
Spring Boot Application Using Three Layered Architecture

in Java

Project report submitted in partial fulfilment of the requirement

for the degree of Bachelor of Technology

in

Computer Science and Engineering

By

Sparsh Aggarwal (191332)

Under the supervision of

Dr. Shweta Pandit

to

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology Waknaghat,

Solan-173234, Himachal Pradesh

i

ii

iii

ACKNOWLEDGEMENT

Firstly, I express my heartiest thanks and gratefulness to almighty God for his

divine blessing makes us possible to complete the project work successfully. I

am really grateful and wish my profound my indebtedness to Supervisor Dr.

Shewta Pandit, Assistant Professor (SG), Department of ECE Jaypee

University of Information Technology, Waknaghat. Machine Learning & keen

interest of my supervisor in the field of “Machine Learning” to carry out this

project. Her endless patience, scholarly guidance, continual encouragement,

constant and energetic supervision, constructive criticism, valuable advice,

reading many inferior drafts and correcting them at all stage have made it

possible to complete this project.

I would like to express my heartiest gratitude to Dr. Shweta Pandit, Department

of ECE and Dr. Rajni Mohana, Department of CSE for their kind help to finish

my project.

I would also generously welcome each one of those individuals who have

helped me straight forwardly or in a roundabout way in making this project a

win. In this unique situation, I might want to thank the various staff individuals,

both educating and non-instructing, which have developed their convenient help

and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and patients

of my parents.

Sparsh Aggarwal 191332.

iv

TABLE OF CONTENT

Title Page No.

Certificate i

Plagiarism Certificate ii

Acknowledgement iii

Table of Content iv

List of Abbreviations v

List of Figures vi

Abstract vii

Chapter-1 (Introduction) 1-7

Chapter-2 (Literature Survey) 8-9

Chapter-3 (System Development) 10-28

Chapter-4 (Experiments & Result Analysis) 29-47

Chapter-5 (Conclusion) 48-50

References 51-51

v

List of Abbreviations

1. DAO: Data Access object

2. DTO: Data transfer object

3. REST: Representational State Transfer

4. API: Application Program Interface

5. UI: User Interface

vi

List of Figures

1. ZopSmart logo

2. Three-layer architecture in Spring boot application.

3. Categories table schema

4. Products table schema

5. Swagger UI for spring application

6. Posting a category

7. Retrieving a category

8. Deleting a category

9. Updating a category

10. Error in retrieving a category

11. Error in posting a category

12. Error in posting a existing category

13. Error in updating category

14. Posting a product

15. Retrieving a product

16. Retrieving a product of specific category

17. Updating a product

18. Deleting a product

19. Error in retrieving a particular product

20. Error in retrieving a product

21. Error in posting a product

22. Error in posting an existing product

23. Error in posting a product with negative price values

24. Performance analysis of the application

vii

ABSTRACT

A straightforward and scalable method for managing categories and items is

offered by the Spring-Boot application. The programme offers three major

APIs: one for retrieving all categories, one for retrieving all goods, and one for

retrieving all items in a certain category. A Hello-World API is used to check

whether the application is running and accessible at the beginning of the

programme. First, stubs for the three major APIs are added before the

programme is built. The functionality of these stubs is then evaluated piecemeal

to make sure it matches expectations. After that, the application receives

services, DAOs, and a database. The application's business logic is implemented

by the services, and database communication is handled by the DAOs. For the

controllers, services, and DAOs, test cases are created to validate the

application's quality. These test cases are made to identify any potential flaws

or problems before they have a chance to slow down the application's operation.

To ensure that any problems that may arise can be quickly found and fixed,

appropriate logging is also implemented with appropriate log levels. All of the

classes and methods in the programme have the necessary documentation as

well. Other developers should find it simple to comprehend the application's

functionality and rapidly incorporate it into their own projects thanks to this

documentation. For handling categories and items, the Spring-Boot application

offers a strong and adaptable solution. It is the best option for any organisation

that wants to manage a lot of items and categories because it is simple to use,

easy to scale, and simple to maintain.

1

CHAPTER 1

INTRODUCTION

1.1 About Organization

Businesses may create an online presence using the wide range of tools provided

by ZopSmart, an innovative technology supplier for the retail sector. With the

aid of ZopSmart's tools, you can swiftly and effectively accomplish your goals,

whether you're an e-commerce company aiming to improve your online

business or a traditional brick-and-mortar store hoping to enter the digital

market.

E-commerce has been increasingly popular in recent years, and the online

market presents a wealth of business prospects. In order to build a solid basis

for growth, ZopSmart can offer you the required technologies if you're trying to

start your own internet business. With the help of ZopSmart's goods, numerous

business owners can launch their own online retail outlets and benefit from the

expansion possibilities in the online market.

Figure 1: ZopSmart logo

Whatever strategy a customer chooses to use, ZopSmart places a high priority

on increasing productivity and efficiency for them in order to increase their

online retail sales. clients can accomplish this by spreading the benefits among

numerous clients, which allows them to get the best results with the least amount

of work and expense. ZopSmart guarantees the entire satisfaction of all parties

concerned, including clients and customers, by utilising cutting-edge concepts

and technology.

2

1.2 Introduction

Developers may easily and effectively build highly stable and scalable web apps

using the renowned Java-based framework Spring Boot. Because it makes it

possible to quickly create apps with little setup, it has grown in favour among

developers. The ability of Spring Boot to aid in the creation of APIs with a clear

and user-friendly interface is one of its key features.

This project report explores the use of a three-layer design to create a Spring

Boot API. The controller layer, service layer, and dao layer are the three separate

layers that make up the three-layer architectural design pattern that divides the

logical levels. This division of duties makes it possible to design apps in a more

modular and scalable way. While ensuring the greatest levels of dependability

and maintainability, this design pattern makes it easier and more flexible to

create applications.

User input and output are managed by the controller layer. In order to manage

requests and responses for a Spring Boot API, it plays a key function. Business

logic for the application is located in the service layer, also called the business

layer. Processing data and applying business rules are the responsibilities of this

layer. In order to retrieve or save data, the dao layer—also referred to as the

persistence layer—must be in contact with the database.

In a Spring Boot API, a three-layer architecture is used to create a high level of

abstraction and modularity. By doing this, the scalability and maintainability of

the application are ensured as it develops and increases over time. Debugging

and testing are also made simpler.

The Spring Boot API will be used to develop a number of APIs for an e-

commerce application. These will have APIs for locating all subcategories, all

products, and all items within a specific category. Utilising a three-layer design,

these APIs will be implemented.

