Swiggy Genie Clone Application

Project report submitted in partial fulfilment of the requirement
for the degree of Bachelor of Technology

in
Computer Science and Engineering
By
Mangal Gupta(191291)
Under the supervision of

Dr Amit Kumar

to

Department of Computer Science & Engineering and Information
Technology
Jaypee University of Information Technology Waknaghat,
Solan-173234, Himachal Pradesh

DECLARATION

I hereby declare that the work presented in this report entitled Swiggy Genie Clone
Application in partial fulfilment of the requirements for the Award of the Degree of
Bachelor of Technology in Computer Science and Engineering submitted in the
Department of Computer Science & Engineering and Information Technology, Jaypee
University of Information Technology Waknaghat is an authentic record of my work
carried out over a period from July 2022 to May 2023 under the supervision of Dr Amit
Kumar (Assistant Professor(SG), CSE Dept.).

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

(Student Signature)
Mangal Gupta, 191291

This is to certify that the above statement made by the candidate is true to the best of

my knowledge.

(Supervisor Signature)
Dr Amit Kumar
Assistant Professor(SG)
CSE Dept.

Dated:

PLAGIARISM CERTIFICATE

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT
PLAGLARISK VERIFICATION REPORT

PR
Type of Document (Tick): [PhD Thesis| |88 Tech Dizsertstion/ Repart| [8.Tech Project Regort | Paper

Hamse: __Deparimnent: Enroiment No

Contect No.

Name of the Supsrasor:

Tithe of the Thesis/Dissertation/Froject Report/Paper (In Capital fetters):

UNDERTAKING
| uncerimke that | 2m aware of the pasiadsm reated norms reguistions, i1 found guilty of any pegisism and
copyTight violations in the soove thesds/report even efter mward of depres, the Unirersty resanves the rigits to
withcrew/revoke my desree/report. Kindly allow me o avail Flagisrnsm verificstion report for the document
mentioned shoe
Complete Thesis,/Re Pages Detail
= Totel No. of Pages =
~ Taotsl No.of Prelimirary pages =
— Total do. of pages socommodate biblioeraphy/references =
|Signature of Shadent]
FOR DEPARTMIENT USE
‘We neve checked the thess/report a5 per normis and found Similarity index st e [} TheEn=fore, we

are forsarding the compiete thesis/repart for finel plagisnsm ched:. The plasansm verfication report msy be
Randed owver {o the candidate

{signature of GuideSupersisar] Sigrature of HOD
FOR LAC USE

The soove donemert was scanned fior pismarism check The owtoome of the ssme s reported bekow:

Copy Beceived on Excluded Similarity index Generated Plagiarism Report Details
s {Title, Abstract & Chapters]

& Al Pradiminary Word Counts

Pages

» Bibography ima Charactsr Couwnts

Eepaort Gensrsted on

AT

Submission D Total Pazes Scanned
14 Wnrds Sing &=

File Size

Checked by
Kame & Signature Librariam

Ploase sohd pour late lbasii" Lim (FOF) with Tide Page, Alitwact and Chaplers in (Word Fila)
Uhrough Bhe supervises ol glegche b hoitEumail.com

11

PLAGIARISM REPORT

mangal

ORIGINALITY REPORT

2 3y 14 3

SIMILARITY INDEX INTERNET 50 URCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

mgﬂl&l reka.co <1 5%
giz)n?;ﬁred to University of Ulster <1 5%
iilgn?gitered to University of Warwick <1 ”
e R <1
iilgn?;;g;ed to Kingston University <1 &
H Ec:ile)n?;ﬁ?d to RDI Distance Learning <1 5
iinr;i;;ed to Higher Education Commission <1 %

Student Paper

Submitted to Chester College of Higher <1 W

Education

Student Paper

Submitted to Macquarie University

iii

ACKNOWLEDGEMENT

Firstly, I express my heartiest thanks and gratefulness to almighty God for his

divine blessing to make us possible to complete the project work successfully.

I am grateful and wish my profound indebtedness to Supervisor Dr Amit
Kumar (Assistant Professor (SG)), Department of CSE Jaypee University of
Information Technology, Wakhnaghat. Deep Knowledge & keen interest of my
supervisor in the field of “Cross Platform App Development” to carry out this
project. His endless patience, scholarly guidance, continual encouragement,
constant and energetic supervision, constructive criticism, valuable advice,
reading many inferior drafts and correcting them at all stages have made it

possible to complete this project.

I would like to express my heartiest gratitude to Dr Amit Kumar(Assistant

Professor (SG)), Department of CSE, for his kind help to finish my project.

I would also generously welcome each one of those individuals who have helped
me straightforwardly or in a roundabout way in making this project a win. In this
unique situation, I might want to thank the various staff individuals, both
educating and non-instructing, which have developed their convenient help and

facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and patience

of my parents.

Mangal Gupta (191291)

v

TABLE OF CONTENT

Chapter Title Page No.
List of abbreviations \%
List of Figures vi
Abstract vii
1. Introduction 1-8
2. Literature Survey 9-10
3. System Development 11-30
4. Performance Analysis 31-42
5. Conclusion 43-46
References 47-48
Appendices

LIST OF ABBREVIATIONS

Abbreviations Meaning
RN React Native
API Application Programming Interface
Ul User Interface
UX User Experience
SDK Software Development Kit
CRUD Create, Read, Update, Delete
IS JavaScript
HTML Hypertext Markup Language
CSS Cascading Style Sheets
IDE Integrated Development Environment
(0N} Operating System
VCS Version Control System
NPM Node Package Manager
RTDB Firebase Realtime Database
HTTPS Hypertext Transfer Protocol Secure
DNS Domain Name System
HTTP Hypertext Transfer Protocol
SSL Secure Sockets Layer
JSON JavaScript Object Notation,
TLS Transport Layer Security

vi

LIST OF FIGURES

Figure No. Title Page No.
Figure 1.1 The React-Native Architecture. 8
Figure 3.1 Inline styling 12
Figure 3.2 styling using create function 13
Figure 3.3 Styling using style components. 13
Figure 3.4 ER diagram of user authentication 14
Figure 3.5 ER diagram of product and location 16
selection feature.
Figure 3.6 Showing the flow of payment methods 17
Figure 3.7 Function component of Reactjs 17
Figure 3.7 Complete Lifecycle of Component 22
Figure 3.8 Flow of requests and response from client 25
to server

Figure 3.9 List of Firebase features 27
Figure 4.1 Commands for installing cli and initialising 31
Figure 4.2 Syntax of fetch function to GET from API 36
Figure 5.1 Reads per day underdeveloped. 44
Figure 5.2 Writes per day underdeveloped 44

Vil

ABSTRACT

Customers are seeking easy and fast ways to get food and other necessities, which has
resulted in a significant increase in the meal delivery sector in recent years. A popular
food delivery app in India called Swiggy has a special function called Genie that lets
users purchase groceries and other necessities from nearby retailers and have them
delivered right to their home.In this project, we used React Native, a well-liked
framework for creating cross-platform mobile apps, to create a copy of Swiggy's Genie
feature. Customers may order groceries and other necessities from neighbouring

retailers using our Genie clone's user-friendly interface.

