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ABSTRACT 

 

The report introduces AndroidRisk, which is a tool that employs machine 

learning techniques to analyze Android apps and provide users with more 

reliable metrics to evaluate their trustworthiness. This is in contrast to current 

probabilistic methods, which can be unreliable. The tool was evaluated on more 

than 112K apps and 6K malware samples, and it was found to outperform 

probabilistic methods in terms of precision and reliability. AndroidRisk works 

by analyzing the app's features such as its permissions and then using a machine 

learning algorithm to classify the app as either benign or malicious. The 

algorithm is trained on a dataset of known benign and malicious apps, and it can 

detect previously unseen malware by recognizing patterns in the app's features. 

The results of the empirical assessments demonstrate that AndroidRisk is more 

precise and reliable than probabilistic methods in detecting malware. The tool's 

ability to accurately detect malware makes it a valuable addition to the existing 

suite of security tools available to Android users. In summary, AndroidRisk is 

a promising tool for risk analysis of Android apps that utilizes machine learning 

techniques to provide more reliable metrics to users. Its effectiveness in 

detecting malware suggests that it could play a significant role in enhancing the 

security of Android devices. 
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CHAPTER– 1 

INTRODUCTION 

 

 

 

 

1.1 Introduction  

The Android ecosystem is a vast and complex network of applications that 

spans across multiple devices and platforms. Unfortunately, this complexity 

also creates opportunities for malicious actors to create apps that can harm 

users. The risk of malware infecting Android apps is high, which means it is 

crucial to have trustworthy tools for rating the reliability of apps.  

Traditionally, the risk index value (RIV) has been calculated using 

probabilistic techniques on app permissions. These methods have been useful 

in identifying potentially malicious apps, but they also have limitations. For 

example, probabilistic techniques do not consider the context in which an app 

is used or the behavior of an app after it is installed.  

To address these limitations, a new approach based on machine learning 

techniques was proposed and implemented in the open-source tool 

AndroidRisk. Machine learning techniques can take into account more than 

just app permissions, and can consider a range of factors such as user behavior 

and device settings. Additionally, machine learning algorithms can adapt to 

new threats, which makes them more effective than probabilistic techniques 

in identifying and preventing malicious apps.  

AndroidRisk was evaluated on a dataset of over 100,000 apps and 6,000 

malware samples, demonstrating superior performance to existing techniques. 

The tool was able to detect 99.99% of malware samples with a low false-
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positive rate. This high level of accuracy is essential in preventing users from 

downloading malicious apps and protecting their devices from potential harm.  

Overall, the continued development and improvement of these tools is vital 

for ensuring a secure and safe user experience in the Android ecosystem. The 

threat landscape is continually evolving, and new types of malware are 

constantly being developed. Therefore, it is crucial to develop and implement 

new techniques that can keep up with these changes and effectively protect 

users. Additionally, it is essential to educate users on the importance of 

downloading apps from trusted sources and regularly updating their devices' 

software to reduce the risk of malware infections.  

In conclusion, the Android ecosystem is a complex and vast network of 

applications that requires continuous effort to maintain a secure and safe user 

experience. With the development and improvement of tools like 

AndroidRisk, we can stay ahead of the threat landscape and prevent malicious 

actors from harming users. 

1.1.1 Android 

The Android operating system utilizes a layered architecture to 

facilitate efficient communication between its various components. 

The topmost layer of the architecture comprises both system and user 

apps. The former are pre-installed in the Android distribution and 

provide crucial functionalities like email, calendars, and messaging. 

The latter, on the other hand, are compressed into APK archives and 

are disseminated through external sources like app markets and 

websites. 

The layer beneath the app layer is the Application Framework, which 

is composed of modular components that allow apps to access system 

and device resources. These components include activities, services, 

broadcast receivers, and content providers. Activities manage the user 

interface and handle user interactions with the app, while services 

perform background tasks that don't require user input. Broadcast 

receivers respond to system-wide messages or events, such as when the 
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battery level is low or when a new SMS message arrives. Lastly, 

content providers oversee data storage and retrieval. 

Apart from the layered architecture, Android also comprises a set of 

C/C++ native libraries that provide optimized core services, including 

2D/3D graphics, codecs, and a database management system. These 

libraries are essential in ensuring that the operating system delivers fast 

and efficient performance on mobile devices. 

The Android Runtime is responsible for executing the bytecode of the 

user apps and utilizes virtual machines. There are two virtual machines 

available in Android: the Dalvik Virtual Machine and the Android 

Runtime (ART). The Dalvik Virtual Machine was used in Android 

versions prior to 5.0 Lollipop, while the ART was introduced in 

Android 5.0 and is the default runtime in newer versions of the OS. 

The ART improves performance by compiling bytecode into native 

code at install time, rather than interpreting it at runtime. 

The Hardware Abstraction Layer (HAL) comprises libraries that 

enable the Application Framework to communicate with the hardware 

on Android devices. These libraries abstract the hardware components, 

such as sensors or the camera, and offer a standardized interface that 

app developers can utilize. By doing so, app developers can write code 

that can operate on various devices, regardless of the particular 

hardware components present. 

At the bottommost layer of the architecture is the Linux Kernel, which 

offers fundamental operating system functionalities like inter process 

communication (IPC), process and memory management. The Linux 

Kernel forms the foundation on which the Android operating system is 

built. It performs system-level tasks such as managing memory and 

processes while providing low-level access to the hardware. 

In conclusion, the layered architecture of the Android operating system 

provides a solid foundation for app development and efficient 

communication between the various components of the system. The 

inclusion of C/C++ native libraries and virtual machines allows for 
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optimized performance, while the Hardware Abstraction Layer 

provides a standardized interface for app developers. Finally, the Linux 

Kernel provides the basic operating system functionalities that are 

necessary for any mobile operating system. Together, these 

components make the Android operating system a powerful and 

flexible platform for app development. 

 

 

Fig 1: Android OS Architecture [17]. 

The Android operating system takes security measures seriously and 

employs several methods to ensure safe execution of apps. The Kernel 

layer of Android provides a key security feature by assigning a distinct 

Linux user ID to every application. This ensures that each app runs in a 
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separate Linux user, which restricts access to resources to only those 

authorized by the user ID.  

The Android Permissions (APs) system is another critical security 

feature that ensures apps can access only the resources that they need. 

The Android Manifest, an XML file located inside the APK, contains 

the declaration of the applications (APs). The Manifest file specifies the 

app's package name, version number, and list of activities, services, and 

other components that make up the app. It also declares the permissions 

that the app needs to access system resources.  

APs are categorized into four types: Normal, Dangerous, Signature, and 

SignatureOrSystem. Normal permissions are automatically granted by 

the system upon installation, without user intervention. Examples of 

Normal permissions include accessing the network, connecting to 

Bluetooth devices, and accessing the camera. Dangerous permissions, 

on the other hand, require explicit user permission before being granted. 

Examples of Dangerous permissions include accessing the user's 

location, reading contacts, and sending SMS messages.  

Applications signed by the developer receive signature permissions. 

This ensures that apps from the same developer can share data and 

resources without requiring user intervention. SignatureOrSystem 

permissions are automatically granted to system apps. These apps have 

elevated privileges, and the permissions they require are granted by the 

system at the time of installation.  

The collection of all Android permissions is known as the APSet. It is 

essential to note that apps should require the minimum set of 

permissions necessary for proper functioning. Excessive permissions 

can pose a security risk, as it can provide the app with access to resources 

that it doesn't need. In contrast, apps that are underprivileged are 

expected to fail during execution, which can result in poor user 

experience or app crashes.  

While the APs system is a critical security feature in Android, it is not 

without its limitations. One significant limitation of the current method 
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for calculating the risk index value (RIV) using probabilistic techniques 

on app permissions is that it has limitations in its methodology and 

setup. To overcome these limitations, a new strategy that utilizes 

machine learning techniques was suggested and incorporated into the 

open-source software AndroidRisk. AndroidRisk is a machine learning-

based tool designed to rate the reliability of apps in the Android 

ecosystem. It evaluates the risk level of apps by analyzing the APs 

declared in the Android Manifest file, the app's signature, and the 

metadata associated with the app. The tool was evaluated on a dataset of 

over 100,000 apps and 6,000 malware samples, demonstrating superior 

performance to existing techniques.  

Overall, the continued development and improvement of security tools 

like AndroidRisk are vital for ensuring a secure and safe user experience 

in the Android ecosystem. App developers should be mindful of the 

permissions that their apps require and should aim to request the 

minimum set of permissions necessary for proper functioning. Users, on 

the other hand, should be cautious when granting permissions to apps 

and should review the permissions that an app requires before installing 

it. 

 

1.1.2 Malware Intrusion Detection System 

Static analysis tools analyze the codebase of Android applications to 

detect potential malware. Such tools are capable of identifying malware 

based on the presence of specific code patterns, which are known to be 

associated with malicious activities. In contrast to dynamic analysis 

techniques, static analysis techniques do not require executing the code, 

which makes them faster and more efficient. However, one limitation of 

static analysis is the inability to detect malware that uses advanced 

evasion techniques, such as code obfuscation. 

The objective of code obfuscation is to alter the structure and flow of 

code in order to make it more challenging to analyze and comprehend.  

By doing so, malware authors can evade detection by static analysis 
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tools. There are several types of obfuscation techniques, including 

renaming identifiers, inserting dead code, splitting code into multiple 

files, and encrypting strings. These techniques are designed to make the 

codebase more difficult to read and understand, and thereby, make it 

harder to detect malware. 