3

RESTful endpoints for each API are found in the controller layer. Incoming

requests must be processed via these endpoints, and the proper replies must be

given. Class implementations for each API's business logic will be found in the

service layer. With the help of these classes, data processing, business rules, and

data layer functions will all be handled. Classes from the repository that engage

in CRUD operations and database communication will be found in the dao layer.

The three-layer architecture is a useful design pattern for creating scalable and

maintainable Spring Boot APIs, in conclusion. It is possible to achieve a high

level of abstraction and modularity by breaking the programme up into three

logical layers. This makes testing and debugging simpler. It is simple to develop

APIs that fetch all categories, all products, and all items under a certain category

using this design. Finally, a cloud server will host the RESTful API.

1.3 Problem Statement

The API is designed to meet the need for a dependable and efficient way of

storing and retrieving data linked to categories and items. A system that can

efficiently and effectively manage product-related data, such as price, names,

and classifications, is essential for firms that handle a significant number of

products. Additionally, these companies require a quick and simple means to get

this data for a variety of tasks like inventory management, sales analysis, and

reporting.

Making an API that can successfully and effectively meet these needs is the

difficult part. The API should enable endpoints for product creation and

updating, give access to all product and category data, and filter it according to

particular standards like category. Additionally, it should be built to handle

numerous requests concurrently, guarantee data integrity, and offer great

performance and scalability.

A three-layer architecture with separate controllers, services, and dao layers will

be employed to create the API in order to address these issues. Requests and

4

replies to and from the API will be managed by the controller layer, while

business logic and communication between the presentation and data levels will

be managed by the service layer. All data-related duties, such as archiving and

accessing details about items and categories, will fall within the purview of the

data layer.

A popular Java-based web application development platform called Spring Boot

will be used to generate the API. Spring Boot provides a variety of features that

may be utilised to create a stable, scalable, and speedy API. SwaggerUI, an easy-

to-use platform for developing interactive API documentation, will also be used

in the API documentation.

The main goal is to develop an API that can satisfy the requirements of

companies that deal with a variety of products and is also reliable, efficient, and

capable of achieving those objectives. Excellent speed, data integrity,

scalability, usability, and data security are required from the API.

1.4 Objectives

By offering a concise and well-defined collection of RESTful APIs that enable

quick and easy data access and modification, the main goal of this API is to

promote user engagement with product and category data. The administration

of product and category data is improved by the API's functionality for

controlling mistakes and verifying data.

The API was created with modularity, scalability, and extensibility in mind,

making it simple to incorporate into already-existing applications and systems.

In order to guarantee that the code is tested, manageable, and reusable, it uses

modern technologies and complies with long-standing industry standards. The

API also emphasises the importance of user data security and incorporates the

necessary authentication and authorisation steps.

By offering a dependable and effective API, the duty of developers who are

designing applications that require product and category data is intended to be

5

made simpler. The API frees developers to concentrate on the core functionality

of their apps by making data administration and retrieval simple. The RESTful

design of the API makes it possible for it to be connected to other platforms and

apps, making it a flexible and adaptable option for handling product and

category data. In conclusion, the API offers a reliable and practical solution to

both users and developers.

1.5 Methodology

The Spring-Boot API was created through a methodical process that adhered to

the listed criteria. The requirements collecting, planning, implementation,

testing, and deployment stages were all parts of the development process.

Understanding the API's needs required first understanding the problem

description and the project's main goal. After the requirements were established,

a three-tier architecture for the API was created, consisting of a controller layer,

a service layer, and a dao layer.

The API's implementation using the Spring-Boot framework came after the

architecture was designed. Spring-Boot Controllers, Spring-Boot Services, and

Spring-Boot Data Access Objects were used to implement the controller layer,

service layer, and dao layer, respectively.

After the implementation was finished, the API underwent a rigorous testing

process to make sure it complied with the specifications. Unit testing utilising

frameworks like Mockito and JUnit5 was one of the testing techniques used.

The API was set up using Docker containers and then deployed to an AWS EC2

server for public use when all problems had been fixed.

A functioning and scalable Spring-Boot API that met the requirements was

successfully delivered using the method adopted. The adoption of a three-layer

design enabled the maintenance and updating of the API and allowed for the

clear separation of concerns. The usage of Docker containers and the Spring-

6

Boot framework, which allowed for quick development and simple deployment,

also made the deployment process effective and streamlined. Therefore, the

Spring-Boot API was created utilising a scientific and efficient process that

resulted in a high-quality API that satisfied the requirements.

1.6 Organization of report:

Chapter 1: The benefits of developing our Spring Boot application using a three-

layered architecture are briefly discussed in Chapter 1 along with a brief review

of our Spring Boot application. The issue statement, which forms the basis of

the goals of our project, is presented together with an outline of the system's

motivation and purpose. As part of the three-layered architecture, we also

explore the construction process for a Spring Boot RESTful API for an e-

commerce application.

Chapter 2: We undertake a literature review in Chapter 2 that compiles a number

of papers and other materials that helped us build our RESTful API using the

suggested three-layered architecture strategy. The review of the literature

explores several challenges that were resolved, to differing degrees of success,

during the project development phase utilising a variety of technologies, tools,

languages, and approaches by diverse researchers. In addition, we talk about the

strategy we used to build our application.

Chapter 3: The goal of Chapter 3 is to describe the step-by-step process we used

to create the study setup. We started by looking through different research

papers, documents, and e-commerce portals to compile a list of crucial elements

that should be present in the API backend of our project. In this chapter, the

tools and technology used in the process are the main topics.

Chapter 4: The findings and products of our RESTful API project are presented

in Chapter 4 of the report. It seeks to show how accurate and successful our

implementation is. This chapter also offers a thorough examination of several

API use cases, emphasising the applications that could be made of them.

7

Overall, this chapter serves as a crucial end to our project, highlighting our

accomplishments and our work's future directions.

Chapter 5: The report's study findings are summarised and concluded in Chapter

5, along with the project model's end product. It shows areas that can benefit

from additional study and work. This chapter also presents creative work that

was produced as a result of the analysis done, and it draws a conclusion from

the outcomes.

8

CHAPTER-2

 LITERATURE SURVEY

Two well-known frameworks for creating microservices, Spring Boot and

Vert.x, are compared and contrasted in Christian Zepeda-Nez, et al.'s [1] study.

In terms of memory utilisation, reaction time, and throughput, the authors

assessed the frameworks' performance. Vert.x fared better than Spring Boot in

all three parameters, especially memory use and reaction time, according to the

results. The writers also go over each framework's benefits and drawbacks and

offer suggestions for picking the best one based on the demands of a particular

project.