We have used a combination of React Native components, including the core
components, navigation, and gesture handlers, to create a smooth and intuitive user
interface for our Genie clone. Customers can easily browse through a list of available
stores in their area, view product catalogs, and add items to their cart. Once the order is
placed, customers can track their delivery in real-time, with notifications and updates
provided at every step of the way.To manage orders, deliveries, and payments, we have
also developed a backend system using Node.js and MongoDB. This backend system
provides a scalable and robust solution for managing orders and deliveries, ensuring that
our Genie clone is reliable and efficient.Overall, our Swiggy Genie clone developed
using React Native offers customers a simple and convenient way to order groceries and

other essentials from nearby stores, providing a seamless and hassle-free experience.

viii

Chapter - 1

Introduction

1.1 Introduction

People are constantly on the go in today's fast-paced world, and the demand
for delivery services has been rising quickly. The majority of delivery
services, however, only accept certain goods, like food or parcels. In this
project, we created a delivery service that can send anything according to the
user's requirements.Our delivery service is adaptive and flexible, enabling
consumers to order delivery of any product they require, including electronics,
furniture, groceries, and prescription medications. With only a few taps on
their phone, consumers can quickly and conveniently place delivery orders
thanks to a mobile app we've created.Our delivery service is based on a strong
backend platform that can manage several requests concurrently, guaranteeing
that deliveries are done quickly and effectively. In order to give customers
real-time tracking of their deliveries, along with updates on the delivery's
progress and the anticipated time of arrival, we have also connected our
delivery service with third-party APIs.

We have created a user-friendly website that enables consumers to monitor
and control their delivery requests in addition to the delivery service. Users
may conveniently update their account settings, examine delivery history, and
keep track of the progress of their deliveries from one central spot.We have
put in place a strict verification procedure for our delivery partners in order to
guarantee the security and safety of the deliveries made to our users.
Background checks are a requirement for our delivery partners, and they are
taught to handle packages and other things with care.There are no geographic
or geographic-based restrictions on our delivery service. To guarantee that we
can offer our services to users from any place, we have formed relationships
with delivery firms and couriers all throughout the nation. Our cloud-based
technology, which enables seamless collaboration with our partners, has made
this feasible.Our delivery service includes a feedback component that enables
customers to score and comment on their delivery-related experiences. We
utilise this input to tweak our offerings and make sure we're still providing
what our customers want.With a user-friendly app and website, real-time
tracking, and strict safety and security precautions, our delivery service offers
consumers a versatile and adaptable solution for all of their delivery needs.

By offering a one-stop shop for all delivery requirements, our delivery service
has the potential to completely transform the delivery sector.React Native is
the technology we're utilising to build this application. React Native, a popular
open-source framework for creating mobile applications, was created by
Facebook [6]. It is based on React, a well-known JavaScript framework for
generating user interfaces, and enables developers to construct native mobile
applications for both the iOS and Android platforms using a single codebase.
One of the main advantages of React Native is that it enables developers to use
well-known web development languages like JavaScript, CSS, and HTML to
produce high-quality, efficient mobile applications. It is therefore the ideal
choice for web professionals who want to transition to developing mobile apps
without having to learn another programming language or framework. It has
been employed by companies like Facebook, Instagram, Airbnb, and Tesla to
produce top-notch mobile applications. Cross-platform software production is
the process of creating software that can be adapted to several types of
hardware.

A cross-platform programme may run on Microsoft Windows, Linux, macOS,
or any combination of these operating systems.A cross-platform application is
one that works exactly the same on any type of device, such as an internet
browser or Adobe Flash. React Native is also quite configurable, giving
programmers the freedom to design distinctive user experiences that meet the
needs of an organisation or project. This is made feasible by the adaptability of
React Native's architecture and the simplicity of incorporating unique
animations and effects.

1.2 Problem Statement

The necessity for a more flexible and adaptable delivery solution that can
satisfy a variety of delivery requirements has been underlined by the rising
demand for delivery services. Traditional delivery services have a defined
distribution network and are only able to transport specific things and
particular sorts of items, which limits their capacity to serve people in remote
places.Additionally, the absence of real-time tracking systems and
transparency frequently causes delays, missing or damaged products, and a
generally bad delivery experience for customers. Additionally, customers now
have serious concerns about the safety and security of products while they are
in transit, especially given the growing number of delivery service providers.

The goal of this project is to provide a delivery service that can meet all of
these requirements while offering users a flexible and adaptable solution for
all of their delivery requirements. This involves having the capacity to supply
anything according on the user's needs, from gadgets and furnishings to
groceries and prescription medications. In order to guarantee prompt and
effective delivery, the solution should also be based on a strong backend
system that can manage several requests concurrently.

The ability to track deliveries in real-time and receive information on their
progress and expected arrival time is another crucial component of the system.
This will enable users to make the necessary scheduling adjustments and to
rest easy knowing that their items are being delivered.Users also have serious
worries about safety and security, thus the solution must have strict
verification procedures for delivery partners to guarantee the protection of
products while in transit. In order to enable consumers to offer feedback and
assess their delivery experience and enable ongoing service quality
improvements, the delivery service should also have a feedback tool.

Additionally, the solution must be flexible and adaptive in order to meet the
demands of consumers in remote areas and offer delivery services for
specialised goods. The suggested delivery service has the ability to
revolutionise the delivery sector and offer a one-stop shop for all delivery
requirements by solving these issues.React Native offers greater effectiveness
and speed since it uses native components rather than web-based ones. As a
result, React Native apps are quicker and more responsive, giving consumers a
seamless experience. React Native is also very customizable, allowing
developers to create unique user experiences that suit the requirements of their
business or project. This is made possible by React Native's architecture's
versatility and the ease with which custom transitions and effects may be
added.

1.3 Objectives

Our application's goal is to offer a user-friendly interface. The programme
should be easy to use, with straightforward directions and an intuitive user
interface that guides users through the full delivery process. We set out to
create an app that would provide a seamless hyperlocal delivery experience so
that customers could send and receive goods quickly and simply. The
following are the application's goals:

1. To provide a delivery service that can deliver anything as per the
needs of the user, from groceries and medicines to electronics and

furniture.

2. To develop a mobile app that enables users to place delivery

requests quickly and easily, with just a few taps on their phone.

3. To build a robust backend system that can handle multiple

requests simultaneously, ensuring timely and efficient deliveries.

4. To integrate third-party APIs to provide users with real-time
tracking of their delivery, including updates on the status of the

delivery and the estimated time of arrival.

5. To develop a user-friendly website that allows users to view and
manage their delivery requests, track the status of their deliveries,
view delivery history, and manage their account settings, all from

one convenient location.

6. To provide a feedback mechanism that allows users to rate and
provide feedback on their delivery experience, enabling continuous

improvements in service quality.

7. To ensure that the delivery service is flexible and adaptable,
catering to the needs of users in remote locations and providing

delivery services for specialized items.

8. To provide an affordable and cost-effective delivery service that is
accessible to all users, regardless of their location or delivery

requirements.

By accomplishing these goals, the suggested delivery service will offer a

versatile and adaptable solution for all delivery requirements, with a

user-friendly app and website, real-time tracking, and strict safety and security
precautions. The delivery service might revolutionise the delivery sector and

establish itself as a one-stop shop for all delivery requirements.

1.4 Methodology

We will go over the project's process step by step in this part. React Native
was utilised as the framework for the front-end mobile application in this
application. Expo Go and React Native CLI are two separate methods for
creating and deploying React Native apps. Expo Go and React Native CLI are

two separate methods for creating and deploying React Native apps.

e Research : Do a thorough analysis of the delivery industry's newest
developments and technology, as well as the limits of current services.
Consider consumer preferences and demands, such as delivery
location, product size, speed, and cost.

e Conceptualization : Create a delivery service idea based on research
findings that may overcome the shortcomings of current services and
accommodate client wants and preferences.

e Development : Create a mobile app and website for the delivery
business that includes tools for managing delivery requests, monitoring
packages in real time, and providing feedback.Create a strong backend
system that can manage several requests concurrently and guarantee
prompt and effective delivery.

e Integration : Integrate third-party APIs to offer delivery monitoring in
real-time, along with updates on the delivery's progress and an
expected arrival time. Form alliances with nationwide courier and
delivery businesses to guarantee that consumers may access the

delivery service from any place.

e Verification : To protect the security and safety of users' packages
while they are in transit, implement a strict verification procedure for
delivery partners. This entails confirming the legitimacy of delivery
partners' backgrounds and identities as well as keeping an eye on their
output.

e Launch : Launch the delivery business and engage in a focused
advertising effort to draw customers. Keep an eye on how the service
is doing and make the required adjustments in response to customer
input.

e Continuous Improvement : Continually enhance the service in light
of customer feedback, technological developments, and new delivery
industry trends. This entails enhancing the functionality of the website
and app, growing the distribution system, and putting additional safety

and security measures in place.

