
I

RISK ANALYSIS OF ANDROID APPLICATION

Project report submitted in partial fulfilment of the requirement

for the degree of Bachelor of Technology

in

Computer Science and Engineering

By

Sudeep (191323)

Under the supervision of

Dr. Ekta Gandotra

to

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology Waknaghat,

Solan-173234, Himachal Pradesh

II

Certificate

Candidate’s Declaration

I hereby declare that the work presented in this report entitled Risk Analysis of

Android Application in partial fulfilment of the requirements for the award of

the degree of Bachelor of Technology in Computer Science and Engineering

submitted in the department of Computer Science and Engineering and

Information Technology, Jaypee University of Information Technology

Waknaghat is an authentic record of my own work carried out over a period

from Jan 2023 to May 2023 under the supervision of Dr. Ekta Gandotra

(Senior Grade) professor in department of Computer Science and Engineering.

I also authenticate that I have carried out the above-mentioned project work

under the proficiency stream Information Security.

The matter embodied in the report has not been submitted for the award of any

other degree or diploma.

Sudeep,191323.

This is to certify that the above statement made by the candidate is true to the

best of my knowledge.

(Supervisor Signature)

Dr. Ekta Gandotra

Assistant Professor (SG)

Computer Science and Engineering

Dated:

III

ACKNOWLEDGEMENT

Firstly, I express my heartiest thanks and gratefulness to almighty God for his

divine blessing makes us possible to complete the project work successfully. I

am really grateful and wish my profound my indebtedness to Supervisor Dr.

Ekta Gandotra, Assistant Professor (SG), Department of CSE Jaypee

University of Information Technology, Wakhnaghat. Information Security &

keen interest of my supervisor in the field of “Risk Analysis of Android

Application” to carry out this project. Her endless patience, scholarly guidance,

continual encouragement, constant and energetic supervision, constructive

criticism, valuable advice, reading many inferior drafts and correcting them at

all stage have made it possible to complete this project.

I would like to express my heartiest gratitude to Dr. Ekta Gandotra,

Department of CSE, for her kind help to finish my project.

I would also generously welcome each one of those individuals who have

helped me straight forwardly or in a roundabout way in making this project a

win. In this unique situation, I might want to thank the various staff individuals,

both educating and non-instructing, which have developed their convenient help

and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and patients

of my parents.

Sudeep,191323

IV

V

TABLE OF CONTENT

Title Page No.

Certificate I

Plagiarism Certificate II

Acknowledgement III

Plagiarism Report IV

Table of Content V

List of Abbreviations VI

List of Figures VII

List of Tables VIII

Abstract IX

Chapter-1 (Introduction) 1-21

Chapter-2 (Literature Survey) 22-25

Chapter-3(System Design, Analysis/Design/Development/Algorithm) 26-48

Chapter-4 (Performance Analysis) 49-51

Chapter-5 (Conclusion) 52

References 53-55

VI

List of Abbreviations

S. No. Abbr. Full Form

1 RIV Risk Index Value

2 HAL Hardware Abstraction Layer

3 IPC Inter Process Communication

4 AP Android Permission

5 IDS Intrusion Detection System

6 DP Declared Permission

7 EP Exploited Permission

8 GP Ghost Permission

9 UP Useless Permission

10 KNN K-Nearest Neighbor

11 SVM Support Vector Machine

12 PS Permission set

13 GNB Gaussian Naïve Bayes

14 BNB Bernoulli Naïve Bayes

15 DT Decision Tree

16 RF Random Forest

17 LR Logistic Regression

18 MNB Multinomial Naïve Bayes

VII

List of figures

Figure

Number

Title of Figure Page

Number

1 Android OS Architecture 4

2 Taxonomy of Malware Intrusion Detection

System

8

3 Taxonomy of Android Malware Feature 11

4 Methodology Used 21

5 Index.html 27

6 Apk or Zip file upload page 27

7 KNN 39

8 Example for 4-fold cross validation 45

9 Top 10 APs for malware 47

10 Top 10 APs for apps 48

11 RIV after analysis of android app 51

VIII

List of tables

Table No. Table Name Page No.

1 Android Permission Protection level 11-12

2 Statistics on APs on the dataset 46

3 Empirical evaluation of Classifiers in the scikit-

learn library

50

IX

ABSTRACT

The report introduces AndroidRisk, which is a tool that employs machine

learning techniques to analyze Android apps and provide users with more

reliable metrics to evaluate their trustworthiness. This is in contrast to current

probabilistic methods, which can be unreliable. The tool was evaluated on more

than 112K apps and 6K malware samples, and it was found to outperform

probabilistic methods in terms of precision and reliability. AndroidRisk works

by analyzing the app's features such as its permissions and then using a machine

learning algorithm to classify the app as either benign or malicious. The

algorithm is trained on a dataset of known benign and malicious apps, and it can

detect previously unseen malware by recognizing patterns in the app's features.

The results of the empirical assessments demonstrate that AndroidRisk is more

precise and reliable than probabilistic methods in detecting malware. The tool's

ability to accurately detect malware makes it a valuable addition to the existing

suite of security tools available to Android users. In summary, AndroidRisk is

a promising tool for risk analysis of Android apps that utilizes machine learning

techniques to provide more reliable metrics to users. Its effectiveness in

detecting malware suggests that it could play a significant role in enhancing the

security of Android devices.

1

CHAPTER– 1

INTRODUCTION

1.1 Introduction

The Android ecosystem is a vast and complex network of applications that

spans across multiple devices and platforms. Unfortunately, this complexity

also creates opportunities for malicious actors to create apps that can harm

users. The risk of malware infecting Android apps is high, which means it is

crucial to have trustworthy tools for rating the reliability of apps.

Traditionally, the risk index value (RIV) has been calculated using

probabilistic techniques on app permissions. These methods have been useful

in identifying potentially malicious apps, but they also have limitations. For

example, probabilistic techniques do not consider the context in which an app

is used or the behavior of an app after it is installed.

To address these limitations, a new approach based on machine learning

techniques was proposed and implemented in the open-source tool

AndroidRisk. Machine learning techniques can take into account more than

just app permissions, and can consider a range of factors such as user behavior

and device settings. Additionally, machine learning algorithms can adapt to

new threats, which makes them more effective than probabilistic techniques

in identifying and preventing malicious apps.

AndroidRisk was evaluated on a dataset of over 100,000 apps and 6,000

malware samples, demonstrating superior performance to existing techniques.

The tool was able to detect 99.99% of malware samples with a low false-

2

positive rate. This high level of accuracy is essential in preventing users from

downloading malicious apps and protecting their devices from potential harm.

Overall, the continued development and improvement of these tools is vital

for ensuring a secure and safe user experience in the Android ecosystem. The

threat landscape is continually evolving, and new types of malware are

constantly being developed. Therefore, it is crucial to develop and implement

new techniques that can keep up with these changes and effectively protect

users. Additionally, it is essential to educate users on the importance of

downloading apps from trusted sources and regularly updating their devices'

software to reduce the risk of malware infections.

In conclusion, the Android ecosystem is a complex and vast network of

applications that requires continuous effort to maintain a secure and safe user

experience. With the development and improvement of tools like

AndroidRisk, we can stay ahead of the threat landscape and prevent malicious

actors from harming users.

1.1.1 Android

The Android operating system utilizes a layered architecture to

facilitate efficient communication between its various components.

The topmost layer of the architecture comprises both system and user

apps. The former are pre-installed in the Android distribution and

provide crucial functionalities like email, calendars, and messaging.

The latter, on the other hand, are compressed into APK archives and

are disseminated through external sources like app markets and

websites.

The layer beneath the app layer is the Application Framework, which

is composed of modular components that allow apps to access system

and device resources. These components include activities, services,

broadcast receivers, and content providers. Activities manage the user

interface and handle user interactions with the app, while services

perform background tasks that don't require user input. Broadcast

receivers respond to system-wide messages or events, such as when the

3

battery level is low or when a new SMS message arrives. Lastly,

content providers oversee data storage and retrieval.

Apart from the layered architecture, Android also comprises a set of

C/C++ native libraries that provide optimized core services, including

2D/3D graphics, codecs, and a database management system. These

libraries are essential in ensuring that the operating system delivers fast

and efficient performance on mobile devices.

The Android Runtime is responsible for executing the bytecode of the

user apps and utilizes virtual machines. There are two virtual machines

available in Android: the Dalvik Virtual Machine and the Android

Runtime (ART). The Dalvik Virtual Machine was used in Android

versions prior to 5.0 Lollipop, while the ART was introduced in

Android 5.0 and is the default runtime in newer versions of the OS.

The ART improves performance by compiling bytecode into native

code at install time, rather than interpreting it at runtime.

The Hardware Abstraction Layer (HAL) comprises libraries that

enable the Application Framework to communicate with the hardware

on Android devices. These libraries abstract the hardware components,

such as sensors or the camera, and offer a standardized interface that

app developers can utilize. By doing so, app developers can write code

that can operate on various devices, regardless of the particular

hardware components present.

At the bottommost layer of the architecture is the Linux Kernel, which

offers fundamental operating system functionalities like inter process

communication (IPC), process and memory management. The Linux

Kernel forms the foundation on which the Android operating system is

built. It performs system-level tasks such as managing memory and

processes while providing low-level access to the hardware.

In conclusion, the layered architecture of the Android operating system

provides a solid foundation for app development and efficient

communication between the various components of the system. The

inclusion of C/C++ native libraries and virtual machines allows for

4

optimized performance, while the Hardware Abstraction Layer

provides a standardized interface for app developers. Finally, the Linux

Kernel provides the basic operating system functionalities that are

necessary for any mobile operating system. Together, these

components make the Android operating system a powerful and

flexible platform for app development.

Fig 1: Android OS Architecture [17].

The Android operating system takes security measures seriously and

employs several methods to ensure safe execution of apps. The Kernel

layer of Android provides a key security feature by assigning a distinct

Linux user ID to every application. This ensures that each app runs in a

5

separate Linux user, which restricts access to resources to only those

authorized by the user ID.

The Android Permissions (APs) system is another critical security

feature that ensures apps can access only the resources that they need.

