
Social Media Web Application

Project report submitted in partial fulfilment of the requirement
for the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Shubham Singh (191402)

Under the supervision of

Dr. Jagpreet Sidhu

to

Department of Computer Science & Engineering and
Information Technology

Jaypee University of Information Technology Waknaghat,
Solan-173234, Himachal Pradesh

Certificate

We hereby declare that the work presented in this report entitled “Social

media web application" in partial fulfilment of the requirements for the award

of the degree of Bachelor of Technology in Computer Science and

Engineering/Information Technology submitted in the department of

Computer Science & Engineering and Information Technology, Jaypee

University of Information Technology Waknaghat is an authentic record of my

own work carried out over a period from January 2023 to May 2023 under the

supervision of Dr. Jagpreet Sidhu (Assistant Professor (SG) CSE & IT,

JUIT).

The matter embodied in the report has not been submitted for the award of any

other degree or diploma.

(Student Signature)

Shubham Singh (191402)

This is to certify that the above statement made by the candidate is true to the
best of my knowledge.

(Supervisor Signature)

Supervisor Name

Designation

Department name
Dated:

(i)

Plagiarism Certificate

As provided by the LRC of JUIT.

(ii)

Acknowledgement

We are thankful to all the people who joined as part of making this journey

of fulfilling this project into a working model. We are grateful to Jaypee

University of Information technology for giving us a wonderful platform for

exploring our software developing skills during the making of this project.

Additionally, we would like to extend our sincere appreciation to Dr. Vivek

Sehgal, Head of the Department, for providing all the assistance and support

necessary for the project's conception, execution, and presentation.

We are also thankful to our mentor Dr Jagpreet Sidhu as well as other staff

members of the Computer Science and Engineering department, Jaypee

University of Information Technology for their constructive and helpful

inputs.

(iii)

Table of Contents

1. INTRODUCTION 1-2

1.1 Introduction 1
1.2 Problem Statement 1
1.3 Objectives 1
1.4 Methodology 2
1.5 Organisation 2

2. LITERATURE SURVEY 3

3. SYSTEM DEVELOPMENT 4-37

3.1 System design diagram 4
3.2 System design Implementation 4-7
3.3 Website design 7
3.4 Front-end Implementation 8-16
3.5 React-redux 17-19
3.6 Routing 19-20
3.7 APIs 20-22
3.8 Back-end implementation 22-24
3.9 MongoDB and Mongoose 25-29
3.10 Controllers 31-34
3.11 Overall data flow 35
3.12 Three-tier architecture 35-36

4. RESULT 37-46

4.1 Creating and searching a post 37-39
4.2 A specific post 40
4.3 Security 41-44
4.4 Performance analysis 44
4.5 Final list of dependencies 45
4.6 The complete ui 46

(iv)

5. CONCLUSION 46

5.1 Conclusion 46
5.2 Future Work 46

6. REFERENCES 47

(v)

List of Abbreviations

ABBREVIATIONS FULL-FORM

API Application Programming Interface

NPM Node Package Manager

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

HTML Hyper text Markup Language

JSX JavaScript XML

SQL Structured Query Language

URL Uniform Resource Locator

UI User Interface

(vi)

List of Figures

S.no Figure Number Page no.

1 Nonceblox logo 1

2 System design diagram 4

3 MERN workspace 5

4 Bootstrapped react app contents 8

5 useState hook 12

6 useContext hook 13

7 React hook lifecycle 15

8 Redux workflow 17

9 React router 20

10 API folder 21

11 Server port 24

12 Client port 24

13 Home page url 24

14 Module import workflow 27

15 Middleware 30

16 Controllers 31

17 Liking a post 33

18 Data flow in a web application 35

19 Three tier architecture 35

20 Post column 37

21 first 8 posts (console view) 38

22 New post creation (console view) 38

(vii)

23 Navbar 39

24 Search bar 39

25 Result of search (console view) 39

26 A Single post 40

27 The sign in column 41

28 User signed-in (console view) 41

29 Sign up column 42

30 The network tab 42

31 The network tab after user logged in 43

32 Package.json file 44

33 The complete ui 45

(viii)

List of Tables

S.no Table Number P.no.

1 Table 1 7

2 Table 2 7

3 Table 3 12

(ix)

Abstract

The goal of the website is to allow the users to post their experience and photos of the

places they travelled to. This project was assigned to me by the company in order to

help me get a better understanding of the skills that are needed in the area of website

design and development. This website was supposed to be the implementation of the

knowledge that we have acquired while learning web designing and development in the

last four to five months. This website follows a three-tier architecture. The presentation

tier is kept simple and user friendly. The main purpose of this tier is to display

information and to collect information from the user. The application tier is the heart of

web applications. All the information about the user collected from the presentation tier

is stored and processed here. It is mainly implemented using nodejs. EJS is the

templating engine used. The last tier is the data tier where information processed by the

application tier is stored. Information about users such as their login ids,

passwords(hashed) , likes, comments and feedback all are stored using this layer. In this

website, the data tier is implemented using Mongodb(NoSQL). Mongoose is the library

used.