By following this methodology, the proposed delivery service will be
developed and launched successfully, with a focus on meeting the needs and
preferences of users, ensuring timely and efficient deliveries, and providing a
safe and secure delivery experience. Continuous improvement will enable the
delivery service to stay ahead of the competition and become a preferred

choice for users.

Table 1.1 shows the technologies stacked for implementation of the

application.
React Native Front-end framework
Node.js Back-end
Express.js API
Stripe Payment gateway
Firebase Back-end authentication

Table 1.1 List of technologies stacked for application

The following stage is to stack all the technological requirements after
designing the user interface of our programme and determining the demands
of the users. Next is the decision on the technical stacking. React Native is the
primary development tool used to build the mobile application for users of
Android and iOS. Others that might be used include Node.js for API access
and Firebase for backend services. A variety of tools and applications are
available for developing and delivering apps for the web and mobile devices

using Google's cloud-based Firebase platform.

Firebase offers a wide range of backend features that help programmers build
apps more quickly and effectively. Google's Firebase offers a wide range of
services, including authentication,Cloud messaging Programmers may deliver
alerts to users over many platforms, such as iOS and Android, and the web,
using real-time cloud communication. After choosing the technologies the user
is then moved to the most important step of developing the code. The
application's code is written during the development stage. Fig 1.1 shows. This
involves building the application's front- end and back-end, integrating APIs,
and testing it for faults and other problems. The application is tested
throughout the testing and quality management stage to ensure it satisfies its
functionality and operational criteria. Testing for units, validation of
integration, and user acceptability testing are all included in this. Following
recommendations, documenting all of the efforts made, and making sure the
source code is adaptable and manageable to accommodate subsequent

upgrades and improvements are crucial through the whole process.

JavaScript thread

React Native React
: JS library Component | !

Shadow Node
Yoga Engine

Native (Main) thread

.| Native Modules Ul Manager |
: Implementation Module 1

5 [Native (i0S Android platforms)]:

Fig 1.1 The React-Native Architecture.

Over the years the React Native is continuously trending in comparison with
other technologies as shown in Fig 1.2. The most popular technology giving
tough competition to React native is Flutter but due to some disadvantages of
flutter and some extra features of React Native makes it more reliable,
adaptive and flexible to use. Components, hooks, component’s life cycle are
some of the key features of React native which makes our development

faster.Apps created for both the Operating System

Chapter-2

Literature Survey

This portion of the study will detail the literature review we conducted to
examine the body of knowledge already available on React native
applications. Mobile apps are developed for both iOS and Android-based
devices using the well-liked cross-platform programming framework React
Native. It is well known for its ease of use, effectiveness, and versatility.
Product delivery is one of the most frequent use cases for mobile applications,
and it is growing in popularity quickly. The React Native application for
product delivery is the main topic of this assessment of the status of the
literature. The aforementioned review was carried out by searching many
academic databases, including Google Scholar, IEEE Xplore, and the ACM
Digital Library.In one study, Atul et al. (2021) looked at the development of a
React Native application for product distribution. The paper claims that using
React Native can reduce development time by up to 30% when compared to
developing separate iOS and Android applications. The programme could
handle several requests at once and provided real-time tracking of the status of
the package. Another research by Singh et al. (2020) focused on the user
experience of a products distribution application built with React Native. The
application's user-friendly design, which the research found to be clear and

easy to use, allowed users to execute delivery orders swiftly and efficiently.

P. Singh and colleagues' "Building Mobile Applications using React Native: A
Study of Performance and User Experience" (2020). In this study, the
effectiveness and user satisfaction of a React Native-built mobile application
are examined.React Native is a powerful framework for creating mobile
applications since it offers outstanding performance and user experience,
claims the paper. S. Arndt et al.'s "Cross-Platform Mobile Development with
React Native: A Case Study" (2020). This article examines a React
Native-built, cross-platform smartphone application as a case study. The study

highlights React Native's advantages for building cross-platform applications

and provides insight into the design process.S. Lee et al.'s "Development of a
React Native-based Mobile Application for Online Grocery Shopping" was
published in 2020. This article discusses the development of a React
Native-based smartphone application for online grocery shopping. The study
focuses on the design process and highlights the benefits of using React Native
while developing e-commerce applications. S. Hasan et al.'s 2019 study "A
Comparative Study of React Native and Native Mobile Application
Development" The performance, user experience, and design of React Native
are compared to those of developing native mobile applications. The paper
claims that React Native offers several advantages, including quicker
development and better user interfaces. These academic publications provide
relevant information on the development of React Native apps as well as
advantages of using React Native for building cross-platform mobile
applications."Development of a React Native-based Mobile Application for
Online Grocery Shopping" by S. Lee et al. (2020). This piece examines the
creation of a smartphone application for purchasing groceries online that is
built on React Native. The research focuses insight into the design process and
emphasises the advantages of utilising React Native while creating
applications for e-commerce. "A Comparative Study of React Native and
Native Mobile Application Development" by S. Hasan et al. (2019). The paper
contrasts the creation of native mobile applications to React Native in terms of
performance, user experience, and design. According to the report, React
Native has a number of benefits, such as more rapid development and

improved user interfaces.

10

Chapter - 3

System Development

3.1 Analysis

In this stage we gather and analyse, recognise, collect and evaluate the
specifications and functionality for the application. Finding the application's
key components, such as registration of new users in our application,
signing-in the registered user, locating the current users pick-up point and
delivery point, calculating the cost associated with the delivery, payment

processing, and delivery tracking, is necessary for this.

Based on these requirements we made a system design that covers the
structure, interface for users, and database structure based on the
specifications. Make a design paper that specifies the system's technical
specifications. We need to create the system with the aid of essential platforms
and technologies, including React Native and Firebase (for backend services).
Design the user interfaces, combine the back-end services, and put the system
logic into practice. After implementation we have to run tests on our
application. The platform's construction utilising React Native, Firebase, and
other pertinent resources and structures is the main emphasis of the
implementation phase. React Native components are used in the creation of
the user interface, while CSS is used for styling. Firebase is used to create the
backend services and offers features like cloud computing, database storage,
and authentication. Programming languages like JavaScript or TypeScript are
used to carry out the system logic. React Native apps may simply be
connected with Firebase, a user-friendly platform. It provides pre-built
frameworks and extensions that make using its services straightforward, along
with thorough instructions and support to help developers get going right
away. Due to Firebase's tremendous adaptability and scalability, it can
efficiently manage enormous volumes of data and traffic. It also offers

real-time updates, which makes it perfect for applications that call for

11

multiuser collaboration or real-time synchronisation. Developers can track and
enhance the performance of their React Native applications with the help of
Firebase Analytics and Test Lab, which provide them strong analytics and
testing capabilities. For storing and retrieving enormous volumes of data,
including music, video, and image files, Firebase also provides cloud storage

services.

3.2 Design

This phase involves designing a technological strategy for the item's delivery
application as part of the design process. This comprises the database schema,
user interface, and architecture. The system's backend services, APIs
(Application Programming Interface), and user interface components are all
described in the structure of the system plan along with how they interact. To
assure accessibility and ease of use, the user interface layout should adhere to
best practices and guidelines for design. The data model, relationships
between entities, and data storage techniques should all be specified in the
database architecture.

A style tool called "StyleSheet" that mixes JavaScript and CSS-like syntax is
utilised in React Native. Using a StyleSheet is a simple and efficient way to

define style for React Native parts.