The use of Spring Boot and ASP.NET Core for developing microservices

architecture is compared in Md. Saiful Islam, et al.'s [2] study. The ease of use,

performance, scalability, and maintainability of the frameworks are all

evaluated by the writers. The findings indicate that while the performance and

scalability properties of both frameworks are comparable, Spring Boot is more

user-friendly and easier to maintain. The writers also go over each framework's

benefits and drawbacks and offer suggestions for picking the best one based on

the demands of a particular project.

In their study, Mohammed Alsharif et al. [3] analyse Spring Boot's function in

the context of cloud-native Java programming. The advantages of Spring Boot

are covered by the writers, including how simple it is to use, how modular it is,

and how it supports different cloud platforms. Additionally, they look at how

Spring Boot handles issues with distributed systems and containerization that

arise with cloud-native programming. Spring Boot is a useful tool for cloud-

native development, according to the authors, who also suggest using it to create

microservices-based systems.

In the context of creating microservices, this paper [4] compares Spring Boot

versus Node.js. By constructing a straightforward microservice using each and

9

running benchmarks, the study assesses the performance and scalability of each

framework. The authors conclude that both Spring Boot and Node.js are viable

for developing microservices, albeit each has advantages and disadvantages of

its own. Better out-of-the-box support for microservices features, like service

discovery, load balancing, and centralised configuration, is offered by Spring

Boot. Contrarily, Node.js is lighter and better capable of handling more requests

per second. The authors come to the conclusion that the selection of Spring Boot

or Node.js for microservices development depends on the particular project

requirements.

In the study paper [5], the Spring Boot framework for scalable web applications

is evaluated in terms of performance. Using a benchmark application created to

closely resemble a real-world online application, the authors assessed Spring

Boot's performance in terms of response time, throughput, and scalability. With

response times under 50 ms and throughput of more than 1000 requests per

second, the study's results showed that Spring Boot performed well in terms of

reaction time and throughput. The authors also discovered that Spring Boot was

scalable, able to accommodate growing loads by providing more resources, such

CPU and memory.

10

CHAPTER-3

 SYSTEM DEVELOPMENT

3.1 Overview

This chapter's goal is to lay the theoretical groundwork needed to comprehend

the report's content. It lists the technology and equipment used to build the

project. Its goal is to give readers a thorough understanding of the underlying

ideas behind spring boot RESTful APIs as well as the various tools and

techniques used to create accurate applications.

3.2 Overall Design

Figure 2: Three-layer architecture in Spring boot application

For creating Java-based apps, Spring Boot is a potent framework. Its primary

strength is its ability to simplify application setup and configuration, relieving

11

developers of the responsibility of worrying about infrastructure setup. The

Spring Framework, which has a variety of tools and modules for developing

enterprise-level applications, is the main component of Spring Boot. Various

dependencies and modules, such as web, data access, security, and others, are

combined by the Spring Boot programme to produce the whole application.

These modules are controlled by the configuration files for Spring Boot, which

makes it simple to alter and customise the application. Spring Boot streamlines

the development process overall by offering a streamlined and effective

foundation for creating reliable and scalable applications.

3.3 Software & Environment

The tools and technology needed to complete our project will be covered in this

chapter's section. The hardware and software requirements for this project will

also be covered.

3.3.1 Software Requirements

Java

Due to its dependability, security, and platform independence, Java is a widely

used programming language that is favoured by developers. In the middle of the

1990s, James Gosling and his coworkers at Sun Microsystems invented Java,

which has since developed into one of the most extensively used programming

languages in the world. As an object-oriented programming language, Java

relies on the idea of objects rather than just carrying out a series of instructions.

The fact that Java is platform independent is one of its main advantages. As a

result, Java software may be run on any computer that has a Java Virtual

Machine (JVM) installed, regardless of the machine's operating system.

Because of this, Java has become quite popular for creating web apps and other

types of software that must be able to function on a range of various systems.

Security is yet another crucial aspect of Java. Java has a variety of security

features to safeguard users from malicious code. When Java was created,

security was a top priority. For instance, Java's "sandbox" security policy

12

restricts untrusted applications' access to crucial system resources like files and

network connections.

Additionally well renowned for its reliability and toughness is Java.

Programmes are more dependable and less prone to mistakes and crashes

because to Java's sophisticated exception handling and type checking features.

In addition, Java's integrated memory management system aids in avoiding

memory leaks and other frequent programming problems that might lead to

unsuccessful programmes.

There are many tools and resources available to help novice Java programmers,

and Java has a huge and active development community. An environment that

is more user-friendly for developers is provided by integrated development

environments (IDEs), such as Eclipse and NetBeans. A set of tools for

developing and testing Java programmes is called the Java Development Kit

(JDK).

Java is utilised in a wide variety of applications, including games and mobile

apps as well as enterprise software. Java is used by many large firms, including

Google and Amazon, for their backend systems and other crucial infrastructure.

Java is a popular choice for game development due to its performance and cross-

platform interoperability. It is also frequently used for creating Android apps.

Although there are some significant changes, Java and C++ have a comparable

syntax. Since variables in Java must be declared with a specific data type before

they can be used, it is more highly typed than C++. Additionally, Java uses

automatic garbage collection to manage memory, thus unlike C++, developers

do not need manual memory allocation and deallocation.

Java has a large library of common classes and APIs, which is one of its most

significant features. With the help of these libraries, programmers may easily

create sophisticated apps with a wide range of features. Some of the most

popular Java libraries are the Java Standard Library, which offers classes for

13

working with data structures, networking, and input/output; the Java Collections

Framework, which offers a set of classes for working with collections of objects;

and the JavaFX library, which offers a set of classes for developing advanced

graphical user interfaces.

In summary, Java is a strong and adaptable programming language that is used

by programmers all over the world for a variety of applications. For creating

web applications and other software that must function on a range of various

platforms, it is the best option due to its platform independence, security, and

dependability. Java is likely to stay a popular programming language for many

years to come thanks to its robust developer community and large library of

standard classes and APIs.

Backend in Java

The server-side logic that drives a web application or software system is created

and maintained as part of backend development. Data storage, request

processing, security administration, and response delivery are all handled by the

backend. Because of its efficiency, scalability, and large library, Java is the

perfect language for backend development.

Java is a powerful language that can be used to develop both web-based and

non-web-based backend systems. Building effective backend systems is made

simpler by Java's extensive array of libraries, tools, and frameworks. The most

well-liked libraries and frameworks for Java backend development are listed

below.

Spring Framework

Popular Java framework for creating backend systems and online applications

is called the Spring Framework. For developing Java-based enterprise

applications, it offers a thorough programming and configuration model.

Building scalable and effective backend systems is made simpler by Spring's

14

inclusion of technologies like inversion of control, aspect-oriented

programming, and declarative transaction management.

