
THREE LAYERED ARCHITECTURE

Project report submitted in partial fulfilment of the requirement for the degree

of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Oshin Dhawan (191435)

to

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology Waknaghat, Solan-173234,

Himachal Pradesh

I

DECLARATION

I hereby declare that this submission is my own work carried out at Zopsmart

Technologies Pvt Ltd, Bangalore from February 2023 to May 2023 and that, to

the best of my knowledge and belief, it contains no material previously

published or written by another person nor material which has been accepted

for the award of any other degree or diploma from a university or other

institute of higher learning, except where due acknowledgment has been made

in the text.

SUBMITTED BY:

Oshin Dhawan

191435

Computer Science & Engineering and Information Technology Department.

Jaypee University of Information Technology, Waknaghat, Solan

II

CERTIFICATE

I hereby declare that the work presented in this report entitled THREE

LAYERED ARCHITECTURE in partial fulfilment of the requirements for

the award of the degree of Bachelor of Technology in Computer Science

and Engineering/Information Technology submitted in the department of

Computer Science & Engineering and Information Technology, Jaypee

University of Information Technology Waknaghat is an authentic record of

work carried out over a period from February 2023 to May 2023 under the

supervision of Mithali R Shetty (Senior Lead Engineer) and Aryan

Mehrotra (SDE2). The matter embodied in the report has not been submitted

for the award of any other degree or diploma.

Oshin Dhawan
191435

This is to certify that the above statement made by the candidate is true to the
best of my knowledge.

Mr. Aryan Mehrotra
SDE2
Zopsmart Technology
Dated: 13-05-2023

Dr. Diksha Hooda
Assistant Professor (SG)

Department of Computer Science & Engineering

Dated: 13-05-2023

III

IV

ACKNOWLEDGEMENT

This report is not just a result of hard work by me but there has been a joint

contribution by a lot of other people who I would like to thank.

I would like to thank Rashmi Singh, Manager of HR in Talent Acquisition, of

Zopsmart Technologies, Bangalore for allowing me to do an internship within

the organization.

I also would like to thank Ms. Mithali R. Shetty and all the people that worked

along with me at Zopsmart Technologies, Bangalore for their patience and

openness. They created an enjoyable working environment.

I also would like to thank Mr. V. Vaishnav and Ms. Mahak Singhania for

mentoring me throughout my internship and helping me learn new concepts

and technologies. It is indeed with a great sense of pleasure and immense

sense of gratitude that I acknowledge the help of these individuals.

I am highly indebted to Mr. Pankaj Kumar, Training & Placement Coordinator

of our college for the facilities provided to accomplish this internship. I would

also like to thank the Head of our Department Dr.Vivek Kumar Sehgal and the

faculty for teaching us the skills required for this internship.

Special thanks to my mentor in the college Dr. Diksha Hooda who supported

me throughout the whole and guided me to achieve the best.

Finally, I must acknowledge with due respect the constant support and patients

of my parents.

Oshin Dhawan

191435

V

TABLE OF CONTENT
CONTENT PAGE NO.

LIST OF ABBREVIATIONS VII

LIST OF FIGURES VIII

ABSTRACT IX

CHAPTER - 1 INTRODUCTION 1

1.1 About the Company 1

1.2 Project Introduction 3

1.3 Project Description 6

1.4 Organization 7

CHAPTER - 2 LITERATURE SURVEY 8

CHAPTER -3 SYSTEM DEVELOPMENT 15

3.1 Technologies Required 15

3.2 Project Development Approach 31

3.3 Code Development 34

CHAPTER - 4 PERFORMANCE ANALYSIS 43

4.1 Unit Test Coverage 43

4.2 Linter Check 43

CHAPTER - 5 CONCLUSIONS 44

5.1 Results Achieved 44

5.2 Application Contributions 44

5.3 Limitations 45

5.4 Future Work/Scope 45

REFERENCES 46

VI

LIST OF ABBREVIATIONS

SNSS Social Networking Sites

CMS Content Management System

UI User Interface

ESR Extended Support Release

HTML Hypertext Markup Language

IP Internet Protocol

LAN Local Area Network

URL Uniform Resource Locator

HTTP / HTTPS Hypertext Transfer Protocol / Secure

Hypertext Transfer Protocol

SVG Scalable Vector Graphics

DOM Document Object Model

JSON Javascript Object Notation

SQL Structured Query Language

W3C World Wide Web Consortium

MVC Model View Controller

VCS Version Control System

XML Extensible Markup Language

LIST OF FIGURES

VII

Figure 1. ZopSmart Logo

Figure 2. Three-Layered Architecture

Figure 3. Postman Endpoints

Figure 4. Swagger Endpoints

Figure 5. Software Development Cycle

Figure 6. Scrum Life Cycle

Figure 7. Setting up the database

Figure 8. Product datastore layer code

Figure 9. Brand datastore layer code

Figure 10. Product service layer code

Figure 11. Brand service layer code

Figure 12. Product handler layer code

Figure 13. Brand handler layer code

Figure 14. Source file code

Figure 15. Middleware code

Figure 16. Swagger yaml file

Figure 17. Swagger online editor

Figure 18. Sample output for product_GetByID

Figure 19. Sample output for brand_Get

Figure 20. Postman Collection

VIII

Figure 21. Unit Test Coverage Check

Figure 22. Linters Check

IX

ABSTRACT

Creating a web application is quite simple but the challenge comes when the

code has to be tested, structured, cleaned, and maintained, and thus here we

follow the Three Layered Architecture using Go language.