The Android Manifest, an XML file located inside the APK, contains

the declaration of the applications (APs). The Manifest file specifies the

app's package name, version number, and list of activities, services, and

other components that make up the app. It also declares the permissions

that the app needs to access system resources.

APs are categorized into four types: Normal, Dangerous, Signature, and

SignatureOrSystem. Normal permissions are automatically granted by

the system upon installation, without user intervention. Examples of

Normal permissions include accessing the network, connecting to

Bluetooth devices, and accessing the camera. Dangerous permissions,

on the other hand, require explicit user permission before being granted.

Examples of Dangerous permissions include accessing the user's

location, reading contacts, and sending SMS messages.

Applications signed by the developer receive signature permissions.

This ensures that apps from the same developer can share data and

resources without requiring user intervention. SignatureOrSystem

permissions are automatically granted to system apps. These apps have

elevated privileges, and the permissions they require are granted by the

system at the time of installation.

The collection of all Android permissions is known as the APSet. It is

essential to note that apps should require the minimum set of

permissions necessary for proper functioning. Excessive permissions

can pose a security risk, as it can provide the app with access to resources

that it doesn't need. In contrast, apps that are underprivileged are

expected to fail during execution, which can result in poor user

experience or app crashes.

While the APs system is a critical security feature in Android, it is not

without its limitations. One significant limitation of the current method

6

for calculating the risk index value (RIV) using probabilistic techniques

on app permissions is that it has limitations in its methodology and

setup. To overcome these limitations, a new strategy that utilizes

machine learning techniques was suggested and incorporated into the

open-source software AndroidRisk. AndroidRisk is a machine learning-

based tool designed to rate the reliability of apps in the Android

ecosystem. It evaluates the risk level of apps by analyzing the APs

declared in the Android Manifest file, the app's signature, and the

metadata associated with the app. The tool was evaluated on a dataset of

over 100,000 apps and 6,000 malware samples, demonstrating superior

performance to existing techniques.

Overall, the continued development and improvement of security tools

like AndroidRisk are vital for ensuring a secure and safe user experience

in the Android ecosystem. App developers should be mindful of the

permissions that their apps require and should aim to request the

minimum set of permissions necessary for proper functioning. Users, on

the other hand, should be cautious when granting permissions to apps

and should review the permissions that an app requires before installing

it.

1.1.2 Malware Intrusion Detection System

Static analysis tools analyze the codebase of Android applications to

detect potential malware. Such tools are capable of identifying malware

based on the presence of specific code patterns, which are known to be

associated with malicious activities. In contrast to dynamic analysis

techniques, static analysis techniques do not require executing the code,

which makes them faster and more efficient. However, one limitation of

static analysis is the inability to detect malware that uses advanced

evasion techniques, such as code obfuscation.

The objective of code obfuscation is to alter the structure and flow of

code in order to make it more challenging to analyze and comprehend.

By doing so, malware authors can evade detection by static analysis

7

tools. There are several types of obfuscation techniques, including

renaming identifiers, inserting dead code, splitting code into multiple

files, and encrypting strings. These techniques are designed to make the

codebase more difficult to read and understand, and thereby, make it

harder to detect malware.

To address the limitations of static analysis techniques, researchers have

developed advanced machine learning models for detecting malware.

Machine learning models can analyze large datasets of code and identify

patterns and features that are associated with malware. These models

can be trained on large datasets of benign and malicious code, which

enables them to accurately detect and classify malware.

One popular machine learning technique used for malware detection is

deep learning. Deep learning models are neural networks that are

capable of learning complex relationships between inputs and outputs.

These models are trained on large datasets of code and can identify

features and patterns that are indicative of malware. For example, deep

learning models can analyze the API calls made by an Android

application and identify patterns that are known to be associated with

malware.

Another popular machine learning technique used for malware detection

is ensemble learning. Ensemble learning is a method that integrates

several models to increase precision and decrease false positives. By

combining multiple models, ensemble learning can identify patterns and

features that are missed by individual models, and thereby, improve

overall accuracy.

In conclusion, the field of malware detection for mobile devices is

rapidly evolving, with new techniques and tools being developed to

detect and prevent malware. Static analysis tools remain an essential

component of malware detection, but researchers are also exploring

advanced machine learning techniques to improve accuracy and reduce

false positives. As the threat landscape continues to evolve, it is essential

8

to develop new techniques and tools to ensure the security of mobile

devices.

Fig 2: Malware intrusion detection systems[18].

1.1.3 Android Malware Features

Android malware traits can be classified into four categories: static,

dynamic, hybrid, and application metadata features. Figure 3 outlines

the taxonomy of these Android malware traits. Android malware's static

features are detectable in either the Java code file or the

AndroidManifest.xml. Permission, Java code, intent filters, network

address, strings, and hardware components are the commonly employed

static features.

Apart from static features, Android malware also exhibits dynamic

features that are triggered during runtime. Dynamic features of Android

malware include the behavior of the application, network traffic, and

system call traces. These features can be analyzed to detect the presence

of malware on the device. To illustrate, the dynamic analysis of Android

malware entails running the malware in a supervised setting and

observing its actions. This approach enables researchers to observe the

9

malware's behavior and identify any malicious actions it may perform,

such as sending SMS messages or making calls without user consent.

Hybrid analysis of Android malware involves the combination of static

and dynamic analysis. This approach enables researchers to detect and

analyze malware features that cannot be observed through static or

dynamic analysis alone. For instance, hybrid analysis can help to

identify malware that uses obfuscation techniques to hide its true

behavior or make it difficult to detect through static or dynamic analysis.

Application metadata features refer to information about the application,

such as the package name, version number, and certificate information.

This information can be used to pick out the application and determine

its trustworthiness. For instance, the certificate information can be used

to verify that the application is signed by a trusted developer. If the

certificate information is missing or invalid, it may indicate that the

application is not trustworthy and may contain malware.

The characteristics of Android malware are constantly evolving, making

it difficult to detect and prevent. Malware authors are continually

developing new techniques to evade detection, such as using code

obfuscation and anti-analysis techniques. As such, it is essential to

continuously monitor and update security measures to stay ahead of

malware threats.

To protect mobile devices from malware, mobile users can take several

measures, such as installing security software, regularly updating their

devices and applications, and being cautious when installing new

applications. Users should also be wary of applications that request

sensitive permissions that are not necessary for their intended function.

In conclusion, Android malware exhibits various static, dynamic,

hybrid, and application metadata features that can be used to identify

and detect malware. The static features of Android malware can be

found in either the AndroidManifest.xml or Java code file, and

permission-based static features are commonly used to identify Android

mobile malware. Dynamic features of Android malware include the

10

behavior of the application, network traffic, and system call traces.

Hybrid analysis of Android malware involves the combination of static

and dynamic analysis, and application metadata features refer to

information about the application. To protect mobile devices from

malware, mobile users should install security software, regularly update

their devices and applications, and be cautious when installing new

applications.

Current research is focused on utilizing permission-based static features

to detect Android mobile malware. These features refer to frequent

permission requests made by applications, such as those for internet

access, sending SMS, accessing network state, receiving SMS, and

writing to external storage. Being aware of an application's permission

request is crucial for mobile users to better safeguard their devices, as

ignoring them can result in harm. During installation, Android

permissions are the first security step in Android mobile devices, as they

are the permissions an application requests from the mobile user. These

permissions act as the first line of defense against a malicious

programmer before an attack. Android permissions are categorized into

four levels of protection: normal, dangerous, signature, and

signatureORsystem, each with a base permission type and zero or more

flags. Normal permissions are default permissions of lower risk that are

automatically granted during installation without user permission,

whereas dangerous permissions are higher risk permissions that allow a

malware application to access user data or control devices, exposing

mobile users to threats. Signature permissions automatically grant

permission if a signed certificate matches the application that declared

the permission, while SignatureOrSystem grants permission to

applications in a dedicated folder on the Android system image or those

signed with the same certificate as the application that declared the

permission. The SignatureOrSystem level is utilized by multiple

vendors to share specific features when developing applications. Thus,

increasing mobile users' awareness of malware risks is crucial to prevent

11

damage and losses to their devices. Table 1 provides information on the

protection level of Android permissions, descriptions, and examples of

permissions.

Fig 3: Taxonomy of Android Malware Feature [18].

Protection Level Description Example of permission features

Normal Permissions with

low risk are

automatically

granted without

requiring user

approval, and the

user has not

revoked the

permission.

ACCESS_LOCATION_EXTRA_COMMANDS

, ACCESS_NETWORK_STATE,

ACCESS_NOTIFICATION_POLICY,

ACCESS_WIFI_STATE.

Dangerous permissions with

high risk require

the app to prompt

the user for

approval, and the

ACCESS_MEDIA_LOCATION,

ACCESS_FINE_LOCATION,

ACCESS_BACKGROUND_LOCATION,

ACCEPT_HANDOVER.

12

app needs to wait

until the user

approves.

Signature Signature

permissions are

granted

automatically to

apps signed by the

same certificate.

BIND_ACCESSIBILITY_SERVICE,

BIND_AUTOFILL_SERVICE.

SignatureOrSystem SignatureOrSyste

m permissions are

granted to apps in

a dedicated folder

that is signed with

the same

certificate.

BATTERY_STATS

BIND_CALL_REDIRECTION_SERVICE

Table 1: Android Permission Protection Level

1.1.4 Malware

Malware is a term that refers to any type of software that is intentionally

created to cause harm to a computer system, network, or device. This

harmful software can come in various forms, such as viruses, worms,

trojans, ransomware, spyware, adware, and more. Malware can be used

to steal sensitive information, damage or destroy data, disrupt system

performance, and cause financial harm. Malware can spread through

various means, including email attachments, infected websites, social

engineering, and software vulnerabilities. Protecting against malware

requires using antivirus software, keeping software up to date, being

cautious of suspicious emails and websites, and practicing good

cybersecurity hygiene.