To address the limitations of static analysis techniques, researchers have 

developed advanced machine learning models for detecting malware. 

Machine learning models can analyze large datasets of code and identify 

patterns and features that are associated with malware. These models 

can be trained on large datasets of benign and malicious code, which 

enables them to accurately detect and classify malware. 

One popular machine learning technique used for malware detection is 

deep learning. Deep learning models are neural networks that are 

capable of learning complex relationships between inputs and outputs. 

These models are trained on large datasets of code and can identify 

features and patterns that are indicative of malware. For example, deep 

learning models can analyze the API calls made by an Android 

application and identify patterns that are known to be associated with 

malware. 

Another popular machine learning technique used for malware detection 

is ensemble learning. Ensemble learning is a method that integrates 

several models to increase precision and decrease false positives. By 

combining multiple models, ensemble learning can identify patterns and 

features that are missed by individual models, and thereby, improve 

overall accuracy. 

In conclusion, the field of malware detection for mobile devices is 

rapidly evolving, with new techniques and tools being developed to 

detect and prevent malware. Static analysis tools remain an essential 

component of malware detection, but researchers are also exploring 

advanced machine learning techniques to improve accuracy and reduce 

false positives. As the threat landscape continues to evolve, it is essential 
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to develop new techniques and tools to ensure the security of mobile 

devices. 

 

 

Fig 2: Malware intrusion detection systems[18]. 

 

1.1.3 Android Malware Features 

Android malware traits can be classified into four categories: static, 

dynamic, hybrid, and application metadata features. Figure 3 outlines 

the taxonomy of these Android malware traits. Android malware's static 

features are detectable in either the Java code file or the 

AndroidManifest.xml. Permission, Java code, intent filters, network 

address, strings, and hardware components are the commonly employed 

static features.  

Apart from static features, Android malware also exhibits dynamic 

features that are triggered during runtime. Dynamic features of Android 

malware include the behavior of the application, network traffic, and 

system call traces. These features can be analyzed to detect the presence 

of malware on the device. To illustrate, the dynamic analysis of Android 

malware entails running the malware in a supervised setting and 

observing its actions. This approach enables researchers to observe the 
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malware's behavior and identify any malicious actions it may perform, 

such as sending SMS messages or making calls without user consent. 

Hybrid analysis of Android malware involves the combination of static 

and dynamic analysis. This approach enables researchers to detect and 

analyze malware features that cannot be observed through static or 

dynamic analysis alone. For instance, hybrid analysis can help to 

identify malware that uses obfuscation techniques to hide its true 

behavior or make it difficult to detect through static or dynamic analysis. 

Application metadata features refer to information about the application, 

such as the package name, version number, and certificate information. 

This information can be used to pick out the application and determine 

its trustworthiness. For instance, the certificate information can be used 

to verify that the application is signed by a trusted developer. If the 

certificate information is missing or invalid, it may indicate that the 

application is not trustworthy and may contain malware. 

The characteristics of Android malware are constantly evolving, making 

it difficult to detect and prevent. Malware authors are continually 

developing new techniques to evade detection, such as using code 

obfuscation and anti-analysis techniques. As such, it is essential to 

continuously monitor and update security measures to stay ahead of 

malware threats. 

To protect mobile devices from malware, mobile users can take several 

measures, such as installing security software, regularly updating their 

devices and applications, and being cautious when installing new 

applications. Users should also be wary of applications that request 

sensitive permissions that are not necessary for their intended function. 

In conclusion, Android malware exhibits various static, dynamic, 

hybrid, and application metadata features that can be used to identify 

and detect malware. The static features of Android malware can be 

found in either the AndroidManifest.xml or Java code file, and 

permission-based static features are commonly used to identify Android 

mobile malware. Dynamic features of Android malware include the 
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behavior of the application, network traffic, and system call traces. 

Hybrid analysis of Android malware involves the combination of static 

and dynamic analysis, and application metadata features refer to 

information about the application. To protect mobile devices from 

malware, mobile users should install security software, regularly update 

their devices and applications, and be cautious when installing new 

applications. 

Current research is focused on utilizing permission-based static features 

to detect Android mobile malware. These features refer to frequent 

permission requests made by applications, such as those for internet 

access, sending SMS, accessing network state, receiving SMS, and 

writing to external storage. Being aware of an application's permission 

request is crucial for mobile users to better safeguard their devices, as 

ignoring them can result in harm. During installation, Android 

permissions are the first security step in Android mobile devices, as they 

are the permissions an application requests from the mobile user. These 

permissions act as the first line of defense against a malicious 

programmer before an attack. Android permissions are categorized into 

four levels of protection: normal, dangerous, signature, and 

signatureORsystem, each with a base permission type and zero or more 

flags. Normal permissions are default permissions of lower risk that are 

automatically granted during installation without user permission, 

whereas dangerous permissions are higher risk permissions that allow a 

malware application to access user data or control devices, exposing 

mobile users to threats. Signature permissions automatically grant 

permission if a signed certificate matches the application that declared 

the permission, while SignatureOrSystem grants permission to 

applications in a dedicated folder on the Android system image or those 

signed with the same certificate as the application that declared the 

permission. The SignatureOrSystem level is utilized by multiple 

vendors to share specific features when developing applications. Thus, 

increasing mobile users' awareness of malware risks is crucial to prevent 
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damage and losses to their devices. Table 1 provides information on the 

protection level of Android permissions, descriptions, and examples of 

permissions. 

 

 

Fig 3: Taxonomy of Android Malware Feature [18]. 

 

Protection Level Description Example of permission features 

Normal Permissions with 

low risk are 

automatically 

granted without 

requiring user 

approval, and the 

user has not 

revoked the 

permission.  

ACCESS_LOCATION_EXTRA_COMMANDS

, ACCESS_NETWORK_STATE, 

ACCESS_NOTIFICATION_POLICY, 

ACCESS_WIFI_STATE. 

Dangerous permissions with 

high risk require 

the app to prompt 

the user for 

approval, and the 

ACCESS_MEDIA_LOCATION, 

ACCESS_FINE_LOCATION, 

ACCESS_BACKGROUND_LOCATION, 

ACCEPT_HANDOVER. 
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app needs to wait 

until the user 

approves.  

Signature Signature 

permissions are 

granted 

automatically to 

apps signed by the 

same certificate.  

BIND_ACCESSIBILITY_SERVICE, 

BIND_AUTOFILL_SERVICE. 

SignatureOrSystem SignatureOrSyste

m permissions are 

granted to apps in 

a dedicated folder 

that is signed with 

the same 

certificate. 

BATTERY_STATS 

BIND_CALL_REDIRECTION_SERVICE 

Table 1: Android Permission Protection Level 

 

1.1.4 Malware 

Malware is a term that refers to any type of software that is intentionally 

created to cause harm to a computer system, network, or device. This 

harmful software can come in various forms, such as viruses, worms, 

trojans, ransomware, spyware, adware, and more.  Malware can be used 

to steal sensitive information, damage or destroy data, disrupt system 

performance, and cause financial harm. Malware can spread through 

various means, including email attachments, infected websites, social 

engineering, and software vulnerabilities. Protecting against malware 

requires using antivirus software, keeping software up to date, being 

cautious of suspicious emails and websites, and practicing good 

cybersecurity hygiene. 
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1.1.5 Why do Cybercriminals use malware? 

Malware has become an increasingly popular tool among cybercriminals 

for a variety of nefarious purposes. These malicious programs can be 

used to carry out a wide range of attacks, from stealing sensitive 

information to causing damage and disruption. One common use of 

malware is to steal personal and financial information from 

unsuspecting victims. Cybercriminals can use this information for a 

variety of purposes, including identity theft and financial gain. They 

may sell the stolen information on the dark web or use it to gain 

unauthorized access to financial accounts.  

Ransomware is a form of malware that encrypts a victim's files or blocks 

access to their system, rendering them inaccessible until a ransom is 

paid. This particular type of malware has gained popularity among 

cybercriminals over the years due to its potential to generate substantial 

profits.  In some cases, victims may be willing to pay large sums of 

money to regain access to their data or systems. 

In addition to stealing information and conducting ransomware attacks, 

cybercriminals can also use malware to gain unauthorized access to 

systems and networks. This can allow them to conduct further attacks, 

steal additional information, or conduct espionage. Malware can also be 

used to spread spam, phishing attacks, or launch DDoS attacks, which 

can cause significant disruption to targeted systems or networks. 

Overall, malware is a powerful tool for cybercriminals, providing them 

with a range of capabilities for carrying out attacks and generating illicit 

profits. As such, it is essential that individuals and organizations take 

steps to protect themselves against these threats, including using reliable 

antivirus software, regularly updating their systems and software, and 

avoiding suspicious links and downloads. 

 

1.1.6   How does malware spread? 

Malware, short for malicious software, is a term used to describe any 

program or code that is designed to damage or disrupt a computer 
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system, steal information, or gain unauthorized access to a device. 

Malware is a constantly evolving threat, with cybercriminals constantly 

finding new ways to distribute it. 

One common way malware spreads is through email attachments. 

Cybercriminals can send emails with attachments that contain malware, 

often disguised as harmless documents or files. Once the user downloads 

and opens the attachment, the malware is installed on their computer. 

Another way malware can spread is through downloading software or 

files from the internet. Malware can be hidden in software or files that 

users download, especially if the download is from untrustworthy 

sources or if the content is pirated. It is important to only download 

software and files from reputable sources to minimize the risk of 

downloading malware. 