Hibernate ORM

A Java object-relational mapping (ORM) tool is called Hibernate. It makes it

easier to convert Java objects into relational database tables. It is simpler to

interact with databases in Java thanks to Hibernates features like caching, lazy

loading, and automated key generation.

Apache Struts

Java web application developers can use Apache Struts, a well-liked open-

source framework. It offers a model-view-controller (MVC) architecture for

developing online applications. It is simpler to create reliable and scalable

online applications with Struts' features, which include input handling, form

validation, and error handling.

Apache Maven

For Java applications, Apache Maven is a well-liked build automation tool. It

offers a reliable and user-friendly build system that makes managing

dependencies, building, and packaging Java programmes simpler. Building and

managing Java projects is made simpler by Maven's features, which include

build profiles, pluggable build processes, and dependency management.

Java Server Pages (JSP)

JSP, or Java Server Pages, is a technology that allows programmers to create

dynamic web pages in Java. The characteristics of JSP, such as scripting

elements, custom tags, and expression language, make it easier to create

dynamic and interactive web pages. Creating web-based backend systems in

Java typically involves the usage of JSP.

15

Java Servlets

Java developers can create server-side web applications by using the Java

Servlet technology. It is simpler to develop scalable and effective online

applications thanks to the functionality that servlets offer, like request handling,

session management, and security management. Java backend systems with a

web component are frequently built using servlets.

For building backend systems, many programmers turn to Java because of its

strength and versatility. A variety of libraries, tools, and frameworks are

available in Java that make it simpler to create scalable and effective backend

systems. Because of its efficiency, scalability, and large library, Java is the

perfect language for backend development. Java offers the functionality and

tools necessary to develop reliable and scalable systems, whether you're

constructing a web-based or non-web-based backend system.

Git Hub

Version control and team communication are the main uses of the web-based

platform GitHub in software development projects. It is a platform that is based

on the Git distributed version control system and is well-liked for managing

code repositories. Due to its extensive feature set and array of tools that promote

collaboration and project management in the software development industry,

GitHub is a platform that is heavily utilised by developers all over the world.

The ability to trace changes to code files over time is one of the major

advantages of utilising GitHub. Developers may now quickly examine the code

modifications that have been made, along with the developers' names and dates

of implementation. When several developers are simultaneously working on the

same codebase in large teams, this capability is especially helpful.

Utilising GitHub also has the primary advantage of promoting team member

collaboration. Developers have the ability to divide the codebase into branches,

which can then be worked on independently and merged back into the main

16

codebase when finished. This makes it possible for developers to work on

various features or problem fixes concurrently without interfering with one

another's efforts.

Additionally, a number of services are available on GitHub to assist with

managing issues and bug reports. Issues can be created by users, assigned to

team members, and tracked all the way to completion. It can be challenging to

keep track of all the problems that develop in larger projects, so this is very

helpful.

The flexibility of GitHub to interface with so many different other programmes

and services is one of its most potent advantages. Along with a variety of

different third-party services for jobs like code review, testing, and monitoring,

this includes well-known technologies like Jenkins, Travis CI, and CircleCI for

continuous integration and deployment.

Additionally, GitHub has a sizable developer community that supports open-

source projects by contributing code, reporting bugs, and offering general

assistance. Developers can benefit greatly from this community's abundance of

knowledge and expertise on a variety of issues relating to software

development.

Along with its main functions, GitHub also offers a number of extra tools and

services. Project management tools, such as milestones and boards, which may

be used to measure progress and organise tasks, are among them. Wikis enable

developers to share expertise and describe their work.

GitHub is a very effective platform for organising software development

projects overall. Any modern development team must have this tool because of

its capacity to track changes, promote collaboration, and integrate with a wide

range of other tools and services. It is a useful tool for developers of all levels

17

of experience due to its popularity and vibrant community of users and

contributors.

Spring Boot

The goal of the Spring Boot framework is to streamline the creation and

deployment of web applications. It is the ideal choice for developers who want

to work with Java since it provides a number of features and tools that are

expressly made to make the process of developing, testing, and delivering

applications simpler.

One of the major advantages of Spring Boot is that it has a pre-configured

application context, saving developers time when setting up and configuring

their applications. The application's business logic can be built instead, which

is where they should concentrate.

The ability to deal with a variety of databases, including SQL, NoSQL, and even

in-memory databases, is another crucial aspect of Spring Boot. As a result, it is

an exceptionally versatile framework that can be applied to a variety of

application kinds.

Spring Boot's capacity to assist developers in creating microservices is among

its key advantages. A larger application is made up of microservices, which are

discrete, tiny services. Compared to monolithic apps, which can overgrow and

become challenging to manage over time, they are considerably easier to

maintain and update because they are autonomous and small.

The fact that Spring Boot offers a variety of testing and debugging tools is

another important advantage of the framework. As a result, bugs can be rapidly

found and fixed by developers, making it possible to increase the dependability

and performance of applications.

18

Installing the framework and configuring their development environment are

prerequisites for beginning with Spring Boot. After that, they can start a new

project and begin developing their application utilising a variety of tools and

technologies.

One of the most well-liked tools for using Spring Boot is Spring Tool Suite, a

potent IDE that offers a variety of functionality for creating and testing

applications. It comes with a variety of templates and wizards that make it

simple to start new projects.

Gradle is a build automation tool that is well-liked for use with Spring Boot and

makes managing dependencies and creating applications simpler. It offers a

variety of capabilities for testing and deploying apps, and is especially helpful

for building large, sophisticated applications.

In addition to these tools, Spring Boot is compatible with a wide variety of

libraries and frameworks. For instance, programmers can use Hibernate to

interact with databases or the Spring Framework to create web applications.

All things considered, Spring Boot is a very potent framework that offers a

variety of capabilities and tools for creating and delivering web applications. It

offers a number of tools for testing and debugging applications and is

particularly well suited for constructing microservices. Spring Boot is

undoubtedly a framework you should think about using if you want to work

with Java.

PostgreSQL

An effective relational database management system is PostgreSQL, also

referred to as Postgres. In 1996, the PostgreSQL Global Development Group

initially made it available. It has a high level of scalability, dependability, and

extensibility. Numerous businesses, from small start-ups to huge corporations,

use PostgreSQL.

19

Support for sophisticated SQL and object-relational database features is one of

PostgreSQL's distinguishing characteristics. It supports user-defined data types

in addition to a wide range of built-in data types like arrays, hstore, and JSON.

It is the best option for complex applications with various data requirements

because of this.

The comprehensive support for concurrency and transactions that PostgreSQL

offers is still another advantage. Multiple users can access the database

simultaneously without encountering conflicts thanks to the system's usage of

multi-version concurrency control (MVCC). This is accomplished by using

transaction isolation levels, which can be adjusted to regulate the level of

concurrency.