13

1.1.5 Why do Cybercriminals use malware?

Malware has become an increasingly popular tool among cybercriminals

for a variety of nefarious purposes. These malicious programs can be

used to carry out a wide range of attacks, from stealing sensitive

information to causing damage and disruption. One common use of

malware is to steal personal and financial information from

unsuspecting victims. Cybercriminals can use this information for a

variety of purposes, including identity theft and financial gain. They

may sell the stolen information on the dark web or use it to gain

unauthorized access to financial accounts.

Ransomware is a form of malware that encrypts a victim's files or blocks

access to their system, rendering them inaccessible until a ransom is

paid. This particular type of malware has gained popularity among

cybercriminals over the years due to its potential to generate substantial

profits. In some cases, victims may be willing to pay large sums of

money to regain access to their data or systems.

In addition to stealing information and conducting ransomware attacks,

cybercriminals can also use malware to gain unauthorized access to

systems and networks. This can allow them to conduct further attacks,

steal additional information, or conduct espionage. Malware can also be

used to spread spam, phishing attacks, or launch DDoS attacks, which

can cause significant disruption to targeted systems or networks.

Overall, malware is a powerful tool for cybercriminals, providing them

with a range of capabilities for carrying out attacks and generating illicit

profits. As such, it is essential that individuals and organizations take

steps to protect themselves against these threats, including using reliable

antivirus software, regularly updating their systems and software, and

avoiding suspicious links and downloads.

1.1.6 How does malware spread?

Malware, short for malicious software, is a term used to describe any

program or code that is designed to damage or disrupt a computer

14

system, steal information, or gain unauthorized access to a device.

Malware is a constantly evolving threat, with cybercriminals constantly

finding new ways to distribute it.

One common way malware spreads is through email attachments.

Cybercriminals can send emails with attachments that contain malware,

often disguised as harmless documents or files. Once the user downloads

and opens the attachment, the malware is installed on their computer.

Another way malware can spread is through downloading software or

files from the internet. Malware can be hidden in software or files that

users download, especially if the download is from untrustworthy

sources or if the content is pirated. It is important to only download

software and files from reputable sources to minimize the risk of

downloading malware.

Social engineering is another tactic cybercriminals use to trick users into

downloading or installing malware. They may disguise the malware as

a legitimate software update or use fake pop-up alerts to scare users into

installing the malware. Users should always be cautious of unexpected

software updates or pop-ups, and should only download and install

software from trusted sources.

Drive-by downloads are another way malware can be installed on a

user's computer without their knowledge or consent. This occurs when

a user visits a malicious website that automatically downloads and

installs the malware onto the user's computer. Users can protect

themselves by using an up-to-date web browser and anti-virus software,

and avoiding visiting suspicious or untrustworthy websites.

Malware can propagate through infected removable media, such as

external hard drives or USB drives. If a user connects an infected device

to their computer, the malware can spread from the removable media to

their computer.

Finally, malware can exploit vulnerabilities in a network or system to

spread to other computers or devices on the network. To safeguard

against network vulnerabilities, users should ensure that their software

15

and operating systems are always up-to-date with the latest security

patches. Additionally, users should employ strong passwords and other

security measures.

In summary, malware can spread through a variety of methods, and it is

important for users to stay vigilant and take steps to protect their devices

and networks from these threats. By following best practices for internet

security and only downloading software and files from trusted sources,

users can minimize their risk of falling victim to malware.

1.1.7 Types of Malware

There are various types of malicious software, or malware, that

cybercriminals use to carry out their attacks. These include viruses,

worms, Trojan horses, ransomware, adware, spyware, rootkits, botnets,

fileless malware, and banking trojans.

• A virus is a program that can replicate itself by infecting other

programs or files on a computer. Once infected, the virus can

cause damage to the system by deleting files, stealing data, or

spreading to other computers.

• A worm is a program that is capable of self-replication and can

spread through networks or the internet by exploiting

vulnerabilities in operating systems or applications. It can cause

significant damage by consuming network bandwidth or

launching denial-of-service attacks.

• A Trojan horse is a type of malicious program that masquerades

as a harmless file or application to deceive users into

downloading and running it. It is designed to trick users into

executing the program, allowing it to perform harmful actions on

their computer system without their knowledge or consent. Once

installed, a Trojan horse can steal personal information, install

other malware, or create backdoors for remote access.

• Ransomware is a form of malicious software that encrypts the

files of its victims and demands payment for the decryption key.

This type of malware can cause major problems for both

16

individuals and businesses, resulting in data loss or financial

harm.

• Adware is software that displays unwanted advertisements on a

computer, often in the form of pop-ups or banners. While not as

harmful as other types of malware, It has the potential to cause

inconvenience and disturbance.

• Spyware, on the other hand, is software that collects data about

a user’s activity without their knowledge or consent. It can be

used to steal personal information, passwords, and other

sensitive data.

• A rootkit is a form of malicious software that alters low-level

system software or the operating system to conceal its presence

on a computer. This can make it difficult to detect and remove.

• A botnet is a network of infected computers controlled by a

remote attacker. It is often used to carry out distributed denial-

of-service (DDoS) attacks or to send spam.

• Fileless malware is a type of malware that resides in a computer's

memory rather than secondary memory like on the hard drive.

This makes it harder to detect and remove, as traditional

antivirus software may not be able to identify it.

• Finally, banking trojans are a type of malware designed to steal

sensitive information such as banking credentials and credit card

numbers. They are often spread through phishing attacks or by

exploiting vulnerabilities in software.

Overall, the threat of malware is significant, and It is crucial for

individuals and organizations to take preventive measures against these

different types of attacks. These measures include employing antivirus

software, regularly updating software, and being cautious about dubious

emails or websites.

17

1.1.8 How can you protect yourself from android malware?

To protect your Android device from malware, it is important to take

proactive measures. Here are some steps you can take to safeguard your

device:

Firstly, make sure you only install apps from trusted sources such as

Google Play Store or other reputable app stores like Amazon Appstore

or the official app store of your device manufacturer. These sources

carefully screen the apps they offer for download to ensure they are safe

for users.

Secondly, always check the app permissions before installing an app. Be

wary of apps that ask for permissions that seem irrelevant to their

functionality, as this could be a sign of malicious intent. For example, a

flashlight app that requests access to your contacts or camera should

raise a red flag.

Thirdly, keep your Android device and installed apps updated. This

ensures that any known vulnerabilities are patched, reducing the risk of

malware infections. Updates are usually released to fix known security

issues and improve the overall performance of your device.

Fourthly, consider installing reputable anti-malware software on your

device. There are several options available in the Google Play Store that

can help protect your device from malware infections. These apps scan

your device for any known malware and alert you to any suspicious

activity.

Fifthly, avoid using public Wi-Fi networks, especially for sensitive

transactions like online banking. Public Wi-Fi networks may not be

secure, and cybercriminals can intercept data transmitted over these

networks. If you need to use public Wi-Fi, consider using a virtual

private network (VPN) to encrypt your data and protect your privacy.

Sixthly, be cautious of email attachments and links. Don't click on links

or open email attachments from unknown sources. Cybercriminals often

use these tactics to trick users into downloading malware onto their

devices.

18

Lastly, use a password manager to create strong and unique passwords

for all your online accounts. Password managers generate complex

passwords that are difficult to crack and remember, reducing the risk of

someone gaining unauthorized access to your accounts.

By following these steps, you can greatly reduce the risk of Android

malware infecting your device. It is important to stay vigilant and take

steps to protect your device and personal information from cyber threats.

1.2 Problem Statement

The prevalence of Android smartphones has made the Android operating system

an attractive target for malware attacks. With numerous applications accessible

via public markets and external websites, it is essential to possess dependable

tools for assessing the reliability of such apps. However, the current approach

of calculating the Risk Index Value (RIV) by applying probabilistic methods to

the app's set of permissions requested is limited in terms of its methodology and

framework. As such, there is a pressing need to develop a more effective

approach for conducting risk factor analysis of Android applications to reduce

the risks of malware and safeguard users.

Traditional risk assessment methods rely on the assessment of the app's

permission set, which can be a misleading indicator of its trustworthiness. For

instance, some benign apps may request access to certain permissions that may

seem suspicious but are necessary for their intended functionality. Therefore,

there is a need to incorporate more sophisticated techniques to accurately assess

the risks associated with an app.

One promising approach is to combine static and dynamic analysis to assess the

trustworthiness of an app. Static analysis involves the examination of the app's

code and metadata without actually running the app. In contrast, dynamic

analysis involves the execution of the app in a controlled environment to

observe its behavior. Combining these two approaches can provide a more

accurate assessment of an app's trustworthiness.

Another approach is to incorporate machine learning algorithms into the risk

assessment process. Machine learning algorithms can identify patterns and

19

correlations in large datasets that humans may overlook. For instance, machine

learning algorithms can analyze an app's code to identify common malware

patterns or detect anomalies in network traffic. Additionally, machine learning

algorithms can improve the accuracy of risk assessment by incorporating

feedback from users and security experts.

Overall, the development of effective risk factor analysis tools for Android

applications is essential to mitigate the risks of malware and protect users. By

incorporating more sophisticated techniques, such as static and dynamic

analysis and machine learning algorithms, risk factor analysis can provide a

more accurate assessment of an app's trustworthiness. Furthermore, increased

awareness and education about safe app usage practices can also help users to

protect themselves from malicious attacks.

1.3 Objective

The objective of risk factor analysis in the Android ecosystem is a critical one,

as the number of Android apps available for download continues to increase

rapidly. Ensuring the safety and security of these apps is paramount, as users

rely on them for a range of activities, from communication and productivity to

personal finance and health.

The proposed approach of using machine learning techniques to improve the

accuracy of risk assessment is a promising one. Machine learning can provide a

more robust and reliable way of analyzing risk factors, as it can learn from large

amounts of data and identify patterns and correlations that may not be

immediately apparent to humans.

The proposed approach aims to overcome the shortcomings of current methods

for calculating the risk index value (RIV) by taking a more detailed and

comprehensive approach to evaluate the risks associated with app permissions.

This can help users make more informed decisions about which apps to

download and use.

Ultimately, the goal of enhancing the security of the Android ecosystem and

improving user confidence in the reliability of the apps they download and use

is a critical one. By providing users with reliable tools for app selection, the

20

proposed approach can help mitigate the risks of malware and other security

threats, and ensure that users can continue to enjoy the benefits of the Android

ecosystem with confidence.