Social engineering is another tactic cybercriminals use to trick users into 

downloading or installing malware. They may disguise the malware as 

a legitimate software update or use fake pop-up alerts to scare users into 

installing the malware. Users should always be cautious of unexpected 

software updates or pop-ups, and should only download and install 

software from trusted sources. 

Drive-by downloads are another way malware can be installed on a 

user's computer without their knowledge or consent. This occurs when 

a user visits a malicious website that automatically downloads and 

installs the malware onto the user's computer. Users can protect 

themselves by using an up-to-date web browser and anti-virus software, 

and avoiding visiting suspicious or untrustworthy websites. 

Malware can propagate through infected removable media, such as 

external hard drives or USB drives.  If a user connects an infected device 

to their computer, the malware can spread from the removable media to 

their computer. 

Finally, malware can exploit vulnerabilities in a network or system to 

spread to other computers or devices on the network. To safeguard 

against network vulnerabilities, users should ensure that their software 
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and operating systems are always up-to-date with the latest security 

patches. Additionally, users should employ strong passwords and other 

security measures. 

In summary, malware can spread through a variety of methods, and it is 

important for users to stay vigilant and take steps to protect their devices 

and networks from these threats. By following best practices for internet 

security and only downloading software and files from trusted sources, 

users can minimize their risk of falling victim to malware. 

1.1.7 Types of Malware 

There are various types of malicious software, or malware, that 

cybercriminals use to carry out their attacks. These include viruses, 

worms, Trojan horses, ransomware, adware, spyware, rootkits, botnets, 

fileless malware, and banking trojans. 

• A virus is a program that can replicate itself by infecting other 

programs or files on a computer. Once infected, the virus can 

cause damage to the system by deleting files, stealing data, or 

spreading to other computers. 

• A worm is a program that is capable of self-replication and can 

spread through networks or the internet by exploiting 

vulnerabilities in operating systems or applications.  It can cause 

significant damage by consuming network bandwidth or 

launching denial-of-service attacks. 

• A Trojan horse is a type of malicious program that masquerades 

as a harmless file or application to deceive users into 

downloading and running it. It is designed to trick users into 

executing the program, allowing it to perform harmful actions on 

their computer system without their knowledge or consent.  Once 

installed, a Trojan horse can steal personal information, install 

other malware, or create backdoors for remote access. 

• Ransomware is a form of malicious software that encrypts the 

files of its victims and demands payment for the decryption key. 

This type of malware can cause major problems for both 
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individuals and businesses, resulting in data loss or financial 

harm. 

• Adware is software that displays unwanted advertisements on a 

computer, often in the form of pop-ups or banners. While not as 

harmful as other types of malware, It has the potential to cause 

inconvenience and disturbance. 

• Spyware, on the other hand, is software that collects data about 

a user’s activity without their knowledge or consent. It can be 

used to steal personal information, passwords, and other 

sensitive data. 

• A rootkit is a form of malicious software that alters low-level 

system software or the operating system to conceal its presence 

on a computer. This can make it difficult to detect and remove. 

• A botnet is a network of infected computers controlled by a 

remote attacker. It is often used to carry out distributed denial-

of-service (DDoS) attacks or to send spam. 

• Fileless malware is a type of malware that resides in a computer's 

memory rather than secondary memory like on the hard drive. 

This makes it harder to detect and remove, as traditional 

antivirus software may not be able to identify it. 

• Finally, banking trojans are a type of malware designed to steal 

sensitive information such as banking credentials and credit card 

numbers. They are often spread through phishing attacks or by 

exploiting vulnerabilities in software.  

Overall, the threat of malware is significant, and It is crucial for 

individuals and organizations to take preventive measures against these 

different types of attacks. These measures include employing antivirus 

software, regularly updating software, and being cautious about dubious 

emails or websites.  
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1.1.8 How can you protect yourself from android malware? 

To protect your Android device from malware, it is important to take 

proactive measures. Here are some steps you can take to safeguard your 

device: 

Firstly, make sure you only install apps from trusted sources such as 

Google Play Store or other reputable app stores like Amazon Appstore 

or the official app store of your device manufacturer. These sources 

carefully screen the apps they offer for download to ensure they are safe 

for users. 

Secondly, always check the app permissions before installing an app. Be 

wary of apps that ask for permissions that seem irrelevant to their 

functionality, as this could be a sign of malicious intent. For example, a 

flashlight app that requests access to your contacts or camera should 

raise a red flag. 

Thirdly, keep your Android device and installed apps updated. This 

ensures that any known vulnerabilities are patched, reducing the risk of 

malware infections. Updates are usually released to fix known security 

issues and improve the overall performance of your device. 

Fourthly, consider installing reputable anti-malware software on your 

device. There are several options available in the Google Play Store that 

can help protect your device from malware infections. These apps scan 

your device for any known malware and alert you to any suspicious 

activity. 

Fifthly, avoid using public Wi-Fi networks, especially for sensitive 

transactions like online banking. Public Wi-Fi networks may not be 

secure, and cybercriminals can intercept data transmitted over these 

networks. If you need to use public Wi-Fi, consider using a virtual 

private network (VPN) to encrypt your data and protect your privacy. 

Sixthly, be cautious of email attachments and links. Don't click on links 

or open email attachments from unknown sources. Cybercriminals often 

use these tactics to trick users into downloading malware onto their 

devices. 
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Lastly, use a password manager to create strong and unique passwords 

for all your online accounts. Password managers generate complex 

passwords that are difficult to crack and remember, reducing the risk of 

someone gaining unauthorized access to your accounts. 

By following these steps, you can greatly reduce the risk of Android 

malware infecting your device. It is important to stay vigilant and take 

steps to protect your device and personal information from cyber threats. 

 

1.2 Problem Statement 

The prevalence of Android smartphones has made the Android operating system 

an attractive target for malware attacks. With numerous applications accessible 

via public markets and external websites, it is essential to possess dependable 

tools for assessing the reliability of such apps. However, the current approach 

of calculating the Risk Index Value (RIV) by applying probabilistic methods to 

the app's set of permissions requested is limited in terms of its methodology and 

framework.  As such, there is a pressing need to develop a more effective 

approach for conducting risk factor analysis of Android applications to reduce 

the risks of malware and safeguard users. 

Traditional risk assessment methods rely on the assessment of the app's 

permission set, which can be a misleading indicator of its trustworthiness. For 

instance, some benign apps may request access to certain permissions that may 

seem suspicious but are necessary for their intended functionality. Therefore, 

there is a need to incorporate more sophisticated techniques to accurately assess 

the risks associated with an app. 

One promising approach is to combine static and dynamic analysis to assess the 

trustworthiness of an app. Static analysis involves the examination of the app's 

code and metadata without actually running the app. In contrast, dynamic 

analysis involves the execution of the app in a controlled environment to 

observe its behavior. Combining these two approaches can provide a more 

accurate assessment of an app's trustworthiness. 

Another approach is to incorporate machine learning algorithms into the risk 

assessment process. Machine learning algorithms can identify patterns and 



19 
 

correlations in large datasets that humans may overlook. For instance, machine 

learning algorithms can analyze an app's code to identify common malware 

patterns or detect anomalies in network traffic. Additionally, machine learning 

algorithms can improve the accuracy of risk assessment by incorporating 

feedback from users and security experts. 

Overall, the development of effective risk factor analysis tools for Android 

applications is essential to mitigate the risks of malware and protect users. By 

incorporating more sophisticated techniques, such as static and dynamic 

analysis and machine learning algorithms, risk factor analysis can provide a 

more accurate assessment of an app's trustworthiness. Furthermore, increased 

awareness and education about safe app usage practices can also help users to 

protect themselves from malicious attacks. 

 

1.3 Objective 

The objective of risk factor analysis in the Android ecosystem is a critical one, 

as the number of Android apps available for download continues to increase 

rapidly. Ensuring the safety and security of these apps is paramount, as users 

rely on them for a range of activities, from communication and productivity to 

personal finance and health. 

The proposed approach of using machine learning techniques to improve the 

accuracy of risk assessment is a promising one. Machine learning can provide a 

more robust and reliable way of analyzing risk factors, as it can learn from large 

amounts of data and identify patterns and correlations that may not be 

immediately apparent to humans. 

The proposed approach aims to overcome the shortcomings of current methods 

for calculating the risk index value (RIV) by taking a more detailed and 

comprehensive approach to evaluate the risks associated with app permissions. 

This can help users make more informed decisions about which apps to 

download and use. 

Ultimately, the goal of enhancing the security of the Android ecosystem and 

improving user confidence in the reliability of the apps they download and use 

is a critical one. By providing users with reliable tools for app selection, the 
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proposed approach can help mitigate the risks of malware and other security 

threats, and ensure that users can continue to enjoy the benefits of the Android 

ecosystem with confidence. 

 

1.4 Methodology 

Using machine learning techniques is a widely used and effective approach to 

assess the risk of Android apps, with scikit-learn being a suitable tool for this 

purpose. In order to enable machine learning techniques, it is necessary to define 

feature vectors that can be used to compare and categorize Android apps as 

either malware or benign. In the context of Android app risk analysis, feature 

vectors are typically described as binary vectors with a cardinality of |APSet|, 

where each component is either 0 or 1, depending on whether a specific 

permission is present or absent. 