Inline styling: React Native components can have inline styling added to them
in a manner similar to how styles are applied to specific HTML elements. For
example, you may specify the component's colour, text size, and other details

precisely. As seen in Fig. 3.1

Text
style={{ fontSize: 17, fontWeight: "50@", marginRight: 10

{item.card.brand}
|/ Textp

Fig 3.1 Inline styling

12

e StyleSheet.create() : You may use the StyleSheet.create() to generate
more intricate styles and reuse them across many components. The
above function accepts an object as an input, where the style objects

are represented by the values and the style names are the keys.

const styles Stylesheet.create({
bottomsSheet:
borderTopLeftRadius:
borderTopRightRadius:
padding: 5,

I »

driverInfoContainer:
fFlexDirection: "row”,
JjustifyContent: "space-between”,
alignIitems: "center’,
marginBottom: 25,

Fig. 3.2 styling using create function

e Using styles in components : After defining the aesthetics using
StyleSheet.create, one can use the style prop to add them on to React

Native components. The code for this is shown in Fig. 3.3

(TouchableOpacity
onPress={() =» handleAddIten()}
style={CustonStyles. addNewCardBut tonContainer}

(Text style={CustonStyles.,addNewCardButtonText}>Add Card</Text>
[Touchabledpacity

Fig. 3.3 Styling using style components.
Designing of the project is distributed into certain levels. These levels are :

e Authentication

e Product and location selection

13

e Payment

Fig 3.4 represents the ER model of user authentication. If the user is new to
this application he needs to sign up and if an individual is already registered
then he has to simply sign in. In both the cases the user can only validate

himself with the mobile number [3]. The user gets an OTP on their registered

Users j

Authenticates

mobile number.

ﬁ Auth —_— Login

Register

Dashboard

> 4)

Fig. 3.4 ER diagram of user authentication

Product and Location Selection
After logging in, the user will be able to choose the pickup and drop-off
locations for the product delivery as they progress through the programme.
The following information must be filled out by the user in this module of our
application:

e Pick-up location

e Destination

e Details of the items which is to be delivered

e Some instructions for the delivery partner to deliver the product.

14

Fig 3.5 shows the flow of this process, first the user will select the pick-up
point, as he clicks on this option a map will be displayed to select a location.
For this map, I have used MapBox and MapView which are components of
react native. This same step is followed in selecting a destination location.
Then the user has to add the items he wants to be delivered. Users can also add
some instructions for the delivery partner to deliver the items. It is a guideline

for the delivery boy on how he should be reaching his destination.

List

Food Items
Medicine
Electronics

Clothes

PickUporSend ——> Presses ———» Customer

Products
Items Repair

Buissness

others

Fig. 3.5 ER diagram of product and location selection feature.

The MapBox tool will discover the best and quickest path to the destination
when we enter the source and destination locations, and it will also provide us
with the distance between the two spots. The cost of delivery is solely
dependent on this distance. The user will receive a complete delivery invoice
as soon as the source and destination locations are verified, along with a
payment page. The payment ER diagram is displayed in Fig. 3.6. The

capability to add a new card for payment is available to the user.

The user will select the card from which he wants to make a payment each

time. If the user wishes to add a new card, a dialogue box will open in the

15

centre of the screen, requiring him to enter the card's information. The
front-end properly verifies if the card information is accurate or not. On the
backend, Stripe is used to check if the card details match those of an existent
card or not. We'll talk more about this technology in the next section of this

chapter.

T
lJ

Fig 3.6 Showing the flow of payment methods

The user of this application will also get a number of features like, to see and
edit profile, give rating and reviews to the delivery partner, order history and
notification. As soon as the item reaches its destination, the user will get a
notification about the delivery. The user is then able to rate the driver based on
its behaviour and delivery timing and the user can also be able to write some
reviews about the delivery partner. The user can also be able to see all the

reviews and rating he has ever given to the delivery partner.

16

The user will always be logged in as the prior user or the last user when he
launches the programme. The application's logout option will return users to
the application's home page, where they may sign in again using a different
mobile number or register a new user. In order to get an OTP on the specified

mobile number, the user's entered mobile number must be operational.

Pressed

T Login/Register Order History
Order History —> Pressed —> Activity
Home <'] J

Notification —> Pressed —» Notification

/— Host Activity Activity
Profile Activity <—— * Pressed <—— Profile <
Raﬁr_lgs & > &) — Rating & R_oviows
Reviews Activity
Logout ¢ Pick up or
send

Pressed —> Auth

Fig 3.7 ER diagram of application

3.3 Development

This part focuses on a full overview of how our application was built. The
construction phase of a report on a React Native application also includes the
technologies and tools I utilised, as well as the difficulties I ran across. This

ofters comprehensive details on the technology employed in this project.
e Expo

e Android Studio

e React Native

17

e Node.js
e Express.js
e Firebase

e Stripe

Android Studio

Android apps are developed using Android Studio, an Integrated Development
Environment (IDE). A popular framework for creating cross-platform mobile
apps, React Native, is also compatible with Android Studio. The IDE has a
number of functions and tools that improve the effectiveness of the design and
development process. The React Native framework enables developers to
build native mobile apps for both iOS and Android platforms from a single
source code base [1, 2].A powerful development environment is offered by
Android Studio for creating React Native apps. For testing and evaluating
campaigns on multiple hardware and operating systems, it has an integrated
Android emulator. Additionally, it provides assistance with React Native
programming via an extension dubbed "React Native Tools." Support for
features like code highlighting and autocompletion, creating and running
React Native projects, and creating, testing, and debugging React Native apps
are all provided by this plugin.

A built-in Android emulator, dynamic refreshing to view code changes
without recompiling, code autocompletion and syntax highlighting for React

Native elements and APIs, tools for analysing app performance, and tools to

optimise native Android components for use in React Native apps are just a
few of the features of Android Studio for React Native.Additionally, Android
Studio offers a comfortable development environment for Android developers
with a broad range of capabilities and resources for building apps, integration
with Git and other version management systems for efficient native Android
module integration, and debugging resources for finding and fixing bugs in

React Native programmes.In conclusion, Android Studio is a well-liked option

18

for developing React Native apps because of its strong features and simplicity
of use. It offers developers a reliable and effective IDE for building

high-quality mobile applications that function across platforms.

ExpoGo

Expo is a robust tool set that has grown in popularity among developers for
creating and distributing React Native apps. By reducing a lot of the
complexity and framework-specific constraints related to developing and
delivering apps for mobile devices, it streamlines the development process.
Expo frees developers from worrying about infrastructure support so they can
concentrate on developing intriguing and great apps. Expo's capacity to allow
software development across platforms is one of its main features. Expo
removes the differences between the Android and iOS operating systems,
enabling programmers to create applications that function well on both
platforms. This is done by utilising a standardised API to access device
functions like the camera, push notifications, and connections.

A popular tool for creating and delivering React Native applications is called
Expo. Its main benefit is that it makes the development process simpler,
enabling designers to produce outstanding apps without worrying about

infrastructure support.

Expo's capability to facilitate cross-platform development is one of its
outstanding characteristics. Programmers may design apps that function well
on both Android and iOS by utilising a consistent API to access device
capabilities. With pre-built Ul components and APIs to access device
functions like the camera and push notifications, Expo also provides a
user-friendly setup procedure.To use Expo, we first need to comprehend React
Native, a technology made available by Facebook in 2015. The backbone of
React Native is Reactjs, which is renowned for its declarative programming
approach. React manages the how by letting developers specify what they
want to happen, which makes building and maintaining algorithms easier. The

capacity of React to manage enormous volumes of data and instantly refresh

19

the user interface without reloading the page is another feature that has earned
it recognition. React is quick because it renders components quickly using
virtual DOM, and developers may design reusable parts using either
class-based or function-based components. Developers may utilise Hooks to
enhance their single-page application methods by using function-based

components.