1.4 Methodology

Using machine learning techniques is a widely used and effective approach to

assess the risk of Android apps, with scikit-learn being a suitable tool for this

purpose. In order to enable machine learning techniques, it is necessary to define

feature vectors that can be used to compare and categorize Android apps as

either malware or benign. In the context of Android app risk analysis, feature

vectors are typically described as binary vectors with a cardinality of |APSet|,

where each component is either 0 or 1, depending on whether a specific

permission is present or absent.

In the field of machine learning, supervised learning is a widely used technique

in which a subset of the dataset is used to train classifiers, which can then be

applied to classify the remaining APKs. This approach requires a carefully

chosen and balanced training set to ensure that the classifiers can generalize to

new components. By using machine learning techniques, the scikit-learn library,

and a supervised learning approach, a reliable and precise method for assessing

the risk of Android apps can be created. This method can help enhance user

confidence in the trustworthiness of the apps they download and utilize.

Our proposed approach aims to improve the accuracy of Risk Index Values

(RIVs) by utilizing machine learning techniques based on four sets of

permissions for each app, namely Declared Permissions (DP), Exploited

Permissions (EP), Ghost Permissions (GP), and Useless Permissions (UP). DP

pertains to permissions that are declared in the Android Manifest file, while EP

refers to permissions that are used in the app code. GP refers to permissions that

the app attempts to exploit in the code but are not declared in the Android

Manifest file, and UP refers to declared permissions that are not used in the app

code.

To ensure the statistical significance of our approach, we used a dataset

consisting of 112,425 apps and 6,707 malware samples from different sources.

21

This dataset was collected from various sources, including the Google Play

Store, Aptoide, Uptodown, and various publicly available repositories such as

the DREBIN dataset, Contagio dataset, Husted's dataset, and Bhatia's dataset.

By using machine learning techniques and carefully selecting feature vectors

based on four sets of permissions for each app, we can create a more reliable

and precise approach for assessing the risk of Android apps. This approach can

help users make informed decisions about which apps to download and utilize,

ultimately enhancing their confidence in the trustworthiness of the apps they

use. However, it is important to note that machine learning techniques are not

infallible, and it is still important for users to exercise caution when

downloading and utilizing apps, such as only downloading apps from trusted

sources, checking app permissions before installing, and keeping devices and

apps updated.

Fig 4: Methodology Used

22

CHAPTER – 2

LITERATURE SURVEY

The existing scientific literature on analyzing the risks associated with Android

apps is limited, and primarily focused on analyzing APs. Therefore, we also

considered research related to identifying and classifying malware because we

anticipate that there may be some connection between malware and high-risk

apps. At present, the available methods for identifying high-risk apps are

probabilistic in nature. The Risk Indicator Value (RIV) is a commonly used

method to assess the probability of an app being malware. It involves statistical

analysis of datasets containing both benign and known malware samples. In a

study by [1], the authors suggest detecting risk signals by analyzing the

frequency of security-sensitive Application Programming interfaces (APIs).

Bayesian probabilistic models are utilized to calculate the RIV by comparing

the APIs requested by an app with those of other apps in the same category

(which are predetermined).There are three key factors to consider when

assessing the effectiveness of the Risk Index Value (RIV) in evaluating the

trustworthiness of apps: monotonicity, coherence, and ease of understanding.

Monotonicity refers to the property that removing an Access Permission (AP)

should result in a decrease in the RIV. Coherence means that malware apps

should have higher RIVs than legitimate apps. Finally, ease of understanding

means that the RIV should be straightforward for users to comprehend, allowing

for easy comparisons between values.

In [2], a method is proposed to compute an app's RIV based on its category.

This method involves analyzing the type and number of APs required for each

category of apps to identify permission patterns. The RIV is then calculated by

measuring the distance between the set of APs required by an app and the

permission patterns of its category. However, this approach has a limitation as

23

it requires prior knowledge of the app's category, which can often be unreliable

as categories are manually chosen by developers.

Maetroid [3] assesses the risk of apps by analyzing both APs and metadata

information such as the developer's reputation and the app market source. The

assessment is based only on declared APs and assigns fixed weights to each AP.

While Maetroid does not generate a quantitative RIV, it categorizes each app

into one of three risk levels.

In [4], a framework is presented for app risk analysis that involves three layers

of static, dynamic, and behavioral analysis to compute the RIV. However, the

framework is purely theoretical and lacks empirical evaluation, making it

difficult to assess its viability. The framework aims to fulfill certain criteria,

such as monotonicity (removing an AP should decrease the RIV), coherence

(malware should have higher RIVs than apps), and ease of understanding (the

RIV of an app should be easy for users to comprehend and allow for

straightforward comparisons between values).

DroidRisk [5] is a method that quantitatively calculates the RIV and is based on

a dataset of 27,274 apps and 1,260 malware samples. To calculate the RIV,

DroidRisk analyzes the distribution of declared APs from the Android Manifest

file and applies a probabilistic function that considers the type and potential

impact of the required APs by the app. The RIV is computed by summing the

product of the probability and impact of each AP required by the app. The

impact weight of each AP is statically applied according to its category. For

instance, a normal AP has a weight of 1, while a dangerous AP has a weight of

1.5.

There are several limitations associated with using probabilistic methods for

app risk analysis.

1. One limitation is that these methods may not be able to identify malware

that only require a limited set of permissions. On the other hand, apps

that require many permissions are likely to receive high RIVs.

2. Another limitation is that current approaches only consider declared

permissions and do not investigate whether an app actually uses the

24

permissions it requests. This can lead to overestimating an app's risk

level if it is overprivileged by its developer.

3. Probabilistic methods assign equal impact to all permissions within a

category, such as Normal or Dangerous, without considering their

distribution in the set of malware. This can lead to inaccurate risk

assessments.

4. The reliability of RIVs is heavily dependent on the dataset used to train

the algorithm, and the size of the dataset relative to the available apps

and malware samples. A large dataset is necessary to obtain statistically

significant results.

Peiravian and Xingquan [6] developed a malware classifier in 2013 by utilizing

API calls and permission data. Their classifier was trained and validated on a

dataset consisting of 1,260 malware samples and 1,250 benign samples, using

cross-validation. Hao et al. [7] created the PUMA tool that allows for

programmable UI automation and enables researchers to evaluate correctness

properties of apps by examining the insertion of UI handlers into app code. They

tested the tool on a dataset of 3,600 apps downloaded from Google Play. Dering

and McDaniel [8] analyzed library and permission usage by downloading

700,000 app binaries from 450,000 free apps on Google Play. They found a

strong correlation between the number of libraries used and the number of

permissions requested by the apps, suggesting that libraries often require

additional permissions from the user and pose a security concern. This finding

is in line with the conclusion of Book et al. [9] that library usage is a significant

security concern because libraries often utilize existing permission privileges

and increase the number of requested permissions.

Ruiz et al. [10] conducted a study on the impact of advertisement libraries on

app ratings by combining non-technical rating information with technical

information extracted from the use of advertisement libraries. These libraries

fetch ads by querying their host server at regular intervals, and multiple libraries

may be used to increase revenue. The authors analyzed 236,245 apps and found

no correlation between the number of advertisement libraries and app ratings.

25

However, they identified certain APIs that were associated with low median

ratings due to their intrusive behavior, such as recording entered passwords.

Gorla et al. [11] developed a method for detecting outliers in trained clusters for

security purposes by using API usage information to train a one-class support

vector machine (SVM). Meanwhile, Bartel et al. [12] demonstrated that off-the-

shelf static analysis is not sufficient for analyzing permission-protected API

methods and explored alternative methods, which they tested on a sample of

1,421 apps downloaded from two Android markets. Another study by Watanabe

et al. [13] analyzed the descriptions and API usage of 200,000 Android apps

and found a discrepancy between requested permissions and their descriptions

due to unnecessary permissions requested by app building frameworks or

developers using similar manifests for multiple app projects, as well as the use

of third-party libraries and secondary functionality not mentioned in the

descriptions. Additionally, Zhou et al. [14] mined a dataset of 36,561 Android

apps and proposed the tool CredMiner, which focuses on decompilation and

program slicing. They discovered over 400 apps that leaked developer

usernames and passwords required for the program to execute normally.

Wang and colleagues [15] performed research on 7,923 Android apps from

Google Play by decompiling the apps and extracting features from the code and

variable names. They trained a machine learning classifier using location and

contact information to identify how sensitive information was being utilized in

these apps. Meanwhile, Seneviratne and colleagues [16] analyzed 275 free and

234 paid Android apps and found that both free and paid apps were collecting

personal information. They discovered that 60 percent of paid apps collected

personal information compared to 85 percent of free apps. The researchers also

detected that 20 percent of the 3,605 Android apps they collected were

associated with more than three trackers.

26

CHAPTER - 3

SYSTEM DEVELOPMENT

3.1 System Design

 I used Python script for a Flask web application that analyzes Android

 APK files for potential security risks. Here's a rundown of the script:

• The script first imports necessary modules, including Flask,

SQLAlchemy, and hashlib.

• It defines a ‘create_app()’ function that creates a Flask application

instance, sets various configurations, and initializes a database

connection.

• The script defines a function ‘check_if_valid_file_name()’ to check if

an uploaded file has a valid extension.

• The script defines a Flask route ‘/’ that renders a template for the

application's home page.

• The script defines a Flask route ‘/upload’ that handles file uploads. If a

valid file is uploaded, the script calculates a risk score for the APK and

returns the file name, MD5 hash, risk score, and a list of permissions.

• The script defines a Flask route ‘/details’ that retrieves details about an

uploaded APK file from the database and returns the file name, MD5

hash, risk score, type, source, and a list of permissions.

• The script defines an error handler for certain HTTP errors.

• The script defines a function ‘add_cache_header()’ that adds headers to

HTTP responses to prevent caching.

• The script creates a Flask application instance and registers the error

handler and ‘add_cache_header()’ function as decorators.

• Finally, the script runs the Flask application.

27

Overall, this script is a basic web application that allows users to upload

Android APK files for analysis.