A variety of indexing and query optimisation strategies, including B-tree, hash,

and GiST (Generalised Search Tree) indexing, are also supported by

PostgreSQL. High-speed data retrieval is now possible, even for huge datasets.

Additionally, PostgreSQL has a solid track record of security. It offers

capabilities like SSL encryption, row-level security, and database roles,

enabling fine-grained control over data access. Additionally, it has a thriving

community of developers who frequently publish updates and patches to fix

security flaws.

In addition to being highly customisable, PostgreSQL has a vast array of

extensions that can enhance the database's usefulness. From full-text search to

geographic data processing, these enhancements address a wide range of use

cases.

It is simple to connect to a PostgreSQL database when utilising one of the many

well-known libraries that are available for Java backend applications that use

PostgreSQL. One of the most well-liked ones is the Java Database Connectivity

20

(JDBC) API, which offers a common interface for using Java to access relational

databases. Other object-relational mapping (ORM) frameworks, including

Hibernate and MyBatis, offer higher-level abstractions for working with

databases.

Strong PostgreSQL support is offered by Spring Boot, a well-liked Java

platform for creating online applications. The configuration of a PostgreSQL

data source is simple with Spring Boot, which also offers a variety of database-

related features like support for JPA and transaction management.

In conclusion, PostgreSQL is a robust and trustworthy relational database

management system with a variety of capabilities that make it well-suited for

sophisticated applications. Because of its support for advanced SQL and object-

relational database capabilities, transactions and concurrency, indexing and

query optimisation, and security, it is a popular option for many applications. It

is the best option for creating backend applications in the Java environment

because of its extensive support for Java and the Spring Boot framework.

IntelliJ IDEA

A well-liked integrated development environment (IDE) for Java developers is

IntelliJ IDEA. It was developed by JetBrains and was made available in 2001.

Both seasoned and inexperienced developers can benefit from IntelliJ IDEA's

strong code analysis and refactoring features, which make it an invaluable tool.

The code editor in IntelliJ IDEA is a vital component. Code completion, syntax

highlighting, and auto-formatting are just a few of the many functions that the

editor offers. It also comes with a variety of navigational tools that make it

simple to find and get around inside a codebase, like a file structure view and a

search function.

Developers can step through their code and inspect variables and data structures

at runtime using the robust debugger included in IntelliJ IDEA. The debugger

21

has features including call stack examination, expression evaluation, and

breakpoint management.

Support for build automation tools like Maven and Gradle is another advantage

of IntelliJ IDEA. Because it already has support for these tools, managing

dependencies and creating projects is a breeze.

In addition, IntelliJ IDEA has a variety of plugins that expand its functionality.

Plugins provide support for a wide range of technologies, including web

frameworks like Spring and JavaServer Faces (JSF) and languages like Scala

and Kotlin.

The integration of IntelliJ IDEA with other JetBrains tools, including ReSharper

for.NET development and PyCharm for Python development, is one of the

software's main advantages. This increases developer productivity and lowers

the learning curve for new tools by enabling them to use a consistent set of tools

across various projects and languages.

Developers may create code more quickly and with fewer errors thanks to a

number of productivity enhancements included in IntelliJ IDEA. These include

tools that assist programmers avoid common mistakes and enhance the quality

of their code, such as code templates, live templates, and code inspections.

The support for version control programmes like Git and Subversion provided

by IntelliJ IDEA is another asset. The management of code repositories and

working with other developers are made simple by the built-in support for these

systems.

IntelliJ IDEA offers robust support for frameworks like Spring Boot and

Hibernate when creating Java backend applications. For these frameworks, it

has capabilities like syntax highlighting and automatic code generation that

make it simple to create and maintain large codebases.

22

In conclusion, IntelliJ IDEA is an effective and powerful IDE for Java

developers. Because of its powerful code analysis and refactoring capabilities,

highly configurable code editor, powerful debugger, support for build

automation tools and plugins, and interaction with other JetBrains products, it

is a great tool for developers of all skill levels. Because of its strong support for

Java frameworks and version control systems, it is a fantastic choice for

developing backend applications in the Java environment.

Postman

Postman is a popular programme for administering and testing APIs

(Application Programming Interfaces). Since its initial release in 2012, it has

developed into an essential tool for the development of APIs.

Through Postman's user-friendly interface, developers can submit queries to

APIs and receive responses. The HTTP methods GET, POST, PUT, DELETE,

and PATCH are all compatible with it. Developers can quickly verify the

functioning of their APIs with Postman, fix issues, and make sure the APIs are

operating as intended.

Postman's capacity to save and group requests into collections is one of its most

valuable features. The groups of similar requests known as collections can be

shared and saved with other team members. since a result, productivity is

increased and duplication of effort is decreased since engineers can work

together on the same requests.

Additionally, Postman offers strong testing tools including automated testing,

which enables developers to test APIs in a dependable and repeatable manner.

This is accomplished by using test scripts written in JavaScript that can be

automatically executed on a set of queries. This makes sure that APIs are

dependable and consistent throughout time.

23

Postman also offers management and building of environments. Environments

are collections of variables that can be used to categorise various settings,

including development, staging, and production. Developers may now quickly

move between several environments and test APIs in various scenarios thanks

to this.

Additionally, Postman has a function called "Mock Servers" that lets

programmers imitate a real API without the requirement for a backend

implementation. This is helpful for developers who are working on an

application's front end and need to test their API requests without access to a

functional back end.

Postman's ability to integrate with other programmes and services like GitHub,

Jira, and Slack is another key feature. This enables developers to collaborate

more successfully with their team members and integrate Postman into their

existing development workflow.

Postman is a powerful and essential tool for developers that use APIs in general.

It is an essential stage in the design of APIs because of its user-friendly interface,

support for automated testing, collections, environments, and integrations.

Swagger

RESTful APIs can be created, documented, and used by developers with the

help of the Swagger open-source software platform. Following its initial

development by Tony Tam and his coworkers at Reverb Technologies, it is

presently maintained by the OpenAPI Initiative (OAI). By providing a

standardised interface for specifying API endpoints and activities, Swagger's

major goal is to accelerate the design and implementation of APIs.

There are various parts that make up the Swagger framework, including the

Swagger Editor, Swagger UI, and Swagger Codegen. Using the OpenAPI

Specification (OAS) standard, developers can define and amend API

specifications using the web-based Swagger Editor. The OAS format, which is

24

based on JSON or YAML syntax, is a standardised method of representing

RESTful APIs. The Swagger Editor offers a feature-rich user interface that aids

developers in creating and editing API specifications and offers immediate

feedback on their accuracy.