Function based components

An ordinary JavaScript function that returns the React components that make
up the component's user interface is known as a function component in React.
Any data supplied from the component's parent is contained in a "props"
object, which is accepted as an argument. Function components don't come
with state by default, but you may add it using the "useState()" hook. Using
function components is the most typical method of defining components in
React. Class-based components, however, are still supported and have their
uses, such as when interacting with old code or external libraries. Additional
hooks in function components, such "useEffect()", can be used to carry out
side effects like getting information from a server or changing the page title.
Functional components support the following hooks:

- useState Hook

- useEffect Hook

- useRef Hook

- useCallback Hook

- useMemo Hook

- useContext Hook

- useReducer Hook

Class-Based Components

A class-based component is defined using a JavaScript class that inherits from
the "React.Component" class and is declared using the "class" keyword. It
includes a "render()" function that returns the React elements that make up the

component's user interface. Class-based components can also have state,which

20

is managed using the "setState()" function. Similar to function components,
any changes to state trigger a re-rendering of the component. Syntax
differences between function and class components are shown in Figure 3.8
and Figure 3.9. JSX in React Native allows for decoration, organization, and
event interaction, as well as the ability to style components using inline styling
or external stylesheets and to use layout features like

"FlexBox" to manage the Ul layout. Event handlers can also be included in
components to respond to user interactions, such as "onPress" for button

clicks.

{ Text, view } 'react-native’
React, { Component } 1 "react’

class UserDefinedComponent ds Component {
render() {

@wem:'

<Text>UserDefinedComponent</Text>
<fView>

UserDefinedComponent

Fig 3.8 Function component of Reactjs
{ Text, View }
React, { Component }
class UserDefinedComponent : Component {

<View>
<Text>UserDefinedComponent</Text>
</View>

Fig 3.9 Function component of Reactjs

21

Lifespan methods, or methods that are invoked at particular times during the
component's lifespan, are likewise included in class-based components.
ComponentWillUnmount(), which is called right before the widget is removed
from the DOM, and componentDidMount(), which is called after a component

has been displayed for the first time, are examples of these operations.

React)S Component’s
Lifecycle

Imtlahzatlon

Updatlon

Fig. 3.8 Complete Lifecycle of Component

Fig 3.8 shows the Expo's real-time reloading function which is a significant
additional advantage of using Expo. This eliminates the requirement to
compile over again or rebuild the programme and enables developers to
observe changes to their code in real-time. This may help your development
process move along much more quickly and make it simpler to continue
working on the application itself. Additionally, Expo has a function called
over-the-air updates that enables programmers to push improvements to their
applications without having to wait for users to install the latest version via the
app store[5]. This makes it simple to update the application with fresh

capabilities and address issues without affecting the user experience.

22

e Cross-platform development: By separating away platform-specific
aspects and offering a standard API for gaining utilisation of device
functionalities, Expo allows it to be simpler to design programmes that
work on both the iOS and Android platforms.

e Simplified setup : Expo makes it unnecessary to do difficult setup and
configuration procedures, making it simple for developers to begin
working with React Native.

e Expo's hot reloading: Expo’s hot-reloading feature enables
developers to view updates made to the code in real-time without
requiring them to recompile or recreate the entire application.

e Pre-built components: Expo comes with a number of pre-built user
interface (UI) elements that may be readily modified to meet the
requirements of your application. Examples of these include <Button>

,<Text>, <Image>, <Textlnput>, e.t.c..

Node.js

For creating server-side applications, such as online and mobile applications,
Node.js is a well-liked technology. It looks like Node.js is being utilised in
your situation to create a delivery app. Node.js is a wonderful option since it
excels at handling several connections at once and processing data rapidly for
real-time applications. It is also simple to add new features and functions to
your application thanks to the big and active community that supports Node.js
and offers a variety of modules and packages. Node.js is an excellent option
for your delivery app project since it is a strong tool for creating reliable and
scalable server-side apps.

In this project Node.js is used for building the complete back-end of this
project. The features of Node.js for choosing it over other technologies are as

follows:

23

JavaScript Runtime: Using the framework of Node programmers are
able to execute the code that uses JavaScript independently of a web
browser. As a result, programmers can apply JavaScript to create the
server-side portion apps, command-line tools, and other kinds of
software.

Event-Driven Architecture: Programmers may run JavaScript code
without the need for a web browser by using the Node framework.
JavaScript may therefore be used by programmers to build server-side

apps, command-line tools, and other types of software.

Support for Multiple Databases: Node.js supports both relational and
non-relational databases. This makes it straightforward to choose the
best database for your application based on your particular needs and

requirements.

Simple to Learn: Node.js is relatively easy to understand and
implement for programmers who are already familiar with JavaScript.
This suggests that programmers won't need to learn a completely new
programming language or environment in order to start creating

server-side apps utilising Node.js right away.

Wide-ranging Modules: Wide range of modules and packages are
created and maintained by a huge and active community: Node.js has a
tremendous and engaged community of contributors. To offer
additional capabilities and features, these extensions may be readily

incorporated into applications written in Node.js.

Node.js was developed on top of the V8 JavaScript engine, that has been

substantially optimised for speed and is compact. Node.js is hence able to

operate quickly and consume less of the system's resources compared to other

server-side platforms. Asynchronous programming, or asynchronous

24

programming, is another feature of Node.js that enables programmers to create

quick-running code.

Express.js

Express.js is a rapid, lightweight web framework built on Node.js that comes
with a variety of helpful features for building APIs and online applications. It
is built on Node.js and provides a straightforward API, simplifying the process
of developing online and mobile apps. Express.js's server-side features may be
used to do a range of tasks, such as handling incoming requests, authorising
users, and managing errors. Middleware services can be connected in a

pipeline to create complex request-response processes.

Server-Side
Systems

HTTP Request

™

Database

Client

l ']‘ (Browser)

HTTP Response .

~

Web - Server

Fig. 3.9 Flow of requests and response from client to server

Express.js is widely used to build application programming interfaces (APIs),
which allow communication between various programme components. An
API enables the creation of complex software platforms by providing a
standard interface for software to exchange data and services. Express.js
provides a simple and intuitive API that makes building APIs easy. By
designing routes that correspond to the different HTTP methods, developers

25

may construct functions that handle GET, POST, PUT, and DELETE requests.
Express.js offers a number of intermediate activities, such as processing
received JSON data, authorising users, and handling failures. Express.js may
also be used to create a RESTful API, an architectural framework for creating
APIs that follows a set of guidelines. Modify resources using RESTful
APIs(like data objects) while offering replies in an accepted format (like

JSON) via HTTP methods.

Security and scalability are crucial factors to take into account while
developing an API with Express.js. Data in transit may be made more secure
with the support for SSL/TLS encryption that Express.js offers. Additionally,
it encourages rate limiting along with other attack-prevention strategies.

Benefits of using Express.js for building APIs in React Native project:

e Scalability: Express.js is very scalable and can handle many
concurrent connections without experiencing any lag. It can be set up
on a group of servers or a platform that uses the cloud, like AWS or

Google Cloud.

e Security: Express.js supports SSL/TLS encryption, which helps to
protect data while it is being transmitted. Additionally, it encourages

limitation of rate and other attack-prevention strategies.

e Large Community: Strong and well-known developer ecosystem:
Express.js has a large and vibrant developer ecosystem that creates and
maintains a range of modules and libraries that are easily included into
Express.js programmes to offer new features and opportunities. The
platform also includes outstanding documentation that is easy for

developers to understand and utilise.

26

Google Firebase

A platform called Firebase, developed by Google, provides a variety of tools
for building and growing mobile and online apps. since of the variety of tools
and services it offers, it is a popular choice for developers utilising React
Native since it may facilitate development and save time to market. The

characteristics offered by the firebase in-built portion are listed in Fig. 3.9.