The three-tier architecture ensured faster development as each tier can be developed

simultaneously. It also ensures improved scalability, reliability and security

(x)

1. INTRODUCTION

1.1 Introduction

It is a basic web application that implements CRUD operations based on the three layered

architecture. Programs at each layer have their own unit test. There is also an

implementation of middleware that authenticates the http request before sending it to the

server. Front-end of the website is made using html, css, javascript. Bootstrap templates

are used extensively. For the back-end we are using nodejs and its packages such as

expressjs, passport,js (for authentication and security). Its library Mongoose is used to

write more readable code. For authentication , we are using Passport.js.

The Website allows users to login/signup, read a post, search a particular post. Creation,

deletion and liking a post is only allowed if the user is logged-in.

1.2 Problem Statement

To apply industrial best practices and create a fast, scalable and secure web application. To

learn and apply the knowledge of front-end development in real life projects and to

understand the in-depth working of MERN Stack applications.

1.3 Objectives

To create testable, structured, clean and maintainable web applications by using industrial

best practices. To apply the knowledge about the technologies thought to us thus far and

gain practical experience.

1.4 Methodology

The front-end of this website is developed exclusively using Reactjs. Material-ui is used

for styling instead of plain CSS. This combination allows faster development and

scalability. Each component can be developed simultaneously and error in one component

won’t affect other components. For the backend we have used expressjs for making APIs

and MongoDB as database. Mongoose is a framework for MongoDB and Expressjs.

1

Executing HTTP requests is React's responsibility. They can set up dynamic data

downloads in this way without having to reload the website. This makes the website

significantly faster than usual.

1.5 Organisation

Dedicated to creating Commercially Scalable Blockchain Products, Nonceblox is a team

of gifted blockchain architects, consultants, business SMEs, and cryptocurrency

advisors. Solutions on Hyperledger, Polygon, Solana, BSC, and Polkadot are developed by

Nonceblox. Our talented team of blockchain designers, specialists, industry SMEs, and

cryptocurrency consultants have a passion to develop blockchain technologies that are

useful to businesses and are economically feasible.

Fig 1: Company logo

2

2. LITERATURE SURVEY

1. React documentation

React is a front-end framework that allows users to write reusable code for each

component of a website. Each component can be combined to develop a complete user

interface.

2. Javascript documentation - Mozilla

Writing basic to advanced level asynchronous javascript for developing a fully-fledged

and scalable web application.

3. Git and Github

Official documentary that familiarises you with the concepts of a version control system

i.e Git and how it works with GitHub.

4. Performance optimization using mern stack

The author of “Performance optimization using mern stack” Sourabh Mahadev Malwade

talks about ways of improving performance of web applications developed using mern

stack.

5. MERN: A Full-Stack development

A journal by Yogesh Baiskar and published by IJRASET talks about the methodology

and chronology of full stack development. This document is covering the journey of a

full-stack development from a frontend to deploying a site.

6. MongoDB documentation

MongoDB uses it’s library - mongoose to make the code more readable, concise and

efficient. Mongoose is used widely to enhance the code readability.

7. Introducing JSX - React

3

3. SYSTEM DEVELOPMENT

3.1 System design diagram

Fig 2: System design diagram

3.2 System design implementation

Separation of concerns : A react web application usually has two sub-folders for

client-side and server-side applications. Each sub-folder is then divided into separate

folders and files based on hierarchy.

The client side is mainly responsible for the user interface and experience while the

creation, deletion, updation and retrieval of the data is managed in the server side folder.

3.2.1 Identification of features

- Creation of a post with a test body and image in jpg format.

4

- Updation of a post only by a user who is logged-in.

- Deletion of an existing entry only by the user who created it.

- Fetching a post based on title or hashtag.

- Creating a user (signup).

- Letting the user login.

Fig 3: MERN work environment

5

3.2.2 Libraries and frameworks used

JS is a lightweight, compiled or interpreted scripting language with many functions .

Many non-browser contexts, like Node.js, Apache CouchDB, and Adobe Acrobat,use

it as it is one of the best server-side scripting language.

Reactjs : React is an open-source, free front-end library based on javascript used for

creating component-based user interfaces. It is kept up-to-date by Meta and a group of

independent programmers and businesses. With frameworks like Next.js, React may be

used to create single-page, mobile, or server-rendered applications. Routing and other

client-side functionality are frequently provided by libraries in React applications because

React is solely concerned with the user interface and rendering components to the DOM.

Nodejs : Open-source server environment Node.js is cross-platform and works with a

variety of operating systems, including Windows, Linux, Unix, macOS, and more.