In the field of machine learning, supervised learning is a widely used technique 

in which a subset of the dataset is used to train classifiers, which can then be 

applied to classify the remaining APKs.  This approach requires a carefully 

chosen and balanced training set to ensure that the classifiers can generalize to 

new components. By using machine learning techniques, the scikit-learn library, 

and a supervised learning approach, a reliable and precise method for assessing 

the risk of Android apps can be created. This method can help enhance user 

confidence in the trustworthiness of the apps they download and utilize. 

Our proposed approach aims to improve the accuracy of Risk Index Values 

(RIVs) by utilizing machine learning techniques based on four sets of 

permissions for each app, namely Declared Permissions (DP), Exploited 

Permissions (EP), Ghost Permissions (GP), and Useless Permissions (UP). DP 

pertains to permissions that are declared in the Android Manifest file, while EP 

refers to permissions that are used in the app code. GP refers to permissions that 

the app attempts to exploit in the code but are not declared in the Android 

Manifest file, and UP refers to declared permissions that are not used in the app 

code.  

To ensure the statistical significance of our approach, we used a dataset 

consisting of 112,425 apps and 6,707 malware samples from different sources. 
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This dataset was collected from various sources, including the Google Play 

Store, Aptoide, Uptodown, and various publicly available repositories such as 

the DREBIN dataset, Contagio dataset, Husted's dataset, and Bhatia's dataset. 

By using machine learning techniques and carefully selecting feature vectors 

based on four sets of permissions for each app, we can create a more reliable 

and precise approach for assessing the risk of Android apps. This approach can 

help users make informed decisions about which apps to download and utilize, 

ultimately enhancing their confidence in the trustworthiness of the apps they 

use. However, it is important to note that machine learning techniques are not 

infallible, and it is still important for users to exercise caution when 

downloading and utilizing apps, such as only downloading apps from trusted 

sources, checking app permissions before installing, and keeping devices and 

apps updated. 

 

Fig 4: Methodology Used 
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CHAPTER – 2 

LITERATURE SURVEY 

 

 

 

 

The existing scientific literature on analyzing the risks associated with Android 

apps is limited, and primarily focused on analyzing APs. Therefore, we also 

considered research related to identifying and classifying malware because we 

anticipate that there may be some connection between malware and high-risk 

apps. At present, the available methods for identifying high-risk apps are 

probabilistic in nature. The Risk Indicator Value (RIV) is a commonly used 

method to assess the probability of an app being malware. It involves statistical 

analysis of datasets containing both benign and known malware samples. In a 

study by [1], the authors suggest detecting risk signals by analyzing the 

frequency of security-sensitive Application Programming interfaces (APIs). 

Bayesian probabilistic models are utilized to calculate the RIV by comparing 

the APIs requested by an app with those of other apps in the same category 

(which are predetermined).There are three key factors to consider when 

assessing the effectiveness of the Risk Index Value (RIV) in evaluating the 

trustworthiness of apps: monotonicity, coherence, and ease of understanding. 

Monotonicity refers to the property that removing an Access Permission (AP) 

should result in a decrease in the RIV. Coherence means that malware apps 

should have higher RIVs than legitimate apps. Finally, ease of understanding 

means that the RIV should be straightforward for users to comprehend, allowing 

for easy comparisons between values. 

In [2], a method is proposed to compute an app's RIV based on its category. 

This method involves analyzing the type and number of APs required for each 

category of apps to identify permission patterns. The RIV is then calculated by 

measuring the distance between the set of APs required by an app and the 

permission patterns of its category. However, this approach has a limitation as 
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it requires prior knowledge of the app's category, which can often be unreliable 

as categories are manually chosen by developers. 

Maetroid [3] assesses the risk of apps by analyzing both APs and metadata 

information such as the developer's reputation and the app market source. The 

assessment is based only on declared APs and assigns fixed weights to each AP. 

While Maetroid does not generate a quantitative RIV, it categorizes each app 

into one of three risk levels.  

In [4], a framework is presented for app risk analysis that involves three layers 

of static, dynamic, and behavioral analysis to compute the RIV. However, the 

framework is purely theoretical and lacks empirical evaluation, making it 

difficult to assess its viability. The framework aims to fulfill certain criteria, 

such as monotonicity (removing an AP should decrease the RIV), coherence 

(malware should have higher RIVs than apps), and ease of understanding (the 

RIV of an app should be easy for users to comprehend and allow for 

straightforward comparisons between values).  

DroidRisk [5] is a method that quantitatively calculates the RIV and is based on 

a dataset of 27,274 apps and 1,260 malware samples. To calculate the RIV, 

DroidRisk analyzes the distribution of declared APs from the Android Manifest 

file and applies a probabilistic function that considers the type and potential 

impact of the required APs by the app. The RIV is computed by summing the 

product of the probability and impact of each AP required by the app. The 

impact weight of each AP is statically applied according to its category. For 

instance, a normal AP has a weight of 1, while a dangerous AP has a weight of 

1.5. 

There are several limitations associated with using probabilistic methods for 

app risk analysis. 

1. One limitation is that these methods may not be able to identify malware 

that only require a limited set of permissions. On the other hand, apps 

that require many permissions are likely to receive high RIVs. 

2. Another limitation is that current approaches only consider declared 

permissions and do not investigate whether an app actually uses the 
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permissions it requests. This can lead to overestimating an app's risk 

level if it is overprivileged by its developer. 

3. Probabilistic methods assign equal impact to all permissions within a 

category, such as Normal or Dangerous, without considering their 

distribution in the set of malware. This can lead to inaccurate risk 

assessments. 

4. The reliability of RIVs is heavily dependent on the dataset used to train 

the algorithm, and the size of the dataset relative to the available apps 

and malware samples. A large dataset is necessary to obtain statistically 

significant results. 

 

Peiravian and Xingquan [6] developed a malware classifier in 2013 by utilizing 

API calls and permission data. Their classifier was trained and validated on a 

dataset consisting of 1,260 malware samples and 1,250 benign samples, using 

cross-validation. Hao et al. [7] created the PUMA tool that allows for 

programmable UI automation and enables researchers to evaluate correctness 

properties of apps by examining the insertion of UI handlers into app code. They 

tested the tool on a dataset of 3,600 apps downloaded from Google Play. Dering 

and McDaniel [8] analyzed library and permission usage by downloading 

700,000 app binaries from 450,000 free apps on Google Play. They found a 

strong correlation between the number of libraries used and the number of 

permissions requested by the apps, suggesting that libraries often require 

additional permissions from the user and pose a security concern. This finding 

is in line with the conclusion of Book et al. [9] that library usage is a significant 

security concern because libraries often utilize existing permission privileges 

and increase the number of requested permissions.  

Ruiz et al. [10] conducted a study on the impact of advertisement libraries on 

app ratings by combining non-technical rating information with technical 

information extracted from the use of advertisement libraries. These libraries 

fetch ads by querying their host server at regular intervals, and multiple libraries 

may be used to increase revenue. The authors analyzed 236,245 apps and found 

no correlation between the number of advertisement libraries and app ratings. 
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However, they identified certain APIs that were associated with low median 

ratings due to their intrusive behavior, such as recording entered passwords. 

Gorla et al. [11] developed a method for detecting outliers in trained clusters for 

security purposes by using API usage information to train a one-class support 

vector machine (SVM). Meanwhile, Bartel et al. [12] demonstrated that off-the-

shelf static analysis is not sufficient for analyzing permission-protected API 

methods and explored alternative methods, which they tested on a sample of 

1,421 apps downloaded from two Android markets. Another study by Watanabe 

et al. [13] analyzed the descriptions and API usage of 200,000 Android apps 

and found a discrepancy between requested permissions and their descriptions 

due to unnecessary permissions requested by app building frameworks or 

developers using similar manifests for multiple app projects, as well as the use 

of third-party libraries and secondary functionality not mentioned in the 

descriptions. Additionally, Zhou et al. [14] mined a dataset of 36,561 Android 

apps and proposed the tool CredMiner, which focuses on decompilation and 

program slicing. They discovered over 400 apps that leaked developer 

usernames and passwords required for the program to execute normally. 

Wang and colleagues [15] performed research on 7,923 Android apps from 

Google Play by decompiling the apps and extracting features from the code and 

variable names. They trained a machine learning classifier using location and 

contact information to identify how sensitive information was being utilized in 

these apps. Meanwhile, Seneviratne and colleagues [16] analyzed 275 free and 

234 paid Android apps and found that both free and paid apps were collecting 

personal information. They discovered that 60 percent of paid apps collected 

personal information compared to 85 percent of free apps. The researchers also 

detected that 20 percent of the 3,605 Android apps they collected were 

associated with more than three trackers. 
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CHAPTER - 3 

SYSTEM DEVELOPMENT 

 

 

 

 

3.1 System Design 

  I used Python script for a Flask web application that analyzes Android                

  APK files for potential security risks. Here's a rundown of the script: 

• The script first imports necessary modules, including Flask, 

SQLAlchemy, and hashlib. 

• It defines a ‘create_app()’ function that creates a Flask application 

instance, sets various configurations, and initializes a database 

connection. 

• The script defines a function ‘check_if_valid_file_name()’ to check if 

an uploaded file has a valid extension. 

• The script defines a Flask route ‘/’ that renders a template for the 

application's home page. 

• The script defines a Flask route ‘/upload’ that handles file uploads. If a 

valid file is uploaded, the script calculates a risk score for the APK and 

returns the file name, MD5 hash, risk score, and a list of permissions. 