App Check
Firestore Database
Realtime Database
Extensions

Storage

©
=
L 2
]
®

Hosting

Functions

~
N

Machine Learning

a Bk

Remote Config

Fig 3.10 List of Firebase features

Key details regarding Firebase for React Native applications is provided

below:

1. To store and sync data instantly, one option is to use Firebase Realtime
Database, a cloud-hosted database. It provides a NoSQL database,
making it easy to manage information in a flexible, scalable way|[3, 4].
The Firebase Live Database may be used to construct applications that
respond instantly to data changes, enhancing their interactivity and

user attractiveness.

27

2. Using Google Authentication is a quick and simple way to add
authentication to your React Native application. Social media, phone,
email, passwords, and other methods of authentication are
supported[6]. With Firebase Identification, you can develop secure
apps that request user authentication and authorization. In this project,
the sole type of authentication we're focusing on is phone number
authentication. OTP is generated and sent to the provided cellphone
number. For added protection, this OTP has a configurable life

duration.

3. User-generated material with a large size, such photographs and
videos, may be easily stored and served with Firebase cloud-based
storage. It allows for both local and remote storage, allowing access to
material from any location in the globe. For a full storage solution for
your React Native application, Firebase Cloud Storage interfaces with

other Firebase services like Authorization and Dynamic Database.

4. FCM (Firebase cloud messaging) is another capability offered by
Google Firebase. The stable and scalable Firebase cloud-based
messaging service enables message delivery to clients on Android,
iOS, and the web. It makes it simple to provide timely and pertinent
communications to individuals by providing a number of features, such
as targeting, planning, and statistical analysis. As a result of its ease of
use, scalability, and compatibility with other Google services, it is a

well-liked choice among developers who utilise React Native.

Stripe for Payment

ACompanies of any sort may accept and manage payments online thanks to a
programme called Stripe that handles payments. Businesses may conveniently
and efficiently make payments using a range of services and applications that
are provided by this[5]. Globally, a lot of businesses, including sole

proprietors, small businesses, and big multinationals, use Stripe[12]. Stripe

28

supports all payment types, including debit and credit card payments as well
as card payments of all kinds, including mastercard, visa, and UPI payments.

Below are a few of Stripe's salient characteristics:

e Payment methods : Online payment processing is made simple and
safe by Stripe. Numerous payment options, such as debit and credit
card transactions, and payments via mobile devices are supported. All
aspects of payment processing, such as identifying fraudulent
transactions, reimbursements, and currency conversions, are handled
by Stripe. Additionally, it supports memberships and periodic
payments, making it simple for businesses to handle customers'

payments over time.

e Security : Safety is a top priority for Stripe, which offers a range of
solutions to help businesses keep their transactions secure. The greatest
level of validation accessible to payment processors is the PCI Level 1
Service Provider accreditation that it possesses. The Stripe platform
also provides fraud detection and prevention capabilities including

multi-factor authentication, real-time

e Global Reach : With around 135 recognised denominations and over
40 operating nations, Stripe makes it simple for business
establishments to take payments through clients all around the globe.
International payments are handled entirely by Stripe, involving

conversions of currencies and observance of regional laws.

e Billing : It is straightforward for businesses to manage recurring
membership and payment fees thanks to a group of software packages
known as invoicing. It provides tools for setting up pricing schemes,
managing users and payments, and handling declined payments. Stripe
Billing collaborates with other Stripe services like Payment Processing

and Hawkeye to provide comprehensive billing solutions.

29

Thanks to a range of goods and services provided by Stripe, businesses may
easily manage and accept payments made over the internet. With solutions for
payment processing, developer tools, security, worldwide reach, billing
reasons, and the detection of fraudulent transactions, Stripe provides a whole
platform for managing payments in your React Native application. It is
preferred by businesses of all types due to its adaptability, protection, and ease

of use.

"dependencies": {
"@expo-google-fonts/montserrat": "20.2.3",
"@firebase/messaging”: "79.12.4",
"@react-native-async-storage/async-storage":

"@react-native-firebase/app": "/17.4.3",
"@react-native-firebase/messaging”: "717.4.

np e

"@react-navigation/native": "76.1.
"@react-navigation/native-stack":
"expo": "~48.0.15",
"expo-app-loading": "72.1.1",
"expo-firebase-recaptcha": "~2.3.1",
“expo-font": "~11.1.1%,
"expo-image-picker": "~14.1.1",
"expo-notifications": "~8.18.1",
"expo-splash-screen”: "~8.18.2",
"expo-status-bar": "~1.4.4",
"firebase": "/
“moment": "/
“react”:

Fig 3.11 List of Dependencies in Package.json

30

Chapter - 4

Experiments and Result Analysis

First, we initialised our React Native project within the specified folder. Node
and yarn installation are prerequisites for initialising the React Native
application. React-native-cli has to be installed globally on our system once
node and yarn have been installed[14, 13]. When we start a new React Native
project, installing the React Native CLI globally will automatically add this
package to our application. The code for installing the react-native-cli globally
is shown in Fig. 4.1.

npm install -g expo-cli
expo init AwesomeProject

cd AwesomeProject
expo start

Fig 4.1 Commands for installing cli and initialising app
The latest version of node, npm and yarn are used in the development of this

project to keep the requirements and functionality of this project. Fig 4.2

shows the version of the same.

PS C:\Users\manga\Desktop\React Native\BackgroundTracking> node --

v16.17.0

PS C:\Users\manga\Desktop\React Native\BackgroundTracking> npm --v
8.15.8

PS C:\Users\manga\Desktop\React Native\BackgroundTracking> yarn --
1.22.49

PS C:\Users\manga\Desktop\React Native\BackgroundTracking> ||

Fig 4.2 Versions of technologies used
There are several modules and pages in this project starting from the Welcome
Screen we have and many, numerous screens or "views" that collectively make

up your application's user interface are typical. Each screen serves as an

31

individual component of your mobile application and may have various

features and functionalities. Table 4.1 shows the list of screens given below.

S. No.

Screen Title

Functionality

1.

Welcome Screen

It gives the user an option to register or
an existing user to sign-in to their
respective accounts.

Login Screen

In this screen the user needs to enter the
registered mobile number and press
submit and he will move to the next
screen.

Register Screen

If the user is not registered (new user),
he has to enter a mobile number to get
himself registered.

Verification Screen

In this screen there is a user input of 6
digits in which the user needs to enter
the OTP which he got via SMS on the
entered mobile number.

Home Screen

In this screen the user can press on
“Modal” for different functionalities,
here he gets the button to set pick up and
destination locations.

Task Screen

In this screen the user needs to enter the
destination and source locations along
with the order that needs to be delivered.

Confirmation Screen

This screen is for rechecking the source
and destination location and confirming
the address.

Order Details Screen

This screen shows the user the details he
has filled in the previous pages along
with the delivery charges and proper
billing details.

Payment Screen

If the user confirms the details he is then
landed on the payment screen where he
can add a new card or make payment
with already added cards just by filling
necessary card details.

10.

Track Order Screen

The user is then able to see the real-time
tracking of the delivery partner on a

32

Map.

11. Feedback Screen After the item gets delivered the user of
the application is then able to rate and
write some reviews about the delivery
partner.

12. Edit Profile Screen This is a feature screen of this
application where the user can edit its
profile except for his mobile number.

13. Notification Screen This screen shows the notification of the
items that have been delivered or picked
up.

14. Chat Screen The user will be able to chat with the

admin and communicate about his
problems or any other delivery issues.