JavaScript code can be executed outside of a web browser using Node.js, a back-end

runtime environment that uses the V8 JavaScript Engine. JavaScript is a scripting language

that developers may use to create server-side scripts and command-line tools using

Node.js. In order to create dynamic web page content before the page is transmitted to the

user's web browser, it is frequently necessary for the server to be able to run JavaScript

code.

Mongoose : Mongoose is a mongodb library for writing concise and readable code. It

handles data associations, offers validation, and translates between objects created in code

and how MongoDB represents those same items. This indicates that Mongoose enables the

definition of objects with strongly-typed schemas that map to MongoDB documents.

Mongoose offers a staggering amount of capabilities for developing and interacting with

schemas. CRUD activities that are challenging to carry out with raw MongoDB can be

carried out quickly and effectively using Mongoose.

Nodemon : If we make changes in the file and save it, nodemon starts the server

automatically. Without nodemon one has to restart the server automatically after

6

every change. It saves a lot of time and effort. While testing, the website can be run

on localhost using the “nodemon app” command.

3.2.3 Technical Requirements

- VS Code(preferred IDE) / atom

- Postman api platform for building and testing APIs.

- MongoDB (Nosql) database.

3.2.4 Hardware Configuration

Table 1: Hardware requirements

3.2.5 Software Configuration

Operating System Windows

Language Javascript/JSX

Package manager Node package manager (NPM)

Runtime environment Node.js

Table 2: Software requirements

3.3 Website Design

Header containing the name of the website along with a navigation bar. The navigation bar

7

has links to “about” , “articles” and “security” pages.

Body which has different contents for each page. Eg:- In the “articles” page body contains

a search bar, article along with their links while in the “Security” page it has a login form.

3.4 Front-end implementation

MOVING FORWARDWITH REACT

3.4.1 Bootstrapping a basic react application

We need to run the command - npx create-react-app appname and it will automatically

make a folder with all the requirements for creating a react application.

3.4.2 React Workspace and folder hierarchy

Fig 4: Bootstrapped react app made using npm create-react-app command

8

3.4.3 Installing packages and dependencies

In react, various packages and dependencies can be installed using the following

commands:

npm install packagename - for installing dependencies normally.

npm i - for installing all the dependencies in one go.

3.4.4 Importing and exporting components

In react we can export a particular component and then import it in a parent component to

reuse it multiple times.

Importing :

Importing a component - import Gallery from './Gallery.js';

Importing dependencies - import axios from ‘axios’;

Importing hooks - import {useState} from ‘react’;

Exporting :

We can export a component as follows :

export default function App() {

return (

<Gallery />

);

}

3.4.5 How react works (JSX and Babel) :

JSX stands for JavaScript XML. JSX allows you to write html inside javascript. It is this

feature that makes react so powerful and clean.

An expression in JSX : const myElement = <h1>Current version of React is {9+9}.</h1>;

A block of html in react can be written as :

9

const myElement = (

<div>

<p>First paragraph.</p>

<p>Second paragraph</p>

</div>

What is Babel ?

Founded by Sebastian Mckenzie, BabelJS is a JavaScript transpiler that converts new

features into out-of-date norms. With this, it is simple to use the functionality on both old

and modern browsers. It is used to compile JSX which is used by react.

The language that the browser comprehends is JavaScript. To run our applications, we use

a variety of browsers, including Chrome, Firefox, Internet Explorer, Microsoft Edge,

Opera, and UC Browser. The JavaScript language specification is known as ECMA Script;

the most recent stable version, ECMA Script 2015 ES6, is compatible with both new and

old browsers.

We've had ES6, ES7, and ES8 since ES5. There are numerous new features in ES6 that not

all browsers fully support. The same holds true for ES7, ES8, and ESNext (the upcoming

ECMA Script version). When all browsers will be able to work with every ES version that

was published is currently unknown.

We require a programme that will compile our final code in ES5 if we want to use new

ECMAScript capabilities and run it on every available browser. Babel is used to resolve

this issue.

3.4.6 States in React

In react, any change made by the user is considered as a change in state. A state contains

information about the component in which it is present. Whenever we change the state of a

component, it renders again with a new state. The setState() constructor is used to change

the state of a component. For example, if we type something in the search bar, with each

10

letter the state is changing and the component has to re-render. Example :

Class MyClass extends React.Component {

constructor(props) {

super(props);

this.state = { attribute : "value" };

}

}

3.4.7 Props in react

Props is a shorthand notation for properties. It works similar to HTML attributes. A prop in

react may seem similar to state but the major difference between a state and a prop is that a

prop can be passed from a parent component to the child component. This process is

known as ‘prop drilling’.