The Swagger Editor's API specification can then be used to build client code

and documentation, which can then be produced by the Swagger Codegen.

Several computer languages, including Java, Python, and Ruby, can be created

using the command-line tool known as the Swagger Codegen. The Swagger

Codegen produces client libraries, server stubs, and documentation in addition

to the code itself.

A user interface for testing and researching RESTful APIs is offered by the web-

based Swagger UI tool. A user-friendly interface for developers to interact with

the API endpoints is provided by the Swagger UI, which is automatically

produced from the API specification. Developers can study the API

documentation, test API endpoints, and observe sample requests and responses

using the Swagger UI.

The ability to standardise how APIs are described and used is one of the key

benefits of utilising Swagger. When endpoints and actions are provided using a

standard format, it is simpler for developers to comprehend and use APIs made

by other developers. As a result, developers may be able to interchange and

reuse code more readily, which can boost productivity and shorten development

timeframes.

The consistency and dependability of APIs are further enhanced by the

implementation of Swagger. Developers can find and address issues with their

APIs more easily when the definition of an API is clear. Because of this, APIs

could be more reliable and durable and less likely to malfunction or create

problems when used by other developers.

25

With its extensive selection of plugins and extensions, Swagger is also

incredibly adaptable. These add-ons and extensions can be used to increase

Swagger's functionality and integrate it with other programmes and

frameworks. For instance, there exist plugins for Swagger that may be used with

Spring Boot, Node.js, and other well-liked web development frameworks.

In conclusion, Swagger is an effective and adaptable framework for creating,

consuming, and documenting RESTful APIs. The consistency and quality of

APIs are improved by its standardised syntax for describing API endpoints and

actions, and its user-friendly tools make it simple for developers to interact with

and consume APIs. Swagger is a great option for developers wishing to create

powerful and dependable APIs thanks to its broad selection of plugins and

extensions.

3.3.2 Hardware Requirements

● Ram: 8GB or higher,

● Storage: 500GB,

● CPU: 2GHz or faster, and

● Architecture: 32Bit or 64Bit

It's critical to keep in mind that the specified hardware and system requirements

may change depending on the application's specific requirements and

anticipated usage. Continuous system performance monitoring is advised, and

any necessary hardware configuration changes should be made. The necessary

hardware may become substantially more demanding for larger applications

with heavy workloads and several concurrent users interacting with the API.

3.4 Implementation and Deployment

A Spring Boot application must be configured, the data model must be

established, and business logic must be implemented, among other processes.

The fact that Spring Boot offers a large range of capabilities and components

26

that make many of these jobs easier is one of the main advantages of utilising

it.

The programme must first be configured. In order to do this, you must define

the application's attributes, including the server port and database connection

information. It is simple to handle these properties because Spring Boot offers

a centralised configuration mechanism. Both environment variables and

properties files can be used to specify the properties.

The application's data model must then be established. In order to do this, Java

classes that represent the data entities and their connections must be created.

The Java Persistence API (JPA) and object-relational mapping (ORM)

frameworks like Hibernate are supported by Spring Boot when working with

relational databases.

Implementing the business logic is possible after defining the data model. In

order to do this, Java code must be written to carry out the necessary data

operations, such as record creation, reading, updating, and deletion. The Spring

Data JPA repository abstraction, which offers a common interface for

communicating with the database, is one of the tools offered by Spring Boot to

make this process simpler.

The programme must expose a REST API for customers to use in addition to

implementing the business logic. In addition to the Spring MVC framework and

the Spring WebFlux reactive framework, Spring Boot offers a potent set of tools

for creating RESTful APIs. Endpoint definition, request and response handling,

and exception and error handling are all made simple by these frameworks.

A Spring Boot application must be configured, its data model must be defined,

business logic must be implemented, a REST API must be exposed, and the

application must be tested and deployed. Building contemporary, scalable, and

27

dependable applications is made simple by the large variety of capabilities and

components that Spring Boot offers.

3.5 Database Schema

Two key tables—Category and Product—would make up the database design.

The category name and category ID (the primary key) would be columns in the

Category table. Columns for the product ID (primary key), product name,

product description, product price, and category ID (foreign key referencing the

Category table) would be found in the Product table.

Figure 3: Categories table schema

Figure 4: Products table schema

A popular database schema design known as a "many-to-one relationship"

illustrates a relationship between two entities in which one entity may have

several instances of the other entity, but each instance of the other entity may

only be related to one instance of the first entity. In this scenario, there are two

entities: categories and products, where each product can only belong to one

category but each category may have several products.

28

A number of restrictions have been added to the database structure in order to

maintain data integrity and consistency. The use of foreign keys to prevent

adding a product to a category that doesn't exist is one example of such a

restriction. To ensure that no two categories or items have the same name or ID,

the schema additionally incorporates distinctive restrictions.

29

CHAPTER-4

 EXPERIMENTS & RESULT ANALYSIS

4.1 Overview

The API was effective in developing a large number of endpoints for data

processing and database retrieval. To make sure the API was trustworthy and

useful, extensive testing was done at every stage of the development process.

Even when dealing with massive amounts of data, the API's rapid response time

remained maintained. Logging was added to track the behaviour of the API in

order to reduce performance overhead, and only pertinent data was captured by

specifying the logging level.

The API was constructed using RESTful design principles, which made it easy

for developers to comprehend and utilise. To give illuminating error messages

in the event of any errors or exceptions, proper error handling was put in place.

A three-layer design was employed to divide the presentation, service, and data

access layers in order to guarantee the code's scalability and flexibility.

Low hardware needs for the API made it simple to install on a number of

systems. By caching commonly used data and lowering the amount of database

queries, the API's speed was boosted.

Overall, the API met all of the project's requirements and went above and

beyond in terms of functionality and speed. It has the potential to be used in a

number of applications and may be customised to match the unique

requirements of diverse projects.

30

4.2 Experiment Results

The Spring-Boot application's API has been successfully deployed and tested.

It has APIs that enable the retrieval of all items, categories, and goods falling

under a given umbrella category. Services, DAOs, and a PostgreSQL database

were then introduced into the system once the API stubs were gradually added

and tested.

Test cases were written and ran for controllers, services, and DAOs to make that

the API operates as expected. To guarantee that any problems or faults are

quickly found and fixed, adequate logging was introduced at the necessary

levels.

The API's response content can be changed as necessary and was made to

interact with both request and response headers. For the client to receive the

right status code, a response code may also be given.

Additional APIs were added to create and update goods, and these were

thoroughly tested to verify they worked as intended. So the Spring-Boot

application's API has been successfully implemented and thoroughly tested. It

offers the essential resources for finding and changing information about

products and categories.