Table 4.1 List of screens

User Authentication using Firebase

Google Firebase offers us a number of options for authenticating the user
providing a guaranteed security to the user. In this application I have only used
mobile authentication because of easy implementation, better security as well
as it provides better user experience. The usage of the mobile OTP in Google
Firebase offers mobile applications a safe and practical authenticating
technique that may boost user experience while also lowering the danger of
credential fraud. This generates a six-digits OTP and sends it to the entered
and existing mobile number and expires after 5 minutes. After initialising a
new project in google firebase and choosing the platform, Google Firebase
provides us configuration content which contains following fields as shown in

Fig 4.3
1. API-Key

2. Auth Domain
3. Project Id

33

4. Storage Bucket
5. Messaging Senderld
6. Application Id

/[Import the functions you need from the SDKs you need

import { initializeApp } from "firebase/app";

// TODO: Add SDKs for Firebase products that you want to use

// https://firebase.google.com/docs/web/setup#available-libraries

/! Your web app's Firebase configuration

const firebaseConfig = {
apiKey: "AIzaSyCVri12deFr5y6ViJRNIn3tWNsTFumQzHII",
authDomain: "testing-9ec39.firebaseapp.com”,
projectId: "testing-9ec39’
storageBucket: "testing-9ec39.appspot.com”,
messagingSenderId: "1817245611535°
appId: "1:1817245611535:web:1aa3b2ed1e32b@7186d57a"

¥

// Initialize Firebase
const app = initializeApp(firebaseConfig);

Fig 4.3 Config file generated by firebase

After the user login to their respective accounts the most important and
challenging task is to keep them logged-in until they logout from the
application. In any application if we are not preserving the Auth state of the
user, the individual will automatically get logged out of the application. To
achieve this we have to keep the user Auth preserved and pass it on throughout
the application [5]. The application's login and registration interface is seen in
Fig. 4.4. The login screen's functionality allows users to sign up for accounts
or sign in if they already have an account. The purpose of the Register page is
to need the user to provide a cellphone number in order to register if they are a
new user. To authenticate the user, a One Time Password is generated and
sent over Firebase to the user's phone. Both first-time registrants and accounts

with active registrations go through the same process.

34

9:41 wll T @@ 9:41 wll T @@

& Sign in & Register

Sign up Signin

Lorem ipsum dolor sit amet consectetur. Ac
parturient nisl nullam nibh tincidunt nulla.

Lorem ipsum dolor sit amet consectetur. Ac
parturient nisl nullam nibh tincidunt nulla.

Phone Phone
(E v |205-870-8708] (E v | 205-870-8708 }

Don't have an account? Sign up

Fig 4.4 Login and Register screens of application

Four different approaches can be used to complete the aforementioned
challenge: the first is prop drilling, in which we will send a specific user's
Auth to various components; the second is using Context APl and making all
the user configuration fields global variables; and the third is using Redux
Toolkit. By leveraging context API and prop drilling in this application, I was
able to do this. Utilising React Native's Async-Storage is another way we may
accomplish our goal. It's crucial to keep in mind that AsyncStorage has several
drawbacks, like its restricted capacity for storage and incapacity for handling

massive volumes of data.
AsyncStorage isn't intended to be used as a reliable archive solution, thus

developers should be mindful of this and store private information using

stronger storage alternatives.

35

import { getAuth, onAuthStateChanged } from "firebase/auth";

const auth = getAuth();
onAuthStateChanged(auth, (user) => {
if (user) {
// User is signed in, see docs for a list of available properties
// https://firebase.google.com/docs/reference/js/firebase.User
const uid = user.uid;
A veae
} else {
// User is signed out
P ares

3

Fig 4.5 Code for persisting the user

Dashboard and Modal

Using a React Native component called a modal, developers may create
pop-up conversation boxes, alerts, notifications, and confirmations by showing
an element or piece of content above the presently shown screen. Modals are
typically used to solicit user input, display critical information, or require user
confirmation of actions. The Home Screen is seen in Fig. 4.3, and a "Modal"
that opens over the screen informs the user of the application's functions as
listed in Table 4.1. This "Modal" component, which is native to React, gives
us an animation for a specific view. This "Modal View" will become visible
when a user clicks on the menu icon. Additionally, it offers a variety of tools
that enable us to improve our application's effectiveness, usability, and more
responsive. For e.g. onRequestClose() function provided by this lets the user

dismiss the modal when he clicks the back button of his device.

36

2:41 all = -

e Testing User

Lorem Ipsum is

dummy text industry.
Lorem ipsum dolor sit amet

consectetur.

Pick up or send anything

[Set pick up & drop location W

Here's how you can use this for
your needs

Fig 4.6 Home screen of application

Google Maps

With the aid of Google Maps, which I have incorporated into my project, the
user may choose the pick-up location and will see the auto-fill function. With
the help of this feature, the user can more easily identify the pick-up and
destination locations. Additionally, he may pin-point the present place and add
markers to the spots. Users get access to a large selection of features and
functionalities, such as interactive maps, geotagging, directions, and locations.
After completing a payment, the consumer will be able to view the delivery
person's direction directly on the Order Tracking screen thanks to the Google

Maps API[3, 4].

MapBox and MapView are further alternatives for adding maps to our
programme.We can incorporate maps GUI in this project thanks to the
MapView component of the React Native react-native-maps package. We have
a logo on the map, and as the rider moves, the latitude and longitude change,

causing the image of the bike shown on the map to move as well[10].

37

I'm using the delivery partner's latitude and longitude to track down their
route. Each time their latitude and longitude change, we update their position

in our array.

9:41 aill = -

o Track Order

. ~

Q Tony Stark @

o Pickup Address

Drop Off Address

Track Route

Order Complete

N A

Fig 4.7 Order tracking using MapView

38

Order Details Screen

Once the user confirms the pickup and drop location and presses on the
“Submit” button he will be taken to the next screen where he would be getting
the order details, here by clicking on the map marker he can change the pick
up and drop location. As shown in fig 4.7, he can also add some instructions
that he wants to tell the delivery driver. The user of this application will get a
detailed screen of the invoice. The fare for delivering the item from one place
to another totally upon the distance between the two points. The distance
between the pickup and drop location can be calculated with the help of
Google API which will first fetch the latitude and longitude of the source and

destination and return the fastest route between these two locations.

9:41 il & = o:41 ol T @

Task Order Details

— Pickup from
Pickup from
294 Elizabeth St A, New York, NY 10012
294 Elizabeth St A, New York, NY 10012

Deliver to

Deliver to

294 Elizabeth St A, New York, NY 10012

294 Elizabeth St A, New York, NY 10012

Add task details Item Type: Clothes
Food Item , Medicine v

) Billing Details
Instruction
Lorem Ipsum is simply dummy text of the PelleysryiSeara0km $20
printing and typesetting industry. Lorem
Ipsum has been the industry's standard To pay $20
dummy text

a

Instruction

Lorem ipsum dolor sit amet consectetur. Nisi
imperdiet hac amet tellus. Sit at aliquam tincidunt
auctor vitae enim. Eu neque vitae ut tellus nisi
diam vel

- — J

Fig 4.8 Order details screen

39

The backend of the application is where the programme stores all order and
user-related data. All of a new user's information will be saved on the servers
if he establishes a new account. Any modifications the user makes to his
profile are recorded in the application's backend. We are retrieving all of the
data and putting it on the application's front end. We have a built-in React

Native method named "Fetch" that we can use to fetch this.

Notifications = () => {
[data, setData] = useState();
getArticles = async () => {

- response = await fetch(
"http://192.168.1.35:3000/notification/list_notifications"

: - json = await response.json();
setData(json.notifications);

catch (error)

console.error(error);

Fig 4.9 Syntax of fetch function to GET from API
The response object that is returned by the fetch request function resolves a
Promise. Response data, including the content of the response, its status, and
headers, is stored in the Response object. The data may then be extracted from

the response using techniques like.json(),.text(), and.blob().

Online Payment

Leading payment service Stripe enables entities to take transactions online. An
array of processes are taken in the back end when an end user makes an online

payment on a mobile application or website that makes use of Stripe. Fig 4.9

shows what happens at the backend when somebody initiates a transaction.