Eg:-

Adding an attribute called ‘brand’ to ‘Vehicle’ component :

const Ele = <Vehicle brand="Tata" />;

Passing the prop to the component :

function Truck(data) {

return <h1>The price is : { data.price }</h1>;

}

11

3.4.8 React Hooks

React version 16.8 introduced hooks. It was done to replace the class components. Hooks

allow us to access the state of a component and other react features. States can be changed

via hooks. It also helps us to ‘hook’ into the lifecycle methods. The programmer needs to

import the hook before using it. Hooks can be imported by the following line of code :

- import {useState} from ‘react’;

Below is the list of the most frequently used react hooks :

1. useState hook : used to set and modify the state of a component.

Used to change / update the state of a component. Basically if anything changes in a

react application, its state is said to be changed. If we type anything in a search bar, its

state changes and everytime a state changes, the page reloads.

Fig 5 : Working of useState hook

12

2. useEffect hook : used to perform a specific task once an event is triggered.

useEffect hook takes 2 arguments: an anonymous function and an array. The code inside

the anonymous function will be executed once the argument in the array is triggered.

Here we are increasing the value of the count variable once a certain state changes.

Syntax of useEffect hook :

3. useContext hook : used to avoid prop drilling. A context has states which can be

accessed by any component no matter how many parent components are present above

it.

Fig 6 : Working of useContext hook

13

4. useRef hook : Introduces the concept of uncontrolled components. Uncontrolled

components are not controlled by react state but by the DOM itself. Refs are used to

interact directly with real DOM(document object model) not the virtual one. Refs don’t

cause re-renders. Suppose we want to use the ‘focus’ property which is present in

javascript but not in JSX. By using Refs, we can get hold of the original DOM node and

use the focus property on it. When a button is clicked and you want an input to become

the focus as a result, this is a very typical use case for useRef. In order to accomplish

this, we would first need to access the input DOM element and then call its focus()

function. To accomplish this with JavaScript, all that is required is to choose the input

using the querySelector or by id/class, after which the focus() function is called.

However, React does not come with a built-in method for accomplishing this.

5. useMemo hook : used to stop the unnecessary re-renders. When the state of a parent

component changes, the child component also has to re-render despite the fact that it’s

state hasn’t been changed. This causes unnecessary memory loss. This behaviour can be

prevented by useMemo hook. Consider a static Welcome Card that will be shown inside

an application. Other states, such a counter, are also included in the application. The

Welcome Card is a child of the primary parent App, therefore once the counter is raised,

the static card will be updated as a result of any changes to the app's internal state.

6. useCallback hook : Similar to useMemo. It returns the memoized function while

useMemo returns the memoized value. UseMemo doesn’t work when a prop is passed

from parent to child. In such cases useCallback hook is preferred.

Pass an array of dependencies along with an inline callback. A memoized version of the

callback that only changes if one of the dependencies has changed is what useCallback

returns. This is helpful for sending callbacks to optimised child components that don't

need to render everything because they rely on reference equality.

14

Fig 7 : React hooks lifecycle

Mounting, updating, and unmounting are the three phases that make up a React

component's lifetime. Each phase has unique methods in charge of a certain stage in a

component's lifetime. Technically speaking, these methods are not intended for functional

components and are only applicable to class-based components.

However, because the Hooks concept was introduced in React, you can now use abstracted

variations of these lifecycle methods when working with functional component state.

Simply put, React Hooks are functions that enable "hooking into" React states and

lifecycle elements from within function components.

Phases of React component lifecycle :

A new component is produced and added to the DOM during the mounting step, which

also marks the start of a component's life. This is frequently referred to as the "initial

render" and can only occur once.

15

The component updates or re-renders during the updating process. When the state or the

props are updated, this reaction is triggered. Multiple occurrences of this phase are

possible, which is sort of React's purpose.

The unmounting step, in which the component is taken out of the DOM, is the final stage

of a component's lifetime.

For each phase of the life cycle, a class-based component can call a different method (more

on this below). These lifecycle methods, which can only be produced by or included in

classes, are obviously not used by functional components. On the other hand, when

employing React hooks, functional components can benefit from states.

3.4.9 Styling using Material-ui

It is one of the most popular React-ui component frameworks maintained by the react

community. Google's Material Design is implemented through a free and open-source

React component bundle called Material UI. It comes with a wide range of prebuilt

components that are employed right away in production.

Installation : npm install @material-ui/core

We use material-ui by making an object for styling a particular component in a separate

file usually named ‘styles.css’ and the using the styles inside the component as follows :

Initialising Class using useStyle hook : const classes = useStyles();

Providing style to a component : <Avatar className={classes.avatar}>

Here ‘avatar’ is an object present in the ‘styles.css’ page.

16

3.5 State Management using React-redux :

Redux is one of the most important tools present in react. It is an open-source javascript

library used for storing all the states at a centralised location. It is mainly used for state

management. When there are a large number of states, redux stores all of them at a

centralised location called Redux Store. From there, the ‘actions’ are dispatched to update

the data. Redux provides a simplified and sensible way to manage the states. It works on

the principle of ‘unidirectional data flow’. It helps to scale the application and manage it

more efficiently.