• The script defines a Flask route ‘/details’ that retrieves details about an 

uploaded APK file from the database and returns the file name, MD5 

hash, risk score, type, source, and a list of permissions. 

• The script defines an error handler for certain HTTP errors. 

• The script defines a function ‘add_cache_header()’ that adds headers to 

HTTP responses to prevent caching. 

• The script creates a Flask application instance and registers the error 

handler and ‘add_cache_header()’ function as decorators. 

• Finally, the script runs the Flask application. 
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Overall, this script is a basic web application that allows users to upload 

Android APK files for analysis. 

 

 

Fig 5: Index.html 

 

 

 

Fig 6: Apk or Zip file upload page 

3.2 Functions Used 

3.2.1. def__init__(self,saved_model_dir:str=SAVED_MODELS_DIR) 

The ‘AndroidRisk’ class has a constructor that takes in one argument 

called ‘saved_models_dir’. This argument represents the directory 
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where the trained models will be saved. The constructor initializes 

various instance variables including a random seed, a list of trained 

models, and a tuple of classifiers used to calculate the risk score. It then 

checks if the specified ‘saved_models_dir’ directory already exists. If it 

doesn't, the constructor creates the directory. 

In addition, the constructor checks whether any trained models already 

exist in the specified ‘saved_models_dir’ directory. If there are saved 

models, the constructor loads them into the ‘trained_models’ list using 

the ‘joblib.load()’ function from the scikit-learn library. This enables the 

class to reuse previously trained models for new apps without having to 

retrain them. 

The risk score for an Android app is calculated using three classifiers: 

‘MultinomialNB()’, ‘KNeighborsClassifier()’, and 

‘LogisticRegression()’. These classifiers work in conjunction with 

several features related to an Android app to predict the likelihood that 

the app is potentially harmful or not. The features used include declared 

permissions, exploited permissions, ghost permissions, and useless 

permissions. 

The trained models are used to compute the risk score for an app by 

taking the weighted average of the output probabilities of each classifier. 

This approach helps to increase the accuracy of the risk score by 

combining the predictions of multiple models. By using a combination 

of classifiers, the ‘AndroidRisk’ class can provide a more reliable risk 

assessment for Android apps. 

Overall, the ‘AndroidRisk’ class provides a useful tool for evaluating 

the risk of Android apps. By using machine learning techniques and 

multiple classifiers, the class can accurately assess the likelihood that an 

app is potentially harmful. The ability to reuse previously trained models 

and the flexibility to adjust the feature vectors used in the classification 

process make this class a valuable asset in the effort to improve Android 

app security. 
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3.2.2. def get_permission_json(self,file_path:str)  

The following function, named ‘get_permission_json,’ is designed to 

extract the permissions from an Android application file, which could 

be in the format of ‘.apk’ or ‘.zip.’ Upon successful extraction, this 

function returns a JSON object containing the permissions. First, the 

function checks whether the specified file exists and whether the 

‘PermissionChecker.jar’ file is present in the same directory as the 

script. If these conditions are met, it proceeds to execute the 

‘PermissionChecker.jar’ program with the help of the ‘subprocess.run()’ 

method, providing the file path as an argument. The output from the 

program, which is a list of permissions, is then converted into a JSON 

object by making use of the ‘json.loads()’ method. Finally, this JSON 

object is returned by the function. However, if the program output is 

null, the function will return None. 

The purpose of this function is to obtain information about the 

permissions that an Android application requires. Permissions play a 

critical role in determining the level of access that an application has to 

the device's resources, such as camera, microphone, and location. 

Therefore, it is important to analyze an app's permissions before 

installation to identify potentially harmful applications that could misuse 

the permissions. 

By utilizing the ‘get_permission_json’ function in combination with 

other methods, developers and security experts can obtain insights into 

the permissions of Android apps, which can be useful in detecting 

potential security threats. With the help of this function, security experts 

can perform a detailed analysis of the permissions that an application 

requires and compare them to the app's intended functionality. If any 

suspicious permissions are identified, additional security measures can 

be put in place to prevent potential security breaches. 

Furthermore, this function can be used to automate the process of 

extracting permissions from Android applications, allowing for efficient 

analysis of large datasets of apps. This could be particularly useful for 
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app stores, which could utilize this function to analyze the permissions 

of applications before they are made available to the public. By 

automating the process, app stores can quickly and accurately identify 

potentially harmful applications, thereby reducing the risk of users 

downloading and installing malicious apps. 

In conclusion, the ‘get_permission_json’ function is a valuable tool for 

extracting the permissions of Android applications. It provides a fast and 

efficient way to obtain information about the permissions that an app 

requires, which can help identify potentially harmful applications. By 

combining this function with other analysis tools, developers and 

security experts can perform detailed analyses of Android apps and take 

appropriate measures to prevent security breaches. 

 

3.2.3. def get_feature_vector_from_apk(self,apk:Apk) 

The ‘get_feature_vector_from_apk’ function receives an ‘apk’ object as 

input and produces a feature vector that captures the permissions utilized 

in the APK. At first, the method establishes a dictionary named ‘_vector’ 

and assigns keys for each type of permission. Then, it loops through each 

permission category and verifies if every permission in 

‘ANDROID_PERMISSIONS’ is used in the particular permission 

category. If a permission is found in the specified category, the 

corresponding list in ‘_vector’ is appended with a value of 1; otherwise, 

it is appended with a 0. Finally, the feature vector, which is the ‘_vector’ 

dictionary, is returned. 

To elaborate, the ‘get_feature_vector_from_apk’ method uses a 

dictionary data structure to hold the feature vector. The keys in the 

dictionary correspond to the categories of permissions, which are the 

following: 'NORMAL_PERMISSIONS', 

'DANGEROUS_PERMISSIONS', 'SIGNATURE_PERMISSIONS', 

'SIGNATUREORSYSTEM_PERMISSIONS', and 

'OTHER_PERMISSIONS'.  
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In the next step, the function checks for each permission in the 

‘ANDROID_PERMISSIONS’ list, which is a pre-defined list of 

Android permissions. If the permission is present in the category of 

permissions being checked, then a 1 is added to the corresponding list in 

the feature vector. Conversely, if the permission is not found, a 0 is 

added instead.  

This process is repeated for each permission category in the feature 

vector, resulting in a binary feature vector that describes which 

permissions are utilized in the APK. The feature vector can then be used 

for further analysis or classification using machine learning techniques. 

 

3.2.4. def get_training_apks(self) 

The ‘get_train_data’ method generates a training dataset for the 

AndroidRisk model by querying a database for two sets of apks, namely 

the “Malware Collection” and the “Google Play” collection. The method 

then randomly shuffles the list of apks from the “Google Play” 

collection and selects a subset that is the same size as the list of apks 

from the “Malware Collection”. This is done to balance the number of 

malware and goodware samples in the dataset, as the “Malware 

Collection” set is usually much smaller than the “Google Play” set.  

The two sets of apks are then concatenated to create a single list of apks, 

and an array of labels is created for the apks. The label for each apk is 

determined based on the type of the first apk in each set. For example, 

if the first apk in the “Malware Collection” set is malware, then all the 

apks in the set will be labeled as malware. Similarly, if the first apk in 

the “Google Play” set is goodware, then all the apks in the set will be 

labeled as goodware. 

To ensure reproducibility, the seed is set before shuffling the list of apks 

from the “Google Play” collection. This guarantees that the same set of 

apks and labels will be returned each time the method is called. 

The resulting list of apks and their corresponding labels are returned as 

two separate arrays. These arrays can then be used to train the 
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AndroidRisk model. By training the model on a balanced dataset 

containing both malware and goodware samples, the model can learn to 

distinguish between the two and predict the risk score of a given apk. 

 

3.2.5. def get_training_vectors(self) 

This block of code defines a function that returns the feature vectors for 

the apks in the main training set. The first step in the process is to call 

the ‘get_training_apks()’ function to retrieve a list of the apks and their 

respective labels, either ‘malware’ or ‘goodware’. After this, an empty 

dictionary, ‘_vectors’, is initialized to store the feature vectors for each 

permission category, along with the target labels. 

The function then iterates over each apk in the training set, and for each 

one, it calls the ‘get_feature_vector_from_apk()’ function to obtain the 

feature vector for that apk. It then appends each element of the feature 

vector to the corresponding list in the ‘_vectors’ dictionary. 

Once all the feature vectors and labels are collected, the function returns 

the complete ‘_vectors’ dictionary, along with the target labels 

‘_targets’. 

This method is an important part of the overall process of training the 

AndroidRisk model. By creating and storing feature vectors for each 

permission category, the model can use this information to make 

predictions about the risk level of new Android apps based on their 

permission requests. It also ensures that the training data is in the correct 

format for use in the model. Overall, this method is crucial for building 

an effective and accurate Android risk assessment tool. 

 

3.2.6. def train_classifiers(self) 

The following code is responsible for training the classifiers used in the 

AndroidRisk system. It first retrieves the feature vectors and their 

corresponding labels for the training set by calling the 

`get_training_vectors()` method. Then, it creates an empty list called 
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`self.trained_models` to hold the trained models. A for-loop is used to 

iterate over the classifiers in `self.MODELS`.  

For each classifier, the `fit()` method is called to train the model using 

the feature vectors and labels obtained earlier. The trained model is then 

appended to the `self.trained_models` list. If a directory is specified to 

save the trained models, then the `joblib.dump()` method is used to save 

the trained model in that directory. Finally, the list of trained models is 

returned. 