Fig 5: Index.html

Fig 6: Apk or Zip file upload page

3.2 Functions Used

3.2.1. def__init__(self,saved_model_dir:str=SAVED_MODELS_DIR)

The ‘AndroidRisk’ class has a constructor that takes in one argument

called ‘saved_models_dir’. This argument represents the directory

28

where the trained models will be saved. The constructor initializes

various instance variables including a random seed, a list of trained

models, and a tuple of classifiers used to calculate the risk score. It then

checks if the specified ‘saved_models_dir’ directory already exists. If it

doesn't, the constructor creates the directory.

In addition, the constructor checks whether any trained models already

exist in the specified ‘saved_models_dir’ directory. If there are saved

models, the constructor loads them into the ‘trained_models’ list using

the ‘joblib.load()’ function from the scikit-learn library. This enables the

class to reuse previously trained models for new apps without having to

retrain them.

The risk score for an Android app is calculated using three classifiers:

‘MultinomialNB()’, ‘KNeighborsClassifier()’, and

‘LogisticRegression()’. These classifiers work in conjunction with

several features related to an Android app to predict the likelihood that

the app is potentially harmful or not. The features used include declared

permissions, exploited permissions, ghost permissions, and useless

permissions.

The trained models are used to compute the risk score for an app by

taking the weighted average of the output probabilities of each classifier.

This approach helps to increase the accuracy of the risk score by

combining the predictions of multiple models. By using a combination

of classifiers, the ‘AndroidRisk’ class can provide a more reliable risk

assessment for Android apps.

Overall, the ‘AndroidRisk’ class provides a useful tool for evaluating

the risk of Android apps. By using machine learning techniques and

multiple classifiers, the class can accurately assess the likelihood that an

app is potentially harmful. The ability to reuse previously trained models

and the flexibility to adjust the feature vectors used in the classification

process make this class a valuable asset in the effort to improve Android

app security.

29

3.2.2. def get_permission_json(self,file_path:str)

The following function, named ‘get_permission_json,’ is designed to

extract the permissions from an Android application file, which could

be in the format of ‘.apk’ or ‘.zip.’ Upon successful extraction, this

function returns a JSON object containing the permissions. First, the

function checks whether the specified file exists and whether the

‘PermissionChecker.jar’ file is present in the same directory as the

script. If these conditions are met, it proceeds to execute the

‘PermissionChecker.jar’ program with the help of the ‘subprocess.run()’

method, providing the file path as an argument. The output from the

program, which is a list of permissions, is then converted into a JSON

object by making use of the ‘json.loads()’ method. Finally, this JSON

object is returned by the function. However, if the program output is

null, the function will return None.

The purpose of this function is to obtain information about the

permissions that an Android application requires. Permissions play a

critical role in determining the level of access that an application has to

the device's resources, such as camera, microphone, and location.

Therefore, it is important to analyze an app's permissions before

installation to identify potentially harmful applications that could misuse

the permissions.

By utilizing the ‘get_permission_json’ function in combination with

other methods, developers and security experts can obtain insights into

the permissions of Android apps, which can be useful in detecting

potential security threats. With the help of this function, security experts

can perform a detailed analysis of the permissions that an application

requires and compare them to the app's intended functionality. If any

suspicious permissions are identified, additional security measures can

be put in place to prevent potential security breaches.

Furthermore, this function can be used to automate the process of

extracting permissions from Android applications, allowing for efficient

analysis of large datasets of apps. This could be particularly useful for

30

app stores, which could utilize this function to analyze the permissions

of applications before they are made available to the public. By

automating the process, app stores can quickly and accurately identify

potentially harmful applications, thereby reducing the risk of users

downloading and installing malicious apps.

In conclusion, the ‘get_permission_json’ function is a valuable tool for

extracting the permissions of Android applications. It provides a fast and

efficient way to obtain information about the permissions that an app

requires, which can help identify potentially harmful applications. By

combining this function with other analysis tools, developers and

security experts can perform detailed analyses of Android apps and take

appropriate measures to prevent security breaches.

3.2.3. def get_feature_vector_from_apk(self,apk:Apk)

The ‘get_feature_vector_from_apk’ function receives an ‘apk’ object as

input and produces a feature vector that captures the permissions utilized

in the APK. At first, the method establishes a dictionary named ‘_vector’

and assigns keys for each type of permission. Then, it loops through each

permission category and verifies if every permission in

‘ANDROID_PERMISSIONS’ is used in the particular permission

category. If a permission is found in the specified category, the

corresponding list in ‘_vector’ is appended with a value of 1; otherwise,

it is appended with a 0. Finally, the feature vector, which is the ‘_vector’

dictionary, is returned.

To elaborate, the ‘get_feature_vector_from_apk’ method uses a

dictionary data structure to hold the feature vector. The keys in the

dictionary correspond to the categories of permissions, which are the

following: 'NORMAL_PERMISSIONS',

'DANGEROUS_PERMISSIONS', 'SIGNATURE_PERMISSIONS',

'SIGNATUREORSYSTEM_PERMISSIONS', and

'OTHER_PERMISSIONS'.

31

In the next step, the function checks for each permission in the

‘ANDROID_PERMISSIONS’ list, which is a pre-defined list of

Android permissions. If the permission is present in the category of

permissions being checked, then a 1 is added to the corresponding list in

the feature vector. Conversely, if the permission is not found, a 0 is

added instead.

This process is repeated for each permission category in the feature

vector, resulting in a binary feature vector that describes which

permissions are utilized in the APK. The feature vector can then be used

for further analysis or classification using machine learning techniques.

3.2.4. def get_training_apks(self)

The ‘get_train_data’ method generates a training dataset for the

AndroidRisk model by querying a database for two sets of apks, namely

the “Malware Collection” and the “Google Play” collection. The method

then randomly shuffles the list of apks from the “Google Play”

collection and selects a subset that is the same size as the list of apks

from the “Malware Collection”. This is done to balance the number of

malware and goodware samples in the dataset, as the “Malware

Collection” set is usually much smaller than the “Google Play” set.

The two sets of apks are then concatenated to create a single list of apks,

and an array of labels is created for the apks. The label for each apk is

determined based on the type of the first apk in each set. For example,

if the first apk in the “Malware Collection” set is malware, then all the

apks in the set will be labeled as malware. Similarly, if the first apk in

the “Google Play” set is goodware, then all the apks in the set will be

labeled as goodware.

To ensure reproducibility, the seed is set before shuffling the list of apks

from the “Google Play” collection. This guarantees that the same set of

apks and labels will be returned each time the method is called.

The resulting list of apks and their corresponding labels are returned as

two separate arrays. These arrays can then be used to train the

32

AndroidRisk model. By training the model on a balanced dataset

containing both malware and goodware samples, the model can learn to

distinguish between the two and predict the risk score of a given apk.

3.2.5. def get_training_vectors(self)

This block of code defines a function that returns the feature vectors for

the apks in the main training set. The first step in the process is to call

the ‘get_training_apks()’ function to retrieve a list of the apks and their

respective labels, either ‘malware’ or ‘goodware’. After this, an empty

dictionary, ‘_vectors’, is initialized to store the feature vectors for each

permission category, along with the target labels.

The function then iterates over each apk in the training set, and for each

one, it calls the ‘get_feature_vector_from_apk()’ function to obtain the

feature vector for that apk. It then appends each element of the feature

vector to the corresponding list in the ‘_vectors’ dictionary.

Once all the feature vectors and labels are collected, the function returns

the complete ‘_vectors’ dictionary, along with the target labels

‘_targets’.

This method is an important part of the overall process of training the

AndroidRisk model. By creating and storing feature vectors for each

permission category, the model can use this information to make

predictions about the risk level of new Android apps based on their

permission requests. It also ensures that the training data is in the correct

format for use in the model. Overall, this method is crucial for building

an effective and accurate Android risk assessment tool.

3.2.6. def train_classifiers(self)

The following code is responsible for training the classifiers used in the

AndroidRisk system. It first retrieves the feature vectors and their

corresponding labels for the training set by calling the

`get_training_vectors()` method. Then, it creates an empty list called

33

`self.trained_models` to hold the trained models. A for-loop is used to

iterate over the classifiers in `self.MODELS`.

For each classifier, the `fit()` method is called to train the model using

the feature vectors and labels obtained earlier. The trained model is then

appended to the `self.trained_models` list. If a directory is specified to

save the trained models, then the `joblib.dump()` method is used to save

the trained model in that directory. Finally, the list of trained models is

returned.

This implementation allows for easy integration of additional classifiers,

as they can simply be added to the `self.MODELS` list. Additionally,

the trained models can be saved for future use, which can save time and

resources when training the system in the future.

It is important to note that the quality of the trained models depends on

the quality and size of the training set. Therefore, it is crucial to carefully

select and balance the datasets used for training to ensure the best

possible results.

3.2.7. def rescale_risk(self,original_risk:float)

The function ‘rescale_risk()’ is designed to adjust the risk value

calculated by the AndroidRisk system from a range of 0 to 1 to a range

of 0 to 10. The purpose of this function is to make the risk value more

easily understandable and interpretable by users. The rescaling is done

using a logarithmic function, which helps avoid probabilities that are too

close to either 0 or 1. This is because probabilities that are very close to

either end of the range can be difficult to interpret and may not reflect

the true risk associated with the app.

The logarithmic function used for rescaling is based on the formula ‘10

* log10(1 + (risk_value * 99))’. The input to the function is the risk

value, which ranges from 0 to 1. The function first multiplies the risk

value by 99 to scale it up to a range of 0 to 99. It then adds 1 to the result,

which ensures that the minimum risk value is 1, avoiding a log value of

34

0. The logarithmic function is then applied to the result, and the output

is multiplied by 10 to scale it up to the desired range of 0 to 10.

By using a logarithmic function to rescale the risk value, the resulting

risk score is more evenly distributed across the entire range of 0 to 10.

This helps to make the risk score more informative and actionable for

users. It also helps to avoid situations where the risk score is skewed

towards the extremes of the range, which can be misleading and may not

accurately reflect the true risk associated with the app. Overall, the

‘rescale_risk()’ function is an important component of the AndroidRisk

system, as it helps to ensure that the risk scores generated by the system

are accurate, informative, and easy to interpret.