Fig 8 : The flow control of redux

The three main components of Redux are :

Redux Store : Stores the current states of all the components. Whenever the data is

needed, we need to access the Store. The reducers then update the data and an action is

dispatched. The updated data is then stored in the Redux Store.

17

Creating a Redux Store :

const store = createStore(reducers)

ReactDOM.render(

<Provider store={store}>

<App />

</Provider>,

document.getElementById('root')

);

Action : Actions are straightforward objects with the typical two properties of type and

payload. The payload property is an optional property that holds some data that is

necessary to complete any given task, whereas the type property is often a text that

specifies the action. Sending information from the application to the Redux store is the

primary purpose of an action.

Reducers : Reducers are pure functions that adjust the application's state in response to

user input. Reducers accept an action and a previous state as input and output a modified

state. Due to the immutability of the state, a reducer always produces a new state that

represents an updated version of the prior state. Basically it is used to perform some action

and update data/state present in the Redux Store.

case AUTH:

localStorage.setItem('profile', JSON.stringify({ ...action?.data }));

return { ...state, authData:action?.data };

case LOGOUT:

localStorage.clear();

return { ...state, authData: null, loading: false, errors: null };

18

Here the reducers are updating the state when a user tries to login and logout.

Data flow in a Redux application :

- The flow of data is triggered when a user interacts with a component. The

action creators dispatch an ‘action’ due to this interaction.

- Once an action is dispatched, it is received by the application's root reducer

and distributed to all other reducers. Therefore, based on the dispatched

action, it is the reducer's responsibility to decide whether it needs to update

the state.

- This is verified by filtering out the necessary actions using a straightforward

switch statement. Each (smaller) reducer in the application accepts the

dispatched action and returns a newly updated state if the type of the

dispatched action matches.

- It is important to remember that with redux, the state never actually changes.

Instead, the reducer always creates a new state that is an exact duplicate of

the old state but has undergone some changes.

- The component is then notified by the store of the altered state, which causes

it to retrieve it and render the component again.

- The fact that data flow in a React-Redux application is unidirectional, or only

going in one direction, is another crucial finding in this context.

3.6 Routing

A frequently used tool for making custom routes in React is React Router. It allows

switching between multiple pages made by various React components, permits changing

the browser's URL and maintains UI synchronisation with the URL.

Installation : npm install react-router-dom

19

Importing :

import {

BrowserRouter as Router,

Routes,

Route,

Link

} from 'react-router-dom';

Usage : This application has five main routes. Home, Auth, Posts, Search, :id. The exact

paths are as follows :

Fig 9 : Working of react router

3.7 Connecting Front-end and Back-end through APIs :

Workspace of a typical react application is divided in two folders : Client and Server. This

way of developing an application makes the development process clean, easy and the code

is more readable. This is called ‘separation of concerns’. Client side directory’s main

concern is user interface while the server side handles database, authentication and routing.

20

To connect these two directories, we use APIs. This file is present in the client side inside

the ‘src’ folder :

Fig 10 : Location of API file

Axios : We are using the ‘axios’ library to make our custom API. Through Axios, which

also supports the Promise API that is part of JS ES6, we connect with the backend. It is a

package that enables us to request information from APIs, receive that information, and

use it to carry out activities in our React apps.

Importing : import axios from ‘axios’;

Providing the URL : Our application is currently hosted locally on localhost. So the link

21

is :

const API = axios.create({ baseurl: 'http://localhost:5000'})

Using Axios :

APIs for Signin / Signup : Sending post request to the backend (the specified Url)

export const signIn = (formData) => API.post('/user/signin', formData);

export const signUp = (formData) => API.post('/user/signup', formData);

APIs for updating a particular post : Like, Update and Delete

export const likePost = (id) => API.patch(`/posts/${id}/likePost`);

export const updatePost = (id, updatedPost) => API.patch(`/posts/${id}`,
updatedPost);

export const deletePost = (id) => API.delete(`/posts/${id}`);

We send a ‘patch’ request whenever we need to update an existing post.

Types of requests :

Get request : To get the data from the database.

Post request : To send data from frontend to the database.

Patch request : To update an existing data / some part of an existing data. The request

body only needs the part which needs to be updated.

Put request : Same functionality as Patch request. The only difference is that the body of

put request needs to have the complete new data and not just the part which needs

updating.

3.8 The Back-end implementation

Frameworks required : Expressjs and Mongoose

External Packages : dotenv and cors

22

http://localhost:5000

- Dotenv is a npm package for loading environment variables without manual

programming.

- CORS or Cross-Origin Resource Sharing in Node. js is a mechanism by

which a front-end client can make requests for resources to an external

back-end server.