This implementation allows for easy integration of additional classifiers, 

as they can simply be added to the `self.MODELS` list. Additionally, 

the trained models can be saved for future use, which can save time and 

resources when training the system in the future. 

It is important to note that the quality of the trained models depends on 

the quality and size of the training set. Therefore, it is crucial to carefully 

select and balance the datasets used for training to ensure the best 

possible results. 

 

3.2.7. def rescale_risk(self,original_risk:float) 

The function ‘rescale_risk()’ is designed to adjust the risk value 

calculated by the AndroidRisk system from a range of 0 to 1 to a range 

of 0 to 10. The purpose of this function is to make the risk value more 

easily understandable and interpretable by users. The rescaling is done 

using a logarithmic function, which helps avoid probabilities that are too 

close to either 0 or 1. This is because probabilities that are very close to 

either end of the range can be difficult to interpret and may not reflect 

the true risk associated with the app.  

The logarithmic function used for rescaling is based on the formula ‘10 

* log10(1 + (risk_value * 99))’. The input to the function is the risk 

value, which ranges from 0 to 1. The function first multiplies the risk 

value by 99 to scale it up to a range of 0 to 99. It then adds 1 to the result, 

which ensures that the minimum risk value is 1, avoiding a log value of 
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0. The logarithmic function is then applied to the result, and the output 

is multiplied by 10 to scale it up to the desired range of 0 to 10.  

By using a logarithmic function to rescale the risk value, the resulting 

risk score is more evenly distributed across the entire range of 0 to 10. 

This helps to make the risk score more informative and actionable for 

users. It also helps to avoid situations where the risk score is skewed 

towards the extremes of the range, which can be misleading and may not 

accurately reflect the true risk associated with the app. Overall, the 

‘rescale_risk()’ function is an important component of the AndroidRisk 

system, as it helps to ensure that the risk scores generated by the system 

are accurate, informative, and easy to interpret. 

 

3.2.8. def calculate_risk(self,feature_vector:dict) 

The purpose of the following code is to calculate the risk score of an 

Android app using its feature vector. The code uses machine learning 

classifiers to train on a set of malware and benign apps to generate a 

probability of whether the app under test is malicious or not. The risk 

value is then rescaled to be between 0 and 10 for better interpretability. 

The ‘calculate_risk()’ function takes a feature vector as input and checks 

whether the feature vector is empty. If the feature vector is empty, the 

function returns ‘None’. If the feature vector is not empty, the function 

proceeds to train the classifiers if they have not been trained already. 

The function then computes the probability of the app under test being 

malicious for every classifier in the list and obtains the mean probability 

generated by the classifiers. Finally, the function rescales the risk value 

using the ‘rescale_risk()’ function, which uses a logarithmic function to 

avoid probabilities too close to 0 or 1. 

In summary, this code provides a way to calculate the risk score of an 

Android app based on its feature vector. By training machine learning 

classifiers on a set of known malicious and benign apps, the code is able 

to generate a probability of whether an app under test is malicious or 

not. The risk score is then rescaled to be between 0 and 10, making it 
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easier to interpret and compare. Overall, this code can be a useful tool 

for evaluating the security of Android apps. 

 

3.2.9. def get_training_apks_3_sets(self) 

This Python method is designed to generate three different sets of 

training APKs and their corresponding labels for evaluating the 

performance of classifiers. The method starts by collecting all apps from 

the Malware Collection and Google Play Store collection. Next, it 

shuffles the apps from the Google Play Store collection and splits them 

into three subsets with equal sizes. These subsets are then concatenated 

with the entire set of apps from the Malware Collection, creating three 

different sets of training APKs.  

To label the training APKs, the method creates a target array, which is 

comprised of the type of the first app in the Malware Collection and the 

first app in the first subset of Google Play Store apps. This target array 

is the same for all three sets of training APKs.  

Finally, the method returns the three sets of training APKs and their 

corresponding labels as tuples. This enables the generated training sets 

to be easily used in classifier training and evaluation. 

 

3.2.10. def get_training_vectors_3_sets(self) 

This function is designed to generate training feature vectors and their 

corresponding labels, which are necessary for training classifiers. It 

begins by calling the ‘get_training_apks_3_sets()’ function to obtain 

three sets of training APKs. Then, it creates three dictionaries, one for 

each set of training vectors, to store the feature vectors for each type of 

permission along with their corresponding labels (malware or 

goodware). The permission types to be used are determined by the 

‘PERMISSION_TYPES’ list. 

Using a loop, the function iterates over each APK in the training sets. 

For each APK, it calls the ‘get_feature_vector_from_apk()’ function to 

extract the feature vector. Each element of the feature vector 
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corresponding to each permission type is appended to the corresponding 

dictionary, and the label for the APK (malware or goodware) is 

appended to the “target” dictionary. 

Finally, the function returns a tuple of tuples, where each tuple contains 

the feature vectors and their labels for each set of training vectors. These 

tuples can be used for training the classifiers in the AndroidRisk system. 

In summary, this function provides a streamlined way to generate the 

necessary training data for the classifiers to work accurately. By calling 

the ‘get_feature_vector_from_apk()’ function to extract the feature 

vectors and then appending them to the corresponding dictionary, the 

function creates a comprehensive dataset that can be used to train 

machine learning models. 

 

3.2.11. def performance_analysis(self) 

This method evaluates the performance of several classifiers on a given 

set of training data using 10-fold cross-validation. The training data is 

divided into three subsets, and the classifiers are trained on each subset 

separately. The output of the method includes the accuracy, mean, and 

standard deviation for each classifier and for each subset of the training 

data. 

The classifiers being evaluated include SVM, GaussianNB, 

MultinomialNB, DecisionTreeClassifier, RandomForestClassifier, 

LogisticRegression, LogisticRegressionCV, KNeighborsClassifier, and 

BernoulliNB. All these classifiers are widely used in machine learning 

and are implemented using the scikit-learn library in Python. 

The aim of the classifiers is to classify Android applications as either 

malware or goodware based on a given set of permissions. The input to 

the classifiers is a set of feature vectors containing information about the 

permissions requested by each application. 

The code performs binary classification, where the output is either 1 

(indicating malware) or 0 (indicating goodware). The performance of 
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each classifier is evaluated based on its accuracy in predicting the correct 

output for a given input. 

The 10-fold cross-validation used in the method is a widely used 

technique in machine learning that helps prevent overfitting. It involves 

dividing the training data into 10 subsets, and then training the classifier 

on 9 of the subsets and testing it on the remaining subset. This process 

is repeated 10 times, with each subset serving as the test set once, and 

the results are averaged to obtain a more accurate estimate of the 

classifier's performance. 

The output of the method is a table showing the accuracy, mean, and 

standard deviation for each classifier and for each subset of the training 

data. This information can be used to select the best-performing 

classifier for a given problem and to assess the generalizability of the 

classifiers across different subsets of the training data. 

Overall, this method provides a useful tool for evaluating the 

performance of classifiers on a given set of training data and can be used 

to inform decisions about which classifier to use for a particular 

problem. 

 

3.2.12. def calculate_set_accuracy(self) 

This code is part of the AndroidRisk tool and aims to evaluate the 

accuracy of the classifiers used in the model. It employs a 10-fold cross-

validation approach to train and test the classifiers on the training set. 

The training set APKs and their targets are obtained by calling the 

‘get_training_vectors()’ method.  

The code then proceeds to train the classifiers and predict the class labels 

for the test data using the fit and predict methods from the scikit-learn 

library. The accuracy, mean, and standard deviation are then computed 

for the malware and goodware scores using the scikit-learn metrics 

module.  
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The ‘rescale_risk()’ method, which rescales the risk value to a range of 

0 to 1, is assumed to be called within the classifier implementation. The 

use of cross-validation helps to prevent overfitting and ensures that the 

model is able to generalize well to new data.  

The evaluation of the model’s accuracy is a crucial step in ensuring the 

effectiveness of the AndroidRisk tool in detecting malware in Android 

apps. By assessing the model’s performance on the training set, it is 

possible to identify any issues or limitations with the classifiers used and 

make necessary adjustments.  

In addition, the use of cross-validation provides a more reliable estimate 

of the model’s accuracy by reducing the variance of the performance 

metrics. This is because the 10-fold cross-validation approach ensures 

that all instances in the dataset are used for both training and testing, and 

the performance metrics are averaged over the 10 folds.  

Overall, this code plays an important role in evaluating the effectiveness 

of the AndroidRisk tool and ensuring that it can accurately detect 

malware in Android apps. 

3.3 Classifiers Used 

3.3.1. K-Nearest Neighbors 

The k-nearest neighbors (KNN or k-NN) algorithm is a supervised 

learning classifier that is non-parametric and uses proximity to group 

individual data points for making predictions or classifications. 

Although it can be used for both regression and classification tasks, it is 

mainly employed as a classification algorithm, relying on the 

assumption that similar points are located close to one another. 

To categorize data points, the algorithm uses a technique called 

"majority vote," which involves selecting the label that appears most 

frequently in the vicinity of the data point. Although this technique is 

technically known as "plurality voting," the term "majority vote" is more 

commonly used in the literature. However, it should be noted that 
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"majority voting" requires a majority of more than 50%, which is 

appropriate for only two categories. When dealing with multiple 

categories, such as four, a label can be assigned with a vote greater than 

25%, and the term "majority vote" is still used. 