4.3 Outputs at Various Stages

In this section, we'll look at how the Spring Boot RESTful API responded to

various forms of user requests or data. We'll also keep track of how user requests

that receive accurate exception answers from our RESTful API turn out. Our

31

API has been carefully developed to handle all errors while taking into account

all potential user scenarios.

Figure 5: Swagger UI for spring application

Developers can interact with APIs and see their architecture using the open-

source programme SwaggerUI. This web-based graphical user interface offers

a framework for RESTful API testing and documentation. SwaggerUI makes

API development and testing simpler by providing interactive API

documentation that is simple to integrate into other applications or share with

team members.

SwaggerUI is becoming more well-liked among API developers as a result of

its simple interface and effective functionality. Because of this, programmers

can quickly prototype and test their APIs to make sure they adhere to the

necessary standards. Additionally, SwaggerUI offers a number of tools that help

developers find and fix problems, making it a vital tool for developing

dependable, high-quality APIs. SwaggerUI is more user-friendly than sending

requests through the POSTMAN app.

32

In our implementation of the API, we made use of DTOs for sending requests;

in this report, we'll talk more about how they're used. Since they enable

communication between many application layers, including the controller,

service, and data access levels, DTOs, also known as data transfer objects, are

an essential component of contemporary API architecture. By separating data

transmission from business logic with DTOs, an API can improve its

performance, scalability, and maintainability. In large-scale applications, where

changes to one component may have an impact on the entire system, this

separation is especially crucial.

To ensure that only relevant data is provided and to improve efficiency while

lowering the chance of data leakage or security flaws, we used DTOs in our API

implementation to encapsulate the data being exchanged between the various

layers of the application. DTOs also give us the ability to guarantee data

consistency and adherence to a certain agreement or standard, which is essential

when working with external systems, numerous teams, or microservices.

Conflicts can be avoided and we can guarantee that the API is still functional

and interoperable by defining a clear contract for data transport.

Figure 6: Posting a category

33

A POST request was made using our Swagger API, as we can see. POST

requests are frequently used to add or insert new data into databases. In this

instance, a new category needed to be added to our database. The newly created

data is sent to us together with a response code, 201 (signifying that the creation

was successful), after the request has been processed. We can determine from

this response that using only the SwaggerUI, we successfully created a new

category.

Figure 7: Retrieving a category

We can see from the execution of a GET request from our Swagger API that it

retrieves all the data from the database and provides it to the user as a response.

In this instance, the request was utilised to get access to every category that was

kept in our database. After the programme has run, a response body containing

the data that is available and the response code 200 (OK) are received. This

demonstrates that utilising SwaggerUI's GET request can successfully fetch

data from the database.

34

Figure 8: Deleting a category

When we look closer, we see that our swagger API sent out a DELETE request.

We all are aware that records are deleted from databases via DELETE requests.

Here, the request is particularly intended to delete a category from our database,

and the path parameter contains the category's id. Following the request's

execution, we get a response body confirming the category's successful deletion

along with a 200 success response code.

35

Figure 9: Updating a category

The Swagger API was used to carry out a PUT request in the example below,

which is commonly used to update a database record. Here, the category ID was

utilised as a route argument to update the name of a category in our database

using the request. Following execution, the response body contains the updated

data and a 200 response code, which denotes success. By using the PUT request

through the Swagger UI, we can see from this answer whether we were

successful in updating a record in the database.

It's time to assess our API's behaviour under unusual circumstances after

looking at its typical inputs and outputs. By examining how our RESTful API

manages unusual input from users, we will specifically investigate the exception

handling for categories.

36

When attempting to update or create a category with a name that is on record in

the database or when using null or empty name values, we will run tests to see

how our API responds.

Figure 10: Error in retrieving a category

In order to retrieve all of the data from the database and provide it to the user as

a response, we used a GET request from our Swagger API. We were trying to

get all of the categories from our database in this example. However, we got a

400 (Error) response code and an error message in the body of the response. The

category table in the database was empty, thus there was nothing to fetch, which

is why this happened.

37

Figure 11: Error in posting a category

With an empty category name, we sent a POST request from our Swagger API.

However, the response we got had a 400 response code, which denotes an error,

and an error message.

Figure 12: Error in posting a existing category

38

We can see from the POST call we made using our Swagger API that the

category name was already present in the database. The response code was 400,

which denotes an error, and the response body contained an error message as a

result.

Figure 13: Error in updating a category

By sending the category ID as a path parameter in a PUT request from our

Swagger API, we can see that the request is meant to update a category name in

our database. The response body, on the other hand, shows an error message

with a response code of 400 (for Error). The reason for this is that a category

with the same name already exists.

After successfully creating a number of categories in our PostgreSQL database,

we can now go on to creating products for the various categories that are

available.

39

Figure 14: Posting a product

Here, we can see that a POST request was sent from our Swagger API to the

database to add a new product. The user-provided category ID/type, price, and

product name were all included in the request body. After the request was

processed, we got the created data in the response body and the response code

201, which meant the creation was successful.

40

Figure 15: Retrieving a product

To get access to all the products kept in our database, we sent a GET request

over our Swagger API. The goal of this request was to retrieve all of the

available goods. The obtained data is contained in the response body, and the

response code is 200 (signifying success).

Figure 16: Retrieving a product of specific category

41

It is clear that we used our Swagger API to make a GET call to get all items

from a particular category from our database (the category ID was supplied as

a path argument). Following execution, we get the data that was retrieved

together with a response code of 200 (which denotes success).

Figure 17: Updating a product

In order to update a product in the database, we issued a PUT request from our

Swagger API. The product ID that needs to be updated is included in the request

as a path parameter. Following execution, we got the modified data in the

response body and the response code 200 (OK). This demonstrates that our PUT

request using the Swagger UI successfully updated a record in the database.

42

Figure 18: Deleting a product

To remove a product from our database, our swagger API sent a DELETE

request. The product's id must be eliminated as a path parameter for this request.

After the command has been carried out, a response body containing a message

verifying the deletion and a response code of 200 (OK) is received. Because of

the cascade property that has been configured, when a category is deleted from

the database, all of the goods that belong to that category are also deleted.

Figure 19: Error in retrieving a particular product

43

To obtain all goods connected to a particular category ID supplied as a path

argument, we carried out a GET call over our Swagger API. But we discovered

that the category was already gone from the database. Despite this, we got a

response with the response code 400 (for ERROR), which said there were no

goods available.

We have noted the typical product inputs and API answers in a variety of

situations. Let's look at how our API responds to abnormal situations now. This

means checking our RESTful API for erroneous user inputs and confirming the

handling of exceptions for individual goods.