3.2.8. def calculate_risk(self,feature_vector:dict)

The purpose of the following code is to calculate the risk score of an

Android app using its feature vector. The code uses machine learning

classifiers to train on a set of malware and benign apps to generate a

probability of whether the app under test is malicious or not. The risk

value is then rescaled to be between 0 and 10 for better interpretability.

The ‘calculate_risk()’ function takes a feature vector as input and checks

whether the feature vector is empty. If the feature vector is empty, the

function returns ‘None’. If the feature vector is not empty, the function

proceeds to train the classifiers if they have not been trained already.

The function then computes the probability of the app under test being

malicious for every classifier in the list and obtains the mean probability

generated by the classifiers. Finally, the function rescales the risk value

using the ‘rescale_risk()’ function, which uses a logarithmic function to

avoid probabilities too close to 0 or 1.

In summary, this code provides a way to calculate the risk score of an

Android app based on its feature vector. By training machine learning

classifiers on a set of known malicious and benign apps, the code is able

to generate a probability of whether an app under test is malicious or

not. The risk score is then rescaled to be between 0 and 10, making it

35

easier to interpret and compare. Overall, this code can be a useful tool

for evaluating the security of Android apps.

3.2.9. def get_training_apks_3_sets(self)

This Python method is designed to generate three different sets of

training APKs and their corresponding labels for evaluating the

performance of classifiers. The method starts by collecting all apps from

the Malware Collection and Google Play Store collection. Next, it

shuffles the apps from the Google Play Store collection and splits them

into three subsets with equal sizes. These subsets are then concatenated

with the entire set of apps from the Malware Collection, creating three

different sets of training APKs.

To label the training APKs, the method creates a target array, which is

comprised of the type of the first app in the Malware Collection and the

first app in the first subset of Google Play Store apps. This target array

is the same for all three sets of training APKs.

Finally, the method returns the three sets of training APKs and their

corresponding labels as tuples. This enables the generated training sets

to be easily used in classifier training and evaluation.

3.2.10. def get_training_vectors_3_sets(self)

This function is designed to generate training feature vectors and their

corresponding labels, which are necessary for training classifiers. It

begins by calling the ‘get_training_apks_3_sets()’ function to obtain

three sets of training APKs. Then, it creates three dictionaries, one for

each set of training vectors, to store the feature vectors for each type of

permission along with their corresponding labels (malware or

goodware). The permission types to be used are determined by the

‘PERMISSION_TYPES’ list.

Using a loop, the function iterates over each APK in the training sets.

For each APK, it calls the ‘get_feature_vector_from_apk()’ function to

extract the feature vector. Each element of the feature vector

36

corresponding to each permission type is appended to the corresponding

dictionary, and the label for the APK (malware or goodware) is

appended to the “target” dictionary.

Finally, the function returns a tuple of tuples, where each tuple contains

the feature vectors and their labels for each set of training vectors. These

tuples can be used for training the classifiers in the AndroidRisk system.

In summary, this function provides a streamlined way to generate the

necessary training data for the classifiers to work accurately. By calling

the ‘get_feature_vector_from_apk()’ function to extract the feature

vectors and then appending them to the corresponding dictionary, the

function creates a comprehensive dataset that can be used to train

machine learning models.

3.2.11. def performance_analysis(self)

This method evaluates the performance of several classifiers on a given

set of training data using 10-fold cross-validation. The training data is

divided into three subsets, and the classifiers are trained on each subset

separately. The output of the method includes the accuracy, mean, and

standard deviation for each classifier and for each subset of the training

data.

The classifiers being evaluated include SVM, GaussianNB,

MultinomialNB, DecisionTreeClassifier, RandomForestClassifier,

LogisticRegression, LogisticRegressionCV, KNeighborsClassifier, and

BernoulliNB. All these classifiers are widely used in machine learning

and are implemented using the scikit-learn library in Python.

The aim of the classifiers is to classify Android applications as either

malware or goodware based on a given set of permissions. The input to

the classifiers is a set of feature vectors containing information about the

permissions requested by each application.

The code performs binary classification, where the output is either 1

(indicating malware) or 0 (indicating goodware). The performance of

37

each classifier is evaluated based on its accuracy in predicting the correct

output for a given input.

The 10-fold cross-validation used in the method is a widely used

technique in machine learning that helps prevent overfitting. It involves

dividing the training data into 10 subsets, and then training the classifier

on 9 of the subsets and testing it on the remaining subset. This process

is repeated 10 times, with each subset serving as the test set once, and

the results are averaged to obtain a more accurate estimate of the

classifier's performance.

The output of the method is a table showing the accuracy, mean, and

standard deviation for each classifier and for each subset of the training

data. This information can be used to select the best-performing

classifier for a given problem and to assess the generalizability of the

classifiers across different subsets of the training data.

Overall, this method provides a useful tool for evaluating the

performance of classifiers on a given set of training data and can be used

to inform decisions about which classifier to use for a particular

problem.

3.2.12. def calculate_set_accuracy(self)

This code is part of the AndroidRisk tool and aims to evaluate the

accuracy of the classifiers used in the model. It employs a 10-fold cross-

validation approach to train and test the classifiers on the training set.

The training set APKs and their targets are obtained by calling the

‘get_training_vectors()’ method.

The code then proceeds to train the classifiers and predict the class labels

for the test data using the fit and predict methods from the scikit-learn

library. The accuracy, mean, and standard deviation are then computed

for the malware and goodware scores using the scikit-learn metrics

module.

38

The ‘rescale_risk()’ method, which rescales the risk value to a range of

0 to 1, is assumed to be called within the classifier implementation. The

use of cross-validation helps to prevent overfitting and ensures that the

model is able to generalize well to new data.

The evaluation of the model’s accuracy is a crucial step in ensuring the

effectiveness of the AndroidRisk tool in detecting malware in Android

apps. By assessing the model’s performance on the training set, it is

possible to identify any issues or limitations with the classifiers used and

make necessary adjustments.

In addition, the use of cross-validation provides a more reliable estimate

of the model’s accuracy by reducing the variance of the performance

metrics. This is because the 10-fold cross-validation approach ensures

that all instances in the dataset are used for both training and testing, and

the performance metrics are averaged over the 10 folds.

Overall, this code plays an important role in evaluating the effectiveness

of the AndroidRisk tool and ensuring that it can accurately detect

malware in Android apps.

3.3 Classifiers Used

3.3.1. K-Nearest Neighbors

The k-nearest neighbors (KNN or k-NN) algorithm is a supervised

learning classifier that is non-parametric and uses proximity to group

individual data points for making predictions or classifications.

Although it can be used for both regression and classification tasks, it is

mainly employed as a classification algorithm, relying on the

assumption that similar points are located close to one another.

To categorize data points, the algorithm uses a technique called

"majority vote," which involves selecting the label that appears most

frequently in the vicinity of the data point. Although this technique is

technically known as "plurality voting," the term "majority vote" is more

commonly used in the literature. However, it should be noted that

39

"majority voting" requires a majority of more than 50%, which is

appropriate for only two categories. When dealing with multiple

categories, such as four, a label can be assigned with a vote greater than

25%, and the term "majority vote" is still used.

To solve regression problems using the k-nearest neighbors (KNN)

algorithm, the approach is similar to that used for classification

problems, with the key difference being that instead of assigning a class

label through majority voting, the algorithm calculates the average of

the k-nearest neighbors to make a prediction. While classification

involves discrete values, regression deals with continuous ones. To

perform classification, a distance measure between data points needs to

be defined, with Euclidean distance being the most commonly used

measure. The KNN algorithm is also referred to as "lazy learning"

because it only stores the training dataset and computes predictions only

when necessary. Because of its reliance on memory to store all the

training data, it is also known as an instance-based or memory-based

learning method.

Fig 7: KNN [20].

To solve regression problems using the k-nearest neighbors (KNN)

algorithm, the approach is similar to that used for classification

problems, with the key difference being that instead of assigning a class

label through majority voting, the algorithm calculates the average of

the k-nearest neighbors to make a prediction. While classification

involves discrete values, regression deals with continuous ones. To

40

perform classification, a distance measure between data points needs to

be defined, with Euclidean distance being the most commonly used

measure. The KNN algorithm is also referred to as "lazy learning"

because it only stores the training dataset and computes predictions only

when necessary. Because of its reliance on memory to store all the

training data, it is also known as an instance-based or memory-based

learning method.

The KNN algorithm can be used for risk factor analysis of Android

applications based on their permissions. In this case, the data points

would represent individual Android applications, and the features would

be the permissions requested by each app. The algorithm would then use

the proximity of apps in terms of their requested permissions to make

predictions about their risk factor. For example, the algorithm could be

trained on a dataset of known malicious and benign Android apps, with

their respective permission sets as features. Then, when a new app is

analysed, the algorithm would calculate the distance between the new

app's permission set and those of the known apps, and assign a risk factor

based on the classes of the k-nearest neighbors. This approach can be

useful for identifying potential security risks in Android apps, and can

be incorporated into larger security systems for mobile devices.

3.3.2. Multinomial Naïve Bayes

The Multinomial Naive Bayes algorithm is a statistical approach that is

often used for text classification tasks, such as sentiment analysis or

spam detection. However, it can also be used in the context of Android

application risk factor analysis based on requested permissions. This

algorithm works by utilizing Bayes' theorem to calculate the probability

of an app being malware given its requested permissions.

The basic idea behind the Multinomial Naive Bayes algorithm is to

model the conditional probability of each feature (i.e., permission) given

each class (i.e., malware or benign app). In other words, the algorithm

calculates the likelihood of each permission being associated with either

malware or benign apps based on a training set of known examples. The

41

algorithm then combines these probabilities using Bayes' theorem to

compute the overall probability of an app being malware given its

permission requests.

One of the key assumptions of the Naive Bayes algorithm is that the

features are conditionally independent given the class label. This

assumption simplifies the computation of probabilities and makes the

algorithm computationally efficient and scalable. However, in reality,

the features may not be entirely independent, and this can sometimes

lead to inaccurate predictions.