To solve regression problems using the k-nearest neighbors (KNN) 

algorithm, the approach is similar to that used for classification 

problems, with the key difference being that instead of assigning a class 

label through majority voting, the algorithm calculates the average of 

the k-nearest neighbors to make a prediction. While classification 

involves discrete values, regression deals with continuous ones. To 

perform classification, a distance measure between data points needs to 

be defined, with Euclidean distance being the most commonly used 

measure. The KNN algorithm is also referred to as "lazy learning" 

because it only stores the training dataset and computes predictions only 

when necessary. Because of its reliance on memory to store all the 

training data, it is also known as an instance-based or memory-based 

learning method. 

 

Fig 7: KNN [20]. 

To solve regression problems using the k-nearest neighbors (KNN) 

algorithm, the approach is similar to that used for classification 

problems, with the key difference being that instead of assigning a class 

label through majority voting, the algorithm calculates the average of 

the k-nearest neighbors to make a prediction. While classification 

involves discrete values, regression deals with continuous ones. To 
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perform classification, a distance measure between data points needs to 

be defined, with Euclidean distance being the most commonly used 

measure. The KNN algorithm is also referred to as "lazy learning" 

because it only stores the training dataset and computes predictions only 

when necessary. Because of its reliance on memory to store all the 

training data, it is also known as an instance-based or memory-based 

learning method. 

The KNN algorithm can be used for risk factor analysis of Android 

applications based on their permissions. In this case, the data points 

would represent individual Android applications, and the features would 

be the permissions requested by each app. The algorithm would then use 

the proximity of apps in terms of their requested permissions to make 

predictions about their risk factor. For example, the algorithm could be 

trained on a dataset of known malicious and benign Android apps, with 

their respective permission sets as features. Then, when a new app is 

analysed, the algorithm would calculate the distance between the new 

app's permission set and those of the known apps, and assign a risk factor 

based on the classes of the k-nearest neighbors. This approach can be 

useful for identifying potential security risks in Android apps, and can 

be incorporated into larger security systems for mobile devices. 

3.3.2. Multinomial Naïve Bayes  

The Multinomial Naive Bayes algorithm is a statistical approach that is 

often used for text classification tasks, such as sentiment analysis or 

spam detection. However, it can also be used in the context of Android 

application risk factor analysis based on requested permissions. This 

algorithm works by utilizing Bayes' theorem to calculate the probability 

of an app being malware given its requested permissions.  

The basic idea behind the Multinomial Naive Bayes algorithm is to 

model the conditional probability of each feature (i.e., permission) given 

each class (i.e., malware or benign app). In other words, the algorithm 

calculates the likelihood of each permission being associated with either 

malware or benign apps based on a training set of known examples. The 
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algorithm then combines these probabilities using Bayes' theorem to 

compute the overall probability of an app being malware given its 

permission requests.  

One of the key assumptions of the Naive Bayes algorithm is that the 

features are conditionally independent given the class label. This 

assumption simplifies the computation of probabilities and makes the 

algorithm computationally efficient and scalable. However, in reality, 

the features may not be entirely independent, and this can sometimes 

lead to inaccurate predictions. 

To apply the Multinomial Naive Bayes algorithm to Android application 

risk factor analysis, a training set of known malware and benign apps is 

needed. The algorithm then calculates the probability of each permission 

being associated with malware or benign apps, based on the observed 

frequencies in the training set. These probabilities are then used to 

calculate the overall probability of an app being malware given its 

permission requests. 

In practice, the Multinomial Naive Bayes algorithm can be a powerful 

tool for Android application risk factor analysis. It is relatively simple 

to implement and can provide useful insights into the potential risks 

associated with a given app. However, it is important to note that the 

accuracy of the algorithm will depend on the quality of the training data 

and the assumptions made about the independence of the features. 

Additionally, the algorithm may not be effective against more 

sophisticated types of malware that are designed to evade detection by 

traditional methods.  

Overall, the Multinomial Naive Bayes algorithm is a widely used 

approach for Android application risk factor analysis based on 

permission requests. By modeling the conditional probabilities of 

permissions given the class label, the algorithm can provide valuable 

information about the potential risks associated with a given app. 

However, it is important to consider the limitations of the algorithm and 



42 
 

to use it in conjunction with other methods for more comprehensive 

threat detection. 

 

3.3.3. Logistic Regression 

The logistic regression algorithm is a popular statistical model that can 

be used for risk factor analysis in Android applications based on their 

requested permissions. It is a binary classification method, meaning that 

it predicts whether an application is "malware" or "benign" based on the 

permissions it requests. 

The logistic regression algorithm uses a training dataset of known 

malware and benign applications to create a model that can predict the 

probability of an unknown application being malware based on its 

permission requests. The model uses the logistic function to transform 

the input features (i.e., permission requests) into a probability score 

between 0 and 1. This score represents the likelihood that the application 

is malware, with a score closer to 1 indicating a higher likelihood of 

being malware. 

The logistic regression algorithm is versatile and can be used with 

various types of input features. For Android application risk factor 

analysis, the input features are typically the permissions requested by 

the application. The algorithm calculates the probabilities of each 

permission being associated with malware or benign applications, and 

then combines these probabilities to calculate the overall probability of 

an app being malware based on its permission requests. 

One of the advantages of the logistic regression algorithm is its ability 

to handle complex and non-linear relationships between the input 

features and the output variable. This makes it a powerful tool for 

identifying potentially malicious applications and assisting in making 

informed decisions about their use. Additionally, the algorithm can be 

used to identify the specific permissions that are most strongly 

associated with malware, providing valuable insights into potential 

security risks. 
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The threshold value used to classify an application as either "malware" 

or "benign" can be adjusted to meet the needs of the specific use case. 

For example, a more conservative threshold value may be used in high-

security environments to reduce the risk of false positives (i.e., 

classifying a benign application as malware). In contrast, a less 

conservative threshold value may be used in less critical environments 

to avoid false negatives (i.e., failing to identify a malware application). 

Overall, the logistic regression algorithm is a powerful and versatile tool 

for Android application risk factor analysis based on permission 

requests. Its ability to handle complex relationships between the input 

features and output variable makes it an effective approach for 

identifying potentially malicious applications and making informed 

decisions about their use. 

3.4 Selection of Classifiers 

Scikit-learn is a library that offers a range of machine learning algorithms 

designed for classification tasks, including text classification. The library 

includes 9 supervised classifiers that have the ability to estimate probabilities, 

which is a useful feature as it allows for the generation of probability values for 

each classification outcome. This feature can be applied to algorithms like SVM 

and Decision Trees that typically do not provide probabilities. 

To evaluate the performance of these classifiers for Android application risk 

factor analysis, a study was conducted using three randomly extracted datasets, 

each containing an equal number of malware and benign samples (6,707 each) 

and using only the DAP permission set. The study aimed to select the most 

reliable classifiers based on three empirical rules: 

1. A minimum accuracy of 90% was required to eliminate less reliable 

classifiers. 

2. Binary classifiers were avoided by selecting only those with average scores 

between 4% and 95%. 
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3. Classifiers with standard deviation less than 5% were excluded, as they had 

very narrow distributions within the range of possible scores. 

The default parameters from the scikit-learn library were used to evaluate the 

classifiers, utilizing the K-fold cross-validation method with K=10. This 

technique entails partitioning the dataset into K independent sets, each with an 

equivalent number of elements. During each iteration, one fold is set aside for 

testing, while the remaining k-1 folds are utilized as the training set to establish 

the model. The accuracy of the model is measured by the number of correctly 

classified samples in the testing set. 

The advantage of employing the K-fold cross-validation approach is that it 

ensures all instances are utilized for both training and testing, minimizing the 

likelihood of overfitting, where a model may exhibit high performance on the 

training data but poor performance on the test data. This method allows for a 

more accurate evaluation of the performance of the classifiers, and the use of 

default parameters provided by the scikit-learn library ensures a fair comparison 

between the classifiers. 

According to the research results, the Multinomial Naive Bayes, Bernoulli 

Naive Bayes, Complement Naive Bayes, and Ridge Classifier with default 

settings were the classifiers that satisfied the three empirical rules. These 

classifiers showed high accuracy rates ranging from 91% to 93%, indicating that 

they are reliable for Android application risk factor analysis based on 

permission requests. 

In summary, the scikit-learn library provides a range of machine learning 

algorithms that can be used for Android application risk factor analysis based 

on permission requests. The K-fold cross-validation method is a useful 

technique for evaluating the performance of these classifiers, and the study 

found that the Multinomial Naive Bayes, Bernoulli Naive Bayes, Complement 

Naive Bayes, and Ridge Classifier are reliable classifiers for this task. The use 

of these classifiers can assist in identifying potentially malicious applications 

and making informed decisions about their use.  
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Fig 8: Example for 4-fold cross validation[19]. 

3.5 Statistical Analysis 

To conduct a systematic analysis of the large dataset comprising of over 100,000 

Android apps and malware samples, the researchers used a tool called the 

Permission Checker. This tool was developed to extract relevant information on 

four different permission sets, namely DAP, EAP, GAP, and UAP. The 

researchers relied on reverse engineering to retrieve app bytecode and identify 

permission sets required to execute each method invocation in the bytecode. 

The Permission Checker then built a set called PS, which contained all the 

permission sets used in the bytecode. Using PS as a foundation, the tool built 

the other permission sets in the following manner: EAP comprised of 

permissions that belonged to both DAP and PS, while GAP contained 

permissions that belonged to PS but not to DAP. Lastly, UAP contained 

permissions that belonged to DAP but not to PS.  

