a

process that downloads the colourized image from the internet hosting

platform to the user's local device.
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3) Functioning of the WebApp:



Step-1) User clicks on the choose button to upload the desired B&W

image.

Step-2) The uploaded image preview is shown on the website, Now the

user can either replace the current image or click on the submit button to

begin the process of Colorization.
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Step-3) Once the user clicks on the submit button, the four step



colorization process begins which includes hosting of the image,

processing the image through model pipeline, actual colorization of image,

returning the coloured image to the web portal.

The progress of the process can be seen visually on the progress bar.
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Step-4) After the colorization process is completed, the colourized image



preview is automatically displayed on the website.The download button is

now available

Step-5) Users can click on the download button to save the colourized

image locally on their system.
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CHAPTER 04:



EXPERIMENTS & RESULT ANALYSIS

Discussion on the Results Achieved (All graphs are loss v/s epochs)

This is the resulting graph when image colorization task is performed on RGB images, the

overfitting is due to greater no. of model parameters as RGB images have three colour feature

maps.

Graph(4.1) Avg. Total Gen. Loss
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Reduction in overfitting when using L*a*b* colour space images which have two output

feature map a*b*.



Graph(4.2) Optimised Avg. Total Gen. Loss

Resultant graph after performing hyper parameter tuning.

● Batch size = 128

● Label smoothing = 0.1

● LAMBDA (Fraction importance to image structural loss) = 100
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Graph(4.3) Disc.. Loss

The final graph after applying Spectral Normalisation, which stabilises the training of GANs

by limiting the layer's spectral norm and regulates the Lipschitz factor of the layer.
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Graph(4.4) Avg. Total Gen. Loss using Spectral Normalisation

Resultant graph after setting advanced hyper parameters.

● Power iterations of Spectral Normalisation. (Improves the approximation of weight

normalisation.) = 10

● Beta_1 of Adam optimizer (Lower momentum helps in stable training and prevents

gradient oscillations. = 0.5

● Learning rate of Adam optimizer (Smaller & different earning rates for both the

generator and discriminator help in model convergence as suggested by results)

= 0.0004 & 0.001 respectively.
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Graph(4.5) Resultant disc. graph after setting advanced hyper parameters

48



CHAPTER 05:

CONCLUSION

5.1 Image Colorization Results
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Fig(5.1) Results
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5.2 Application of the Major Project

● Old photos restoration and enhancement.

● To convert X-Rays and ultrasounds to coloured images.

● In CCTVs to improve night vision.

● Satellite imagery translation to 2D Maps.

5.3 Limitation of the Major Project

● It is challenging to create very high resolution, crisp, and colourful images..

● Model reaches Nash equilibrium but is quite unstable.

● Images that are highly detailed & diverse in respect of colours may have some

artefacts in patches.

5.4 Future Work

Therefore, our goal and possible areas would be to produce visually better, more

colourful images and use better quantitative matrices like peak signal-to-noise ratio

(PSNR), which will enable a much more robust process of performance. GANs have

been known to be very difficult to train because it requires finding a Nash

equilibrium.
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