To apply the Multinomial Naive Bayes algorithm to Android application

risk factor analysis, a training set of known malware and benign apps is

needed. The algorithm then calculates the probability of each permission

being associated with malware or benign apps, based on the observed

frequencies in the training set. These probabilities are then used to

calculate the overall probability of an app being malware given its

permission requests.

In practice, the Multinomial Naive Bayes algorithm can be a powerful

tool for Android application risk factor analysis. It is relatively simple

to implement and can provide useful insights into the potential risks

associated with a given app. However, it is important to note that the

accuracy of the algorithm will depend on the quality of the training data

and the assumptions made about the independence of the features.

Additionally, the algorithm may not be effective against more

sophisticated types of malware that are designed to evade detection by

traditional methods.

Overall, the Multinomial Naive Bayes algorithm is a widely used

approach for Android application risk factor analysis based on

permission requests. By modeling the conditional probabilities of

permissions given the class label, the algorithm can provide valuable

information about the potential risks associated with a given app.

However, it is important to consider the limitations of the algorithm and

42

to use it in conjunction with other methods for more comprehensive

threat detection.

3.3.3. Logistic Regression

The logistic regression algorithm is a popular statistical model that can

be used for risk factor analysis in Android applications based on their

requested permissions. It is a binary classification method, meaning that

it predicts whether an application is "malware" or "benign" based on the

permissions it requests.

The logistic regression algorithm uses a training dataset of known

malware and benign applications to create a model that can predict the

probability of an unknown application being malware based on its

permission requests. The model uses the logistic function to transform

the input features (i.e., permission requests) into a probability score

between 0 and 1. This score represents the likelihood that the application

is malware, with a score closer to 1 indicating a higher likelihood of

being malware.

The logistic regression algorithm is versatile and can be used with

various types of input features. For Android application risk factor

analysis, the input features are typically the permissions requested by

the application. The algorithm calculates the probabilities of each

permission being associated with malware or benign applications, and

then combines these probabilities to calculate the overall probability of

an app being malware based on its permission requests.

One of the advantages of the logistic regression algorithm is its ability

to handle complex and non-linear relationships between the input

features and the output variable. This makes it a powerful tool for

identifying potentially malicious applications and assisting in making

informed decisions about their use. Additionally, the algorithm can be

used to identify the specific permissions that are most strongly

associated with malware, providing valuable insights into potential

security risks.

43

The threshold value used to classify an application as either "malware"

or "benign" can be adjusted to meet the needs of the specific use case.

For example, a more conservative threshold value may be used in high-

security environments to reduce the risk of false positives (i.e.,

classifying a benign application as malware). In contrast, a less

conservative threshold value may be used in less critical environments

to avoid false negatives (i.e., failing to identify a malware application).

Overall, the logistic regression algorithm is a powerful and versatile tool

for Android application risk factor analysis based on permission

requests. Its ability to handle complex relationships between the input

features and output variable makes it an effective approach for

identifying potentially malicious applications and making informed

decisions about their use.

3.4 Selection of Classifiers

Scikit-learn is a library that offers a range of machine learning algorithms

designed for classification tasks, including text classification. The library

includes 9 supervised classifiers that have the ability to estimate probabilities,

which is a useful feature as it allows for the generation of probability values for

each classification outcome. This feature can be applied to algorithms like SVM

and Decision Trees that typically do not provide probabilities.

To evaluate the performance of these classifiers for Android application risk

factor analysis, a study was conducted using three randomly extracted datasets,

each containing an equal number of malware and benign samples (6,707 each)

and using only the DAP permission set. The study aimed to select the most

reliable classifiers based on three empirical rules:

1. A minimum accuracy of 90% was required to eliminate less reliable

classifiers.

2. Binary classifiers were avoided by selecting only those with average scores

between 4% and 95%.

44

3. Classifiers with standard deviation less than 5% were excluded, as they had

very narrow distributions within the range of possible scores.

The default parameters from the scikit-learn library were used to evaluate the

classifiers, utilizing the K-fold cross-validation method with K=10. This

technique entails partitioning the dataset into K independent sets, each with an

equivalent number of elements. During each iteration, one fold is set aside for

testing, while the remaining k-1 folds are utilized as the training set to establish

the model. The accuracy of the model is measured by the number of correctly

classified samples in the testing set.

The advantage of employing the K-fold cross-validation approach is that it

ensures all instances are utilized for both training and testing, minimizing the

likelihood of overfitting, where a model may exhibit high performance on the

training data but poor performance on the test data. This method allows for a

more accurate evaluation of the performance of the classifiers, and the use of

default parameters provided by the scikit-learn library ensures a fair comparison

between the classifiers.

According to the research results, the Multinomial Naive Bayes, Bernoulli

Naive Bayes, Complement Naive Bayes, and Ridge Classifier with default

settings were the classifiers that satisfied the three empirical rules. These

classifiers showed high accuracy rates ranging from 91% to 93%, indicating that

they are reliable for Android application risk factor analysis based on

permission requests.

In summary, the scikit-learn library provides a range of machine learning

algorithms that can be used for Android application risk factor analysis based

on permission requests. The K-fold cross-validation method is a useful

technique for evaluating the performance of these classifiers, and the study

found that the Multinomial Naive Bayes, Bernoulli Naive Bayes, Complement

Naive Bayes, and Ridge Classifier are reliable classifiers for this task. The use

of these classifiers can assist in identifying potentially malicious applications

and making informed decisions about their use.

45

Fig 8: Example for 4-fold cross validation[19].

3.5 Statistical Analysis

To conduct a systematic analysis of the large dataset comprising of over 100,000

Android apps and malware samples, the researchers used a tool called the

Permission Checker. This tool was developed to extract relevant information on

four different permission sets, namely DAP, EAP, GAP, and UAP. The

researchers relied on reverse engineering to retrieve app bytecode and identify

permission sets required to execute each method invocation in the bytecode.

The Permission Checker then built a set called PS, which contained all the

permission sets used in the bytecode. Using PS as a foundation, the tool built

the other permission sets in the following manner: EAP comprised of

permissions that belonged to both DAP and PS, while GAP contained

permissions that belonged to PS but not to DAP. Lastly, UAP contained

permissions that belonged to DAP but not to PS.

The researchers identified the disjoint union of all single app permission sets in

the dataset as DAP, EAP, GAP, and UAP, which were abbreviated as DAPA,

EAPA, GAPA, and UAPA, respectively. This enabled them to perform a

comprehensive analysis of each app's permission set and evaluate the

effectiveness of probabilistic risk index methods used to calculate RIV.

However, while the probabilistic methods had some limitations, the researchers

proposed a new approach based on machine learning to address these issues.

They created a tool called AndroidRisk, which implemented this methodology

46

and evaluated it empirically. The researchers also planned to expand the feature

set to include suspicious API calls and URLs, which could be identified through

static analysis of the bytecode used to construct permission sets.

In summary, the researchers used the Permission Checker tool to analyze a large

dataset of Android apps and malware samples, extracting information on four

sets of permissions. They then proposed a new approach based on machine

learning to improve the limitations of probabilistic risk index methods and

developed the AndroidRisk tool to implement this methodology. The

researchers also planned to expand the feature set to include additional

information, such as suspicious API calls and URLs, to further improve the risk

factor analysis of Android applications.

Table 2: Statistics on APs on the dataset

In Table 2, there are overall statistics provided for the four AP sets. The data

suggests that, on average, malware declare more APs than apps (10.67 vs. 5.84),

but they use very few of them (4.25). Additionally, malware rarely attempt to

use undeclared APs (AVGGAP=1.15), in contrast to apps (AVGGAP=2.9).

AP Set MALWARE APPS

MAX

AP

AVG

AP

Std. dev. MAX

AP

AVG

AP

Std. dev.

DAP 87 10.67 5.76 96 5.84 4.39

EAP 15 4.25 3.19 24 3.81 2.40

GAP 9 1.15 1.26 23 2.9 2.11

UAP 84 6.42 4.58 91 2.03 2.78

47

Fig 9: Top 10 APs for malware[19].

Figures 8 and 9 display the top ten access points (APs) used by malware and

apps, respectively. The y-axis of each graph indicates the percentage of malware

or apps that use the specific AP.

Some APs related to networking are commonly used by both malware and apps,

such as INTERNET, ACCESS_NETWORK_STATE, and

ACCESS_WIFI_STATE. These APs are necessary for apps that require Internet

connectivity, which makes assessing their risk challenging. However, other APs

are required more frequently by malware than apps, such as

READ_PHONE_STATE, RECEIVE_BOOT_COMPLETED, and

READ_CONTACTS, which pose a potential threat. The most significant

difference between malware and apps is in relation to SMS APs. As seen in

Figure 8, the DAP plot shows that 2 out of 10 APs are related to SMS

(SEND_SMS and RECEIVE_SMS), while no SMS-related APs appear in the

DAP plot of Figure 9. Although almost half of the malware require SEND_SMS

and over 40% require RECEIVE_SMS, they seldom use them, as evidenced by

their absence in the corresponding EAP set.

48

Fig 10: Top 10 APs for apps[19].

49

CHAPTER - 4

PERFORMANCE ANALYSIS

The study evaluates nine supervised classifiers with probability estimation

available in the scikit-learn library, which provide probability values for

classification results even for algorithms like SVM and Decision Trees that do

not usually provide probabilities. The evaluation process involves training each

classifier on a training set of approximately 1342 elements, which includes 671

apps and 671 malware samples. The remaining nine sets are used to test the

classifier, with a score of 50% or more considered malware and a score of less

than 50% considered non-malware. To determine the accuracy of each

classifier, the number of correctly classified elements is divided by the total

number of classified elements.

The study applies three empirical rules to select the most reliable classifiers.

First, to eliminate less reliable classifiers, a minimum accuracy of 90% is

required. Second, only classifiers with average scores between 4% and 95% are

selected, avoiding binary classifiers. Third, classifiers with a standard deviation

of less than 5% are excluded, as they have very narrow distributions within the

range of possible scores.