Backend setup

Initialising Express and setting up bodyparser :

const app = express();

dotenv.config();

app.use(bodyParser.json({limit: "30mb", extended: true}));

app.use(bodyParser.urlencoded({limit: "30mb", extended: true}));

Here we are initialising express and assigning it to a variable named ‘app’. Now this app

variable can be used for routing.

Connecting to mongodb atlas :

const PORT = process.env.PORT || 5000;

const app = express();

mongoose.connect(process.env.CONNECTION_URL,{useNewUrlParser:true,useUnified
Topology:true})

.then(()=> app.listen(PORT, ()=> console.log(`server running on ${PORT}`)))

.catch((error)=>console.log(error.message));

Here we are setting our port as port 5000. This means that our client runs on localhost:

3000 while server runs on localhost: 5000. After these set-ups, we can start our app by

running ‘npm start’ command :

23

Fig 11 : Server running on port 5000

Fig 12 : Client running on port 3000

Fig 13 : The url of any page starts with localhost:3000

24

3.9 MongoDB and Mongoose

Mongoose is an ODM library for MongoDB and Nodejs. It offers many different kinds of

validation and also manages relationships between data. Some features of MongoDB are :

- Schema-less NoSQL

- Data stored in form of json objects.

- No fixed structure.

- Fast as it is written in C++.

- Reduces complexity of deployment.

Terminologies

1. Collections : Multiple json documents together are called a collection. Collections are

equivalent to tables in relational databases.

2. Documents : Documents can be compared to records / rows in a relational database.

There is no concept of referencing data like SQL does in MongoDB. Mongo

documents usually combine them in a document.

3. Fields : They are commonly known as properties or attributes. Fields are similar to

columns in a table.

4. Models : Models are higher-order constructors that take a schema and create an

instance of a document equivalent to records in a relational database.

5. Schema Types : SchemaTypes indicate the anticipated data type for specific fields,

whereas Mongoose schemas define the overall form or shape of a document. Example

: String, Number, Boolean.

MongoDB Atlas vs MongoDB Compass

Developers made MongoDB atlas so that people could scale and" deploy clusters with just

a few clicks. The MongoDB team also developed and manages MongoDB Atlas, a global

cloud database service. Enjoy the ease of use and automation of a fully managed service on

your favourite cloud along with the flexibility and scalability of a document database. On

the other hand, MongoDB Compass is described as "A GUI for MongoDB". Investigate

25

https://mongoosejs.com/docs/models.html

your data visually. Ad hoc queries can be run quickly. Utilise all of the CRUD

functionality to interact with your data. View and improve the performance of your

queries.

Example :

const Schema = new mongoose.Schema({

name: {

type: String,

required: true

},

age: Number

});

const Sname = mongoose.model('Sch’', Schema);

In the code above, Sch defines the shape of the document which has two fields, name, and

age. you can define the SchemaType for a field by using an object with a type property like

the one used with the name field.

‘Name’ has two fields. Type denotes the data type while setting ‘required’ field to true

makes it mandatory for the user to enter his name. This is not the same for the ‘age’ field.

The data type for the ‘age’ field is a number but the absence of the ‘required’ field means

that the user can continue without entering his age in the database / prompt.

26

Fig 14 : Module import/require workflow

This project has two models : The user model and the post model.

User model : Made for letting the users Register and login. It has four fields : name,

email, password and id. Name, email and password are the required fields while title is not

mandatory.

Name is required as a user might create a post which requires his/her username to be

displayed along with the post.

Email is required as the user may signin again after registering and we need to make sure

that his id is saved in the database.

Password is required for validation.

Title is not a required field as the user may not create a post in the session in which he

logged-in.

THE USER SCHEMA :

import mongoose from "mongoose";

const userSchema = mongoose.Schema({

27

name: { type: String, required: true },

email: { type: String, required: true },

password: { type: String, required: true },

id: {

type: String

},

});

export default mongoose.model("User", userSchema);

Here we are exporting the ‘User’ model based on the ‘userSchema’. ‘User’ is

automatically converted to plural form by mongoose.

THE POST SCHEMA :

This schema is for the post a user might create. The fields present in this schema are title,

name, message, createdAt, likes, tags.

None of the fields are required but likes and createdAt are ‘default’ fields which means

they will always be present. The like field is an empty array by default while the date is set

to the current date.

const postSchema = mongoose.Schema({

posttitle: String,

msg: String,

username: String,

creator: String,

28

hash : [String],

selectedFile: String,

numberoflikes : {

type: [String],

default: [],

},

time : {

type: Date,

default: new Date()

},

});

const PostMessage = mongoose.model('PostMessage', postSchema);

export default PostMessage;

29

MIDDLEWARE FOR AUTHENTICATION :

Fig 15 : Middleware code for authentication

30

3.10 Controllers

The logic for sending data from the backend to be displayed in the frontend is handled by

the controllers. The user requests to perform certain actions through API. The API sends

the request to the backend where the controllers handle the logic to send data to the

frontend. In this website we have two controller files. One to handle the requests related to

a particular post and the other to handle the requests regarding security.