40

Stripe

A

confirmCardPayment() with :
Paymentintent Secret:
Billing, Shipping info

Client-side

—

CONTINUETO 1}
PAYMENT

& Via Stripe API

Receive Paymentintent Secret _ — _ _p Trigner with user input

Create Paymentintent

result; sUCCess of ermor

5

Province
1 ltems and quantity
Shipping method

Data sources.
Tax rates
Inventory

Shipping rales

Server-side:
Calculate final amount
Create Paymentintent

Return Paymentintent Secret

Paymentintent Secret

Fig 4.10 Backend of user initiated online payment

I only included card payment choices in my project so that people could use
Stipe to make payments online. The new user must first add a card to the
payment application in order to start a payment. Credit cards or debit cards

may be used to make this card payment. The following details must be entered

by the user.

e (Card Number ,Card Holder’s name, CVV, Expiry Date

e This Information get validated first on the front-end

e Ifthe information is validated by the Stipe.

41

Fig 4.10 shows that when the user clicks on the “Add New Card” a dialogue
box opens up and shows the card details that are needed to be entered by the

user to add a new card for making payment.

9:a1 il = (- 9:41 ol T .
Payment < Payment
Saved Cards Saved Cards
@ Adam Smith XXXX 5652 ® @ Adam Smith XXXX 5652 ®
om Add New Card >

Add new card

Card number
(4568-8876-9099

Card Holder Name

cw Expiry

To pay $20 To pay $20

Make Payment Make Payment
— —

/

Fig 4.11 Payment Screen of application
When a delivery partner accepts the request to pick up the items, he will
receive all the details on the item that needs to be delivered along with the
pickup and drop location with this. The user's side of the application is now

complete after completing the payment.

42

Chapter - §

Conclusion

5.1 Conclusion

The best degree of full-stack application development involves fixing several
issues that aren't present in applications that are identical to this one. As it
would be offering customer support, a chat option, live tracking, and many
other services not offered by current top programmes, it might also become a

superior substitute.

Every answer, rejection, and error was handled in such a way that it didn't
slow down the application. This application was linked with the backend,
allowing us to receive and get the replies from there. In this research, we've
covered the primary elements and features of this product delivery application,
including push notifications, real-time tracking, and payment methods.
Reusing code, having shorter development cycles, and having a large designer
community are all benefits of using React Native for the creation of

applications, and these benefits have all been stressed.

This React Native product delivery app is a great example of how individuals
can utilise tablet and smartphone technology to improve customer satisfaction,
optimise business operations, and increase income. As the mobile environment
continues to change, we should expect to see more cutting-edge applications
developed using React Native and other cutting-edge technologies. Customers
and drivers alike will be able to add their photos using this application for

enhanced experience and identification. We utilised "ImagePicker" for this,

43

another capable package provided by React Native. With the aid of this library,
we may put a picture on our device. Android and iOS devices need
authorization to do any of the aforementioned functions, which makes the
application more secure for the user.

Google Firebase where the users are stored is also counting the number of
reads and writes we are making each day. As shown in Fig 4.1 and Fig .2 , we
can see the count of reads and writes. The dotted lines also show the average

number of reads and writes per week.

= Firestore

Reads (current)

1.2K -0

Fig 5.1 Reads per day underdeveloped.

Writes (current)

Q0 2722

Apr 27 Apr28 Apr 29 Apr 30 May 1 May 2 May 3

— This week = = Last week

Fig 5.2 Writes per day underdeveloped

44

At the initial stage we started to work on the dummy data and in fig 5.3 that
the user is getting stored at the backend and is handled very efficiently. The
delivery partner is getting stored at the backend of the application along with
all their details, how many orders they have ever got out of which how many

of them were successfully delivered.

Manage Customers

Customers Address Contact Action

a 5"’”" cutis 248 Broome St, New York, United States +1212-431-1520 (o]
6 "'y"'? ann?r 248 Broome St, New York, United States +1212-431-1520 @
@ ?“p" T')u"k . 248 Broome St, New York, United States +1212-431-1620 @
@ Af’"" Curtis . 248 Broome St, New York, United States +1212-431-1520 @
3 M“'d‘-‘“d’(k - 248 Broome St, New York, United States +1212-431-1520 @

< o () () »

Fig 5.3 Dashboard of admin-side

5.2 Future Scope

This project can be made more complex, and we can give the programme

more features. The following is a list of the functions that may be added to our
application to improve its effectiveness and user experience:

e More Payment Options :I've just included card payment options

(credit card and debit card) thus far in my application. But in addition,

there are additional UPI payment methods like Google Play, Paytm,

and others.

45

Chatbot support : A chatbot function may be used to respond to
client questions and offer prompt solutions. Wait times might be cut in

half and customer service could improve.

More login options : The user of the application can only sign-in only
using a phone number, but in future we will integrate email login with

phone number, so that the user can have more options to sign-in.

More transport options : Depending on the type of product we want
to transport, we may add more vehicle alternatives. For heavier things
and commodities, the customer will be able to hire a bike or a

mini-truck.

Multilingual support : To reach a larger audience, think about

providing support for multiple languages to your software.

Real-time tracking : Real-time tracking is something you might
want to incorporate into your delivery app. Customers will be able to
track their orders in real-time and receive precise delivery predictions

as a result.

46

REFERENCES

[1] Hettiarachchi, S. (2020). Building mobile apps with React Native: Getting
started with Redux, GraphQL, and Firebase. Packt Publishing Ltd.

[2] Dipali, D., & Mandloi, G. (2021). Building Hybrid Mobile Application
using React Native. International Journal of Advanced Research in Computer

Science, 12(2), 72-76.

[3] Dholakia, H. (2021). React Native Ul Cookbook: Build creative and
stunning Ul designs for your React Native applications. Packt Publishing Ltd.

[4] Katz, B. (2019). Android Studio 3.4 Development Essentials: Kotlin
Edition: Developing Android Apps Using Android Studio 3.4, Kotlin and
Android Jetpack. Payload Media.

[5] Shinde, S., Patil, S., & Jadhav, S. (2021). Development of Android
Application using React Native. International Journal of Innovative Research

in Technology, 8(2), 6-11.

[6] Boduch, A. and Derks, R., 2020. React and React Native: A complete

hands-on guide to modern web and mobile development with React. js. Packt

[7] Kaushik, V., Gupta, K. and Gupta, D., 2019. React native application
development. International Journal of Advanced Studies of Scientific
Research, 4(1).

[8] Hansson, N. and Vidhall, T., 2016. Effects on performance and usability

for cross-platform application development using React Native.
[9] Mhapsekar, A., & Oza, M. (2019). A Comparative Study of React Native,

Xamarin, and PhoneGap Frameworks. Journal of Engineering Science and

Technology Review, 12(2), 87-92.

47

[10] Rastogi, N., & Soni, N. (2020). Developing Mobile Applications using
React Native. International Journal of Advanced Science and Technology,
29(8), 3239-3246.

[11] Mueller, J.P., 2006. Mining Google web services: building applications
with the Google API. John Wiley & Sons.

[12] Markovich, S., Achwal, N. and Queathem, E., 2017. Stripe: Helping

money move on the internet. Kellogg school of management cases, pp.1-12.

[13] Sullivan, R.J., 2013. The US adoption of computer-chip payment cards:
Implications for payment fraud. Economic Review-Federal Reserve Bank of

Kansas City, p.59.

[14] Soininen, V., 2021. Jetpack Compose vs React Native—Differences in Ul

Development.
[15] Tilkov, S. and Vinoski, S., 2010. Node. js: Using JavaScript to build
high-performance network programs. [EEE Internet Computing, 14(6),

pp-80-83.

[16] Muir, A. (2021). Building Mobile Apps with React Native: Getting
Started, Second Edition. O'Reilly Media, Inc.

48