The evaluation of the classifiers is carried out through the K-fold cross-

validation technique, where K is set to 10. This approach involves dividing the

dataset into K subsets or "folds", with approximately equal sizes. During each

iteration, one fold is used for testing, while the other K-1 folds are utilized for

training the model. The benefit of this method is that all samples are used both

for training and testing, reducing the risk of overfitting.

50

The evaluation results are summarized in Table 3, which reports the average

value of each metric since all classifiers behaved similarly on all three sets.

Support Vector Machines had the highest AVG Accuracy of 94.89%, with an

AVG Score of 94.83% for malware and 7.42% for apps. Decision Tree had the

highest AVG Score for malware, at 99.68%, and an AVG Accuracy of 95.68%.

Random Forest had the highest AVG Score for apps, at 8.87%, and an AVG

Accuracy of 96.73%. Gaussian Naïve Bayes had the lowest AVG Accuracy of

84.64%, while Multinomial Naïve Bayes had an AVG Accuracy of 90.69%, and

Bernoulli Naïve Bayes had an AVG Accuracy of 89.97%. Logistic Regression

had an AVG Accuracy of 94.96%, while Logistic Regression CV had an AVG

Accuracy of 94.93%. K-Nearest Neighbors had an AVG Accuracy of 94.29%.

Overall, the evaluation process reveals that the scikit-learn library's classifiers

are effective at identifying malware with high accuracy, particularly Support

Vector Machines, Decision Tree, and Random Forest classifiers. However,

different classifiers may have varying strengths and weaknesses depending on

the specific dataset and context. Therefore, it is essential to consider the

appropriate classifier based on the dataset's characteristics and the intended

application to achieve the best results.

Classifier AVG

Accuracy

Malware Apps

AVG

Score

σ AVG

Score

σ

Support Vector Machines 94.89 94.83 7.42 4.73 8.34

Gaussian Naïve Bayes 84.64 99.87 1.82 0.05 1.11

Multinomial Naïve Bayes 90.69 94.88 7.65 4.89 6.29

Bernoulli Naïve bayes 89.97 99.07 4.87 0.69 4.19

Decision Tree 95.68 99.68 3.29 0.73 3.62

Random Forest 96.73 97.31 8.19 4.09 8.87

Logistic Regression 94.96 93.36 8.23 4.85 9.38

Logistic Regression CV 94.93 96.41 8.21 4.71 9.21

K-Nearest Neighbors 94.29 98.69 6.22 4.82 11.34

Table 3: Empirical evaluation of Classifiers in the scikit-learn library

51

Among the classifiers evaluated, GNB and BNB had low accuracy, while DT,

RF, LR-CV, and K-NN had too high average scores for apps. Thus, only KNN,

MNB, and LR were found to meet all the requirements for the classification

process.

In light of these results, I developed a Python-based tool called AndroidRisk,

which incorporates the three chosen classifiers. The tool computes the RIV

(Risk Indicator Value) for each app by merging the feature vectors of all four

APs (Android Permissions) sets (DAP, EAP, GAP, and UAP) into a single

vector. The average score of all three classifiers is used to compute the RIV.

Each classifier in AndroidRisk is trained by conducting a 10-fold cross-

validation on one of the three sets used for evaluating the classifiers.

Additionally, they experimented with using all four APs sets to determine

whether it could improve accuracy.

Overall, the use of three classifiers in AndroidRisk provides a promising

approach to identifying and classifying malware on Android devices. By

computing the RIV for each app, the tool can quickly assess the likelihood of

an app being malware and flag it for further investigation if necessary.

Additionally, I experiment with using all four APs sets could provide further

insights into the potential benefits of incorporating more features in the

classification process. However, further research is needed to determine the

tool's effectiveness and potential limitations in real-world settings.

Fig 11: RIV after analysis of android app

52

CHAPTER - 5

CONCLUSIONS

Our study aimed to assess the practical performance of probabilistic risk index

methods for Android applications and to propose an innovative machine

learning-based approach to overcome the shortcomings of these techniques. To

achieve this goal, we developed a tool named AndroidRisk, which implements

our new methodology. We conducted an empirical evaluation of AndroidRisk

and found it to be more effective than traditional probabilistic risk index

methods.

In our future work, we plan to expand the feature set of AndroidRisk to include

suspicious API calls and URLs. This extension will be achieved through static

analysis of the bytecode used to construct permission sets. By analyzing the

app's code, we can identify API calls and URLs that may be associated with

malware and add them to our risk assessment. This approach will enhance the

accuracy of our risk assessment and provide users with more comprehensive

protection against malicious apps.

Our approach based on machine learning is particularly promising because it

can learn from past data and improve over time. As more data becomes

available, the accuracy of our risk assessment will continue to improve.

Furthermore, machine learning algorithms can also incorporate user feedback

and expert knowledge to further enhance the accuracy of our risk assessment.

To sum up, our research has shed light on the shortcomings of conventional

probabilistic risk index methods for Android applications and has suggested a

novel machine learning-based approach as a solution. Our tool, AndroidRisk, is

a step towards providing users with more accurate and comprehensive

protection against malicious apps. In the future, we plan to continue developing

and improving our approach to better protect users and stay ahead of emerging

threats in the Android app ecosystem.

53

REFERENCES

[1] C. S. Gates et al., "Generating Summary Risk Scores for Mobile

Applications," in IEEE Transactions on Dependable and Secure

Computing, vol. 11, no. 3, pp. 238-251, May-June 2014, doi:

10.1109/TDSC.2014.2302293.

[2] H. Hao, Z. Li and H. Yu, "An Effective Approach to Measuring and

Assessing the Risk of Android Application," 2015 International

Symposium on Theoretical Aspects of Software Engineering, Nanjing,

China, 2015, pp. 31-38, doi: 10.1109/TASE.2015.16.

[3] M. Li, H. Elahi, and S. Chen. 2020. A Risk Analysis of Android

Children’s Apps. In Web Information Systems and Applications: 17th

International Conference, WISA 2020, Guangzhou, China, September

23–25, 2020, Proceedings. Springer-Verlag, Berlin, Heidelberg, 539–

546. https://doi.org/10.1007/978-3-030-60029-7_48

[4] S. Li, T. Tryfonas, G. Russell and P. Andriotis, "Risk Assessment for

Mobile Systems Through a Multilayered Hierarchical Bayesian

Network," in IEEE Transactions on Cybernetics, vol. 46, no. 8, pp.

1749-1759, Aug. 2016, doi: 10.1109/TCYB.2016.2537649.

[5] Y. Wang, J. Zheng, C. Sun, S. Mukkamala: Quantitative security risk

assessment of android permissions and applications. In: Wang, L.,

Shafiq, B. (eds.) DBSec 2013. LNCS, vol. 7964, pp. 226–241.

Springer, Heidelberg (2013). doi:10.1007/978-3-642-39256-6_15

[6] N. Peiravian and X. Zhu, “Machine learning for Android Malware

detection using permission and API calls,” in Proc. IEEE 25th Int.

Conf. Tools Artif. Intell., 2013, pp. 300–305.

[7] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “PUMA:

Programmable UI-automation for large-scale dynamic analysis of

mobile apps,” in Proc. 12th Int. Conf. Mobile Syst. Appl. Services,

2014, pp. 204–217.

[8] M. L. Dering and P. McDaniel, “Android Market reconstruction and

analysis,” in Proc. IEEE Military Commun. Conf., 2014, pp. 300–305.

54

[9] T. Book, A. Pridgen, and D. S. Wallach, “Longitudinal analysis of

Android ad library permissions,” Computing Research Repository

CoRR, vol. abs/1303.0857, pp. 1–9, 2013.

[10] J. M. Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and A. E.

Hassan, “Impact of ad libraries on ratings of Android mobile apps,”

IEEE Softw., vol. 31, no. 6, pp. 86–92, Nov./Dec. 2014.

[11] Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app

behavior against app descriptions,” in Proc. Int. Conf. Softw. Eng.,

2014, pp. 292–302.

[12] Bartel, J. Klein, M. Monperrus, and Y. Le Traon, “Static analysis for

extracting permission checks of a large scale framework: The

challenges and solutions for analyzing Android,” IEEE Trans. Softw.

Eng., vol. 40, no. 6, pp. 617–632, Jun. 2014.

[13] T. Watanabe, M. Akiyama, T. Sakai, H. Washizaki, and T. Mori,

“Understanding the inconsistencies between text descriptions and the

use of privacy-sensitive resources of mobile apps,” in Proc. 11th Symp.

Usable Privacy Secur., 2015, pp. 241–255.

[14] Y. Zhou, L. Wu, Z. Wang, and X. Jiang, “Harvesting developer

credentials in Android apps,” in Proc. 8th ACM Conf. Secur. Privacy

Wireless Mobile Netw., 2015, pp. 23:1–23:12.

[15] H. Wang, J. Hong, and Y. Guo, “Using text mining to infer the purpose

of permission use in mobile apps,” in Proc. ACM Int. Joint Conf.

Pervasive Ubiquitous Comput., 2015, pp. 1107–1118.

[16] S. Seneviratne, H. Kolamunna, and A. Seneviratne, “A measurement

study of tracking in paid mobile applications,” in Proc. 8th ACM Conf.

Secur. Privacy Wireless Mobile Netw., 2015, pp. 7:1–7:6.

[17] Platform Architecture, Online available at:

https://developer.android.com/guide/platform

[18] M. Arif J, A. Razak MF, S. Awang, T. Mat SR, Ismail NSN, Firdaus

A. A static analysis approach for Android permission-based malware

detection systems. PLoS One. 2021 Sep 30;16(9):e0257968. doi:

55

10.1371/journal.pone.0257968. PMID: 34591930; PMCID:

PMC8483345.

[19] A. Merlo, G.C. Georgiu, (2017). RiskInDroid: Machine Learning-

Based Risk Analysis on Android. In: De Capitani di Vimercati, S.,

Martinelli, F. (eds) ICT Systems Security and Privacy Protection. SEC

2017. IFIP Advances in Information and Communication Technology,

vol 502. Springer, Cham. https://doi.org/10.1007/978-3-319-58469-

0_36

[20] K-Nearest Neighbors Algorithm, Online Available at:

https://www.ibm.com/topics/knn

56