The Post Controller

It handles all the requests related to a particular post. The requests include :

Fig 16 : Controllers

1. Getting a post :

This function is called when the website is loading and all the available posts have to be

displayed at once. The ‘LIMIT’ variable is set to 8 which means on a single page only 8

posts will be displayed. The remaining posts will be displayed on the next page.

31

2. Updating a post

export const updatePost = async (req, res) => {

const {id: _id} = req.params;

const post = req.body;

if(!mongoose.Types.ObjectId.isValid(_id)) return res.status(404).send('No post found');

const updatedPost = await PostMessage.findByIdAndUpdate(_id, {...post, _id}, {new:
true});

res.json(updatedPost);

}

This is an asynchronous function which means it will take some time to execute but wont

block other functions’ execution. We are receiving ‘_id’ from the database and storing it

in the ‘id’ variable. If the status is 404, we are sending an error message otherwise we are

updating the post by finding it by it’s id inside the database.

3. Creating a post

export const createPost = async (req, res) => {

const post = req.body;

const newPostMessage = new PostMessage({ ...post, creator: req.userId, createdAt: new
Date().toISOString() })

try {

await newPostMessage.save();

res.status(201).json(newPostMessage);

} catch (error) {

res.status(409).json({ message: error.message });

}

}

32

4. Deleting a post

export const deletePost = async (req, res) => {

const { id } = req.params;

if(!mongoose.Types.ObjectId.isValid(id)) return res.status(404).send('No post found');

await PostMessage.findByIdAndRemove(id);

res.json({ message: 'Post deleted successfully'});

}

The process is the same as updating the post. We are simply extracting the id from the

request and then finding it inside the database and deleting it. The method used is

‘findbyIdAndRemove’ which is a standard function provided by mongoose.

5. Liking a post

Fig 17 : Liking a post

33

The Security Controller

1.Signin Controller

export const signin = async (req, res) => {

const { email, password } = req.body;

try {

const oldUser = await UserModal.findOne({ email });

if (!oldUser) return res.status(404).json({ message: "User doesn't exist" });

const isPasswordCorrect = await bcrypt.compare(password, oldUser.password);

if (!isPasswordCorrect) return res.status(400).json({ message: "Invalid credentials" });

const token = jwt.sign({ email: oldUser.email, id: oldUser._id }, secret, { expiresIn: "1h"
});

res.status(200).json({ result: oldUser, token });

} catch (err) {

res.status(500).json(

{ message: "Something went wrong" }

);

}

};

First we are finding a specific user by his email address. If the user doesn't exist, we send

an error message along with 404 status. Then we check if the password entered by the user

matches with the password saved in the database. If the password matches, we send a

token for the user to remain signed in for some specific amount of time. If the credentials

are wrong, we send an error message with the 400 status code.

34

3.11 Overall flow of data in the web application :

Fig 18 : data flow in a typical web application

3.12 Three-tier architecture

Fig 19 : The web dev architecture(three-tier)

35

Data tier : The application manages and stores the information it processes. This could

be a NoSQL database server like Cassandra, CouchDB, or MongoDB, or a relational

database management system like PostgreSQL, MySQL, MariaDB, Microsoft SQL

Server.

Benefits of three-tier architecture :

1. Faster development as multiple developers can work on different tiers.

2. Improved Scalability for the same reasons mentioned above.

3. Improved Reliability

4. Improved Security.

36

4. RESULT

4.1 Creating and Searching a post :

For creating a post, the user needs to enter many fields like title, tags, post message, image

in jpg format. Along with these fields, the email id of the user and time of creation of the

post is also entered in the database.

Fig 20 : Post creation column design

The submit button sends a request to the database to save the new post and the user

credentials through the API. The clear button will clear all the fields at once.

37

Fig 21 : First 8 posts appears on the first page

Above is the console view of the first eight posts which will appear on the homepage once

the website loads. We can see posts in the form of an array of objects with different fields

like ‘_id’, title, message, tags, etc.

Fig 22 : New post appears as 9th element in the array

38

Fig 23 : The Navigation menu

On clicking the website logo, the user will be redirected to the home page. Other than that,

we have a profile section and a logout button if the user is logged in otherwise a login

button will appear.

Fig 24 : Search bar

The users can search using either the title of the post or the tags of the post. Searching

using the tags will have multiple results while the title will yield a specific post as the

result.