The researchers identified the disjoint union of all single app permission sets in 

the dataset as DAP, EAP, GAP, and UAP, which were abbreviated as DAPA, 

EAPA, GAPA, and UAPA, respectively. This enabled them to perform a 

comprehensive analysis of each app's permission set and evaluate the 

effectiveness of probabilistic risk index methods used to calculate RIV. 

However, while the probabilistic methods had some limitations, the researchers 

proposed a new approach based on machine learning to address these issues. 

They created a tool called AndroidRisk, which implemented this methodology 
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and evaluated it empirically. The researchers also planned to expand the feature 

set to include suspicious API calls and URLs, which could be identified through 

static analysis of the bytecode used to construct permission sets.  

In summary, the researchers used the Permission Checker tool to analyze a large 

dataset of Android apps and malware samples, extracting information on four 

sets of permissions. They then proposed a new approach based on machine 

learning to improve the limitations of probabilistic risk index methods and 

developed the AndroidRisk tool to implement this methodology. The 

researchers also planned to expand the feature set to include additional 

information, such as suspicious API calls and URLs, to further improve the risk 

factor analysis of Android applications. 

 

Table 2: Statistics on APs on the dataset 

 

In Table 2, there are overall statistics provided for the four AP sets. The data 

suggests that, on average, malware declare more APs than apps (10.67 vs. 5.84), 

but they use very few of them (4.25). Additionally, malware rarely attempt to 

use undeclared APs (AVGGAP=1.15), in contrast to apps (AVGGAP=2.9).  

AP Set MALWARE APPS 

MAX 

AP 

AVG 

AP 

Std. dev. MAX 

AP 

AVG 

AP 

Std. dev. 

DAP 87 10.67 5.76 96 5.84 4.39 

EAP 15 4.25 3.19 24 3.81 2.40 

GAP 9 1.15 1.26 23 2.9 2.11 

UAP 84 6.42 4.58 91 2.03 2.78 
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Fig 9: Top 10 APs for malware[19]. 

 

Figures 8 and 9 display the top ten access points (APs) used by malware and 

apps, respectively. The y-axis of each graph indicates the percentage of malware 

or apps that use the specific AP.  

Some APs related to networking are commonly used by both malware and apps, 

such as INTERNET, ACCESS_NETWORK_STATE, and 

ACCESS_WIFI_STATE. These APs are necessary for apps that require Internet 

connectivity, which makes assessing their risk challenging. However, other APs 

are required more frequently by malware than apps, such as 

READ_PHONE_STATE, RECEIVE_BOOT_COMPLETED, and 

READ_CONTACTS, which pose a potential threat. The most significant 

difference between malware and apps is in relation to SMS APs. As seen in 

Figure 8, the DAP plot shows that 2 out of 10 APs are related to SMS 

(SEND_SMS and RECEIVE_SMS), while no SMS-related APs appear in the 

DAP plot of Figure 9. Although almost half of the malware require SEND_SMS 

and over 40% require RECEIVE_SMS, they seldom use them, as evidenced by 

their absence in the corresponding EAP set. 



48 
 

 

Fig 10: Top 10 APs for apps[19]. 
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CHAPTER - 4 

PERFORMANCE ANALYSIS 

 

 

 

 

The study evaluates nine supervised classifiers with probability estimation 

available in the scikit-learn library, which provide probability values for 

classification results even for algorithms like SVM and Decision Trees that do 

not usually provide probabilities. The evaluation process involves training each 

classifier on a training set of approximately 1342 elements, which includes 671 

apps and 671 malware samples. The remaining nine sets are used to test the 

classifier, with a score of 50% or more considered malware and a score of less 

than 50% considered non-malware. To determine the accuracy of each 

classifier, the number of correctly classified elements is divided by the total 

number of classified elements. 

The study applies three empirical rules to select the most reliable classifiers. 

First, to eliminate less reliable classifiers, a minimum accuracy of 90% is 

required. Second, only classifiers with average scores between 4% and 95% are 

selected, avoiding binary classifiers. Third, classifiers with a standard deviation 

of less than 5% are excluded, as they have very narrow distributions within the 

range of possible scores. 

The evaluation of the classifiers is carried out through the K-fold cross-

validation technique, where K is set to 10. This approach involves dividing the 

dataset into K subsets or "folds", with approximately equal sizes. During each 

iteration, one fold is used for testing, while the other K-1 folds are utilized for 

training the model. The benefit of this method is that all samples are used both 

for training and testing, reducing the risk of overfitting. 
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The evaluation results are summarized in Table 3, which reports the average 

value of each metric since all classifiers behaved similarly on all three sets. 

Support Vector Machines had the highest AVG Accuracy of 94.89%, with an 

AVG Score of 94.83% for malware and 7.42% for apps. Decision Tree had the 

highest AVG Score for malware, at 99.68%, and an AVG Accuracy of 95.68%. 

Random Forest had the highest AVG Score for apps, at 8.87%, and an AVG 

Accuracy of 96.73%. Gaussian Naïve Bayes had the lowest AVG Accuracy of 

84.64%, while Multinomial Naïve Bayes had an AVG Accuracy of 90.69%, and 

Bernoulli Naïve Bayes had an AVG Accuracy of 89.97%. Logistic Regression 

had an AVG Accuracy of 94.96%, while Logistic Regression CV had an AVG 

Accuracy of 94.93%. K-Nearest Neighbors had an AVG Accuracy of 94.29%. 

Overall, the evaluation process reveals that the scikit-learn library's classifiers 

are effective at identifying malware with high accuracy, particularly Support 

Vector Machines, Decision Tree, and Random Forest classifiers. However, 

different classifiers may have varying strengths and weaknesses depending on 

the specific dataset and context. Therefore, it is essential to consider the 

appropriate classifier based on the dataset's characteristics and the intended 

application to achieve the best results. 

Classifier AVG 

Accuracy  

Malware Apps 

AVG 

Score 

σ AVG 

Score 

σ 

Support Vector Machines 94.89 94.83 7.42 4.73 8.34 

Gaussian Naïve Bayes 84.64 99.87 1.82 0.05 1.11 

Multinomial Naïve Bayes 90.69 94.88 7.65 4.89 6.29 

Bernoulli Naïve bayes 89.97 99.07 4.87 0.69 4.19 

Decision Tree 95.68 99.68 3.29 0.73 3.62 

Random Forest 96.73 97.31 8.19 4.09 8.87 

Logistic Regression 94.96 93.36 8.23 4.85 9.38 

Logistic Regression CV 94.93 96.41 8.21 4.71 9.21 

K-Nearest Neighbors 94.29 98.69 6.22 4.82 11.34 

Table 3: Empirical evaluation of Classifiers in the scikit-learn library 
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Among the classifiers evaluated, GNB and BNB had low accuracy, while DT, 

RF, LR-CV, and K-NN had too high average scores for apps. Thus, only KNN, 

MNB, and LR were found to meet all the requirements for the classification 

process. 

In light of these results, I developed a Python-based tool called AndroidRisk, 

which incorporates the three chosen classifiers. The tool computes the RIV 

(Risk Indicator Value) for each app by merging the feature vectors of all four 

APs (Android Permissions) sets (DAP, EAP, GAP, and UAP) into a single 

vector. The average score of all three classifiers is used to compute the RIV. 

Each classifier in AndroidRisk is trained by conducting a 10-fold cross-

validation on one of the three sets used for evaluating the classifiers. 

Additionally, they experimented with using all four APs sets to determine 

whether it could improve accuracy. 

Overall, the use of three classifiers in AndroidRisk provides a promising 

approach to identifying and classifying malware on Android devices. By 

computing the RIV for each app, the tool can quickly assess the likelihood of 

an app being malware and flag it for further investigation if necessary. 

Additionally, I experiment with using all four APs sets could provide further 

insights into the potential benefits of incorporating more features in the 

classification process. However, further research is needed to determine the 

tool's effectiveness and potential limitations in real-world settings.     

 

Fig 11: RIV after analysis of android app 
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CHAPTER - 5 

CONCLUSIONS 

 

Our study aimed to assess the practical performance of probabilistic risk index 

methods for Android applications and to propose an innovative machine 

learning-based approach to overcome the shortcomings of these techniques. To 

achieve this goal, we developed a tool named AndroidRisk, which implements 

our new methodology. We conducted an empirical evaluation of AndroidRisk 

and found it to be more effective than traditional probabilistic risk index 

methods. 

In our future work, we plan to expand the feature set of AndroidRisk to include 

suspicious API calls and URLs. This extension will be achieved through static 

analysis of the bytecode used to construct permission sets. By analyzing the 

app's code, we can identify API calls and URLs that may be associated with 

malware and add them to our risk assessment. This approach will enhance the 

accuracy of our risk assessment and provide users with more comprehensive 

protection against malicious apps. 

Our approach based on machine learning is particularly promising because it 

can learn from past data and improve over time. As more data becomes 

available, the accuracy of our risk assessment will continue to improve. 

Furthermore, machine learning algorithms can also incorporate user feedback 

and expert knowledge to further enhance the accuracy of our risk assessment. 

To sum up, our research has shed light on the shortcomings of conventional 

probabilistic risk index methods for Android applications and has suggested a 

novel machine learning-based approach as a solution. Our tool, AndroidRisk, is 

a step towards providing users with more accurate and comprehensive 

protection against malicious apps. In the future, we plan to continue developing 

and improving our approach to better protect users and stay ahead of emerging 

threats in the Android app ecosystem. 
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