Figure 20: Error in retrieving a product

For the purpose of retrieving all the items, we sent a GET request over our

Swagger API. The answer body we received, however, contained a notice

stating that no items were accessible and a response code of 400, signifying an

error because no products were present in our database.

44

Figure 21: Error in posting a product

To add a new product to our database, we issued a POST request using our

Swagger API. The user supplied the request body, which included the product

name, price, and category ID or type. Nevertheless, after submitting the request,

we got an error message with the generated data and a 400 (for error) response

code. This is due to the fact that no category matching the specified ID is present

in the database.

45

Figure 22: Error in posting an existing product

With the user-provided product name, price, and category id, we hoped to add

a new product to our database after processing a POST request from the swagger

API. However, because a product with the same name already existed in our

database, the request returned a response code of 400 (which denotes an error),

along with an error message and the produced data.

The API also deals with the exception that results from creating a product

without a name. It shows a necessary message. All of these exceptions are also

addressed in the PUT request to guarantee adequate data validation of user input

and prevent the introduction of unnecessary data into our database, which could

result in a number of errors.

46

Figure 23: Error in posting a product with negative price values

Using our Swagger API, we conducted a POST request to add a new product to

the database with the information provided in the request body, including the

product name, price, and category ID or type. Although the user attempted to

create a product with a negative pricing value, which is not permitted according

to the validation established in our API, we received an error message along

with the created data and a response code of 400 (showing an error) when we

executed the request.

47

4.4 Performance Analysis

A complete unit test coverage was performed, and it was found that all 59 tests

that were developed for a range of situations and scenarios passed and were

given the status "PASSED". Both Mockito and JUnit5 were used to develop the

tests, allowing for thorough testing of various functionality and ensuring that

the code was working as intended without any unexpected failures or defects.

Figure 24: Performance analysis of the application

48

CHAPTER-5

CONCLUSIONS

5.1 Conclusion

Using Spring Boot, we created a REST API for this project that has a large

number of endpoints for diverse uses. It enables retrieving all products,

categories, and things that fall within a specific category. Our API has three

layers that make up its architecture: a controller layer, a service layer, and a

DAO layer. Data retrieval and storage are handled by the DAO layer's

interactions with the database, while business logic is handled by the service

layer. We also developed test cases for the controller, service, and DAO levels

to make sure our API is operating correctly.

In conclusion, we have successfully created a dependable and scalable REST

API using Spring Boot. The API's three-layer design makes it simple to update

and maintain the codebase as needed. We have effectively stored and retrieved

enormous volumes of data thanks to the use of a PostgreSQL database. The

portability of the API, which enables it to be utilised in a variety of platforms

and applications, including e-commerce and inventory management systems, is

one of its key advantages.. The design of specialised interfaces for diverse

applications is made simple by the ability to easily retrieve all categories, all

commodities, and all items under a given category.

Another useful feature of the API is its logging functionality, which simplifies

the tracking and debugging of mistakes in complicated programmes. The

codebase's possible performance bottlenecks can be found by using the logging

function.

To make using the API easier, request and response headers have been

introduced. Now that developers can send sensitive information in the headers,

49

including authentication tokens, the API is more secure. Building a solid API

also requires having the ability to determine a response code. It can be used by

developers to tell the client application whether the request was successful or

not.

The development of a product creation and update API has increased the

functionality of the API. In order to save time and effort, developers can now

create and change products programmatically.

In conclusion, our Spring Boot-based REST API provides a versatile, scalable,

and trustworthy platform for developing a variety of apps. It's a great option for

developers because to its three-layer structure, PostgreSQL database usage, test

cases, logging features, Request and Response Headers, and product creation

and updating capabilities. We are sure that this API will support developers in

producing top-notch applications that cater to their clients' needs.

5.2 Future Scope

There are many possible improvements that might be made to the RESTful API

developed in this project, which could better its performance, security, and

usability for businesses and developers looking to accomplish their objectives

more effectively.

The security of the API is a crucial area for development, and it might be

reinforced by adding authentication and authorisation mechanisms. A user's

level of access to the API would be determined by permission, while

authentication would ensure that only authorised users are able to access it.

Another essential element that can increase API efficiency is caching, which

lowers the amount of database requests necessary. Response times could be sped

up and scalability increased by using a caching system.

50

Filtering and data pagination are critical for large databases. Clients could only

get the data they require thanks to filtering and pagination capabilities, which

would cut down on network traffic and improve performance overall.

For developers that want to use the API, clear and thorough documentation is

also essential. The API should have comprehensive documentation that

describes how to use it, what data is available, and its capabilities and

restrictions.

A further strategy to stop abuse, improve efficiency, and guarantee fair use by

all clients is rate restriction, which limits the volume of API traffic.

By interacting with other APIs, the API's value and potential for collaboration

may be expanded. Users would benefit from an API that is simple to use and

simple to combine with other APIs.

Last but not least, software updates might be distributed rapidly and efficiently

using the automated process known as continuous integration and deployment

(CI/CD). Without sacrificing availability, a CI/CD approach might provide

smooth API upgrades.

51

References

[1] C. Zepeda-Núñez et al., "Performance evaluation of Spring Boot and Vert.x

in microservices," 2019 IEEE/ACS 16th International Conference on

Computer Systems and Applications (AICCSA), Abu Dhabi, United Arab

Emirates, 2019, pp. 1-8, doi: 10.1109/AICCSA47632.2019.8812115.

[2] M. S. Islam et al., "A Comparative Study on Implementing Microservices

Architecture with Spring Boot and ASP.NET Core," 2020 International

Conference on Computer, Communication, Chemical, Materials and

Electronic Engineering (IC4ME2), Khulna, Bangladesh, 2020, pp. 1-6, doi:

10.1109/IC4ME248511.2020.9292276.

[3] C. Basu and K. Singh, "The Role of Spring Boot in the Era of Cloud Native

Java," 2019 IEEE International Conference on Cloud Computing

(CLOUD), Milan, Italy, 2019, pp. 400-404, doi:

10.1109/CLOUD.2019.00069.

[4] S. Singh, R. Singh and S. S. Saini, "A Comparative Study of Spring Boot

and Node.js for Developing Microservices," 2019 3rd International

Conference on Computing Methodologies and Communication (ICCMC),

Erode, India, 2019, pp. 605-610, doi: 10.1109/ICCMC.2019.8712615.

[5] S. S. M. M. Kamal, M. A. Hossain and M. A. R. Amin, "Performance

Evaluation of Spring Boot for Scalable Web Applications," 2018 4th

International Conference on Advances in Electrical Engineering (ICAEE),

Dhaka, 2018, pp. 1-6, doi: 10.1109/ICAEE.2018.8629004.