Fig 25 : Result of a search by title

39

4.2 A SPECIFIC POST :

Fig 26 : A specific post

A particular post is a separate component called ‘Post’. Many of these components

combine to make a component for all the posts of a single page called ‘Posts’. A single

post has all the fields that the user enters manually like title, username, tags, message and

the image. Apart from the manually entered fields, it has some automatically generated

fields like the time of post creation and the email address of the user creating the post.

It also has a couple of buttons namely the like button and the delete button. The like button

is available to all the logged in users while the delete button is available only to the creator.

40

4.3 The Security form design and console view :

Fig 27 : The sign in column

Fig 28 : The posts appear after signing in

41

Fig 29 : The register column

Fig 30 : Network section before the user is logged in

42

Fig 31 : Network section after the user is logged in

After the user is logged in, we can see that a signin file of ‘xhr’ type appears in the

network tab. After that all the posts of page 1 loads. The same xhr type file appeared

before the user was signed in. This shows that when the user is logged in, the home page

reloads all its contents.

4.4 Performance analysis

Performed a linter check which makes sure that the program is properly formatted and

follows standard code guidelines. There were no linter errors found in this project.

43

4.5 Final list of dependencies

Fig 32 : The package.json file

The package.json file stores the list of all the dependencies along with their version in json

format which is a list of key-value pairs.

44

4.6 The Complete UI

Fig 33 : The complete ui

45

5. Conclusion

5.1 Conclusions

The main aim of the training was to be able to understand and implement the concepts of

Reactjs, MongoDB, expressjs and to be able to create a web application which could

perform CRUD operations and can be tested using postman using the three layered

architecture. Through this project, I was able to achieve these goals. Doing internship here

taught me that a developer should not only care about code but also keep in mind the users

can make their experience better. The interface should be constant and smooth to allow the

users to navigate through the website easier. Apart from that, writing clean and readable

code is also important so that the other developers find it easier to understand and find

bugs if there are any. We should try to write code which can be reused in future. Scope of

enhancement is always there and we should try to learn from the feedback received.

5.2 Future Work

1. The users can click on any post to open it and read the full post.

2. Adding the option of commenting on a particular post.

3. Adding ‘related posts’ section. This section will have all the posts related to

the original post by location. To identify the location we will use either the

title of the post or the tags provided by the user. Location refers to the

country / continent.

4. Providing a separate and better ‘compose’ page.

5. Providing third-party authentication.

46

References

[1] Sourabh Mahadev Malewade, Archana Ekbote (2021) “Performance Optimization

using MERN Stack on Web applications”, publisher: IJRASET, vol. 10, doi : 6.06.2021,

pp. 2278-0181.

[2] Yogesh Baiskar, Priyas Paulzagade, Krutik Koradia, Pramod Ingole, Dhiraj

Shirbhate(2022) “MERN : A Full stack development”,publisher: IJRASET, vol. 1, doi :

https://doi.org/10.22214/ijraset.2022.39982

[3] Aarti Singh, Ananya Anikesh “Web development and Computer Science and

Engineering”, publisher : IJRASET, Vol 1, doi : https://doi.org/10.53555/cse.v2i4.612

[4] Prakarsh Kaushik, Shashikant Suman, Basu Dev Shivahare, Vimal Bibhu (2021)“Web

development and performance comparison of web development technologies in Nodejs

and python”, publisher : ICTAI, doi : 10.1109/ictai53825.2021.9673464

[5] Pratiksha D Dutonde “Website development technologies : A review”(2022), publisher:

IJRASET, vol. 10(1), doi : 10.22214/ijraset.2022.39839, pp. 359-366.
Class MyClass extends React.Component {

constructor(props) {

super(props);

this.state = { attribute : "value" };

}

}

47

https://doi.org/10.22214/ijraset.2022.39982
https://doi.org/10.53555/cse.v2i4.612
https://www.sciencegate.app/app/redirect#aHR0cHM6Ly9keC5kb2kub3JnLzEwLjExMDkvaWN0YWk1MzgyNS4yMDIxLjk2NzM0NjQ=
https://www.sciencegate.app/app/redirect#aHR0cHM6Ly9keC5kb2kub3JnLzEwLjIyMjE0L2lqcmFzZXQuMjAyMi4zOTgzOQ==

14%
SIMILARITY INDEX

11%
INTERNET SOURCES

3%
PUBLICATIONS

9%
STUDENT PAPERS

1 2%

2 1%

3 1%

4 1%

5 1%

6 1%

7 1%

8 1%

9 <1%

SHUBHAM SINGH 191402
ORIGINALITY REPORT

PRIMARY SOURCES

www.freecodecamp.org
Internet Source

Submitted to Coventry University
Student Paper

stackoverflow.com
Internet Source

www.theseus.fi
Internet Source

dev.to
Internet Source

Submitted to National School of Business
Management NSBM, Sri Lanka
Student Paper

ten-tools.com
Internet Source

www.geeksforgeeks.org
Internet Source

glisc.info
Internet Source