The three layers are handler, service, and datastore which are all independent

of each other. The handler layer receives the request body and then parses

anything that is required from that request. It then calls the service layer where

all the logic of the program is defined, ensures that the response is in the

required format, and writes it to the response writer. This layer further

communicates with the datastore layer. It takes whatever it needs from the

handler layer and then calls the datastore layer.

The datastore layer is where all the data is stored. It can be any data storage.

The use case layer is the only layer that communicates with the data store.

That is how we test each layer independently making sure that no layer affects

the other.

1

CHAPTER - 1

INTRODUCTION

1.1 About The Company

➢ ZopSmart Technologies

They are a cutting-edge retail technology company that provides you with all

of the tools you need to launch your own e-commerce venture [1]. They

provide a portfolio of products that can help you achieve your goals quickly

and easily, whether you are a traditional..store trying to extend your

omnichannel business or an online-only shop looking to increase your e-

commerce business. Zopsmart develops next-generation retail technology for

customers ranging from small furniture stores to multinational retail chains.

Their solutions include an e-commerce platform, Digital Marketing, m-

Commerce, automated logistics systems, a management platform, an order

management platform, and IoT devices. It also gives software solutions to

some of the most prominent companies and has its own framework on which

to operate.

Fig 1: ZopSmart Logo

➢ ZopSmart Solutions

● e-Commerce:

Give your clients a first-rate purchasing experience- Using

straightforward search, you can quickly discover things. Product listing

2

that is personalized for ordering ease. Self-service rescheduling and

returns ensure a smooth order experience.

● m-Commerce:

Offer your clients an excellent mobile purchase experience. A

responsive website that adapts to all screen sizes. Use native Android

as well as iOS mobile applications for a world-class experience. For

convenience, the cart is persistent between devices.

● e-Wallet:

Increase consumer loyalty by using an integrated wallet - An integrated

wallet provides for simple and quick checkout. Refunds and pocket

rewards are used to encourage repeat purchases. For low-cost customer

acquisition, use Wallet-credit as gift cards.

● Order Management:

Handle your purchases quickly and effortlessly - All of your purchases,

together with associated data such as customer name, amount, and

order status, will be shown in a single interface. As each process step is

finished, the status of the order changes. You can add or delete items

from your order.

● Operations:

By utilizing the Store-manager mobile app to manage daily tasks, you

can provide your customers with outstanding service at the lowest

possible cost. The inventory checker mobile app ensures catalog

accuracy. Picker is a smartphone app that enables error-free and

efficient selection and packing. The dispatch module will determine

the most effective delivery route. Delivery smartphone app for reliable

order delivery, risk-free payment collection, and exact return selection.

3

● Monitoring and Analytics:

Operate your business with little supervision - Continuous monitoring

allows you to monitor every aspect of your operation. Notifications of

deviations in the operations process to trigger immediate action

Intelligent analytics assists in detecting trends and improving

procedures. Detailed logs for each action to assist you in

troubleshooting.

1.2 Project Introduction

Go is a robust system-level programming language used to create large-scale

server networks as well as distributed systems. It is frequently used as a

replacement for C++ and Java. Go's syntax is comparable to C's, although it

uses fewer brackets and commas, making it similar to Python's as well. Fast

compilation and execution, faster code readability and debugging, simpler

versioning, language consistency, easy interchange with other languages,

simplified maintenance, and support for concurrency and multithreading are

all advantages of the language. Go is a programming language created at

Google by Robert Griesemer, Rob Pike, and Ken Thompson that provides

memory security, garbage collection, structural type, and CSP-style

parallelism.

➢ Three-Layered Architecture in Go:

It is straightforward to create a web application in Go using the Three-Layered

Architecture, but making sure the code is tested, structured, clean, and

maintained might be difficult.

4

Fig 2. Three-Layered Architecture

The Three-Layered Architecture is made up of three distinct layers: the

Presentation Layer, the Business Logic Layer, and the Data Access Layer.

The presentation layer, commonly referred to as the delivery layer, is in charge

of receiving the request and processing any information it contains. It then

calls the business layer, frequently referred to as the use-case layer, to ensure

that the answer is in the correct format before sending it to the response writer.

The use-case layer handles the application's business logic and connects with

the datastore layer. It gets what it needs from the delivery layer before calling

the datastore layer. It implements the necessary business logic before and after

calling the datastore layer, also known as the data access layer. The data store

5

is where the data is stored, which can be in any form. The only layer that

interfaces with the datastore is the use-case layer. We guarantee that the

system is testable and maintained by testing each layer independently of the

others.

➢ Advantages of three-layer architecture

● Explicit code: The code is divided into layers. Instead of bundling all

the code in one location, each one is dedicated to a specific duty such

as interface, business processing, and querying.

● Easy to maintain: It would be easy to update anything since its duties

separate each layer. The change can be limited to a single layer or

affect only the layer closest to it without affecting the entire program.

● Easy to develop, and reuse: Because we already have a standard

architecture, we can quickly alter a function. If we wish to switch from

a Winform to a Web form, we only need to update the Presentation

layer; the remaining levels may be reused entirely.

● Easy to transfer: We might save time migrating the application to

others since they follow and use a common architecture.

● Easy to distribute the workloads: By separating the code into layers

depending on responsibilities, each team/member may create code on

each layer individually, allowing developers to better manage their

workload.

6

1.3 Project Description

The principal objective was to create a product and branding management

system utilizing a three-layered architecture. In this system, we developed and

implemented a SQL database design to properly handle information about

goods and brands for a food and beverage firm. The schema has two tables:

"Products" and "Brands." Product ID, product name, description, price,

quantity, category, and brand ID were all fields in the "Products" table. The

product ID was the main key for the "Products" table, and the brand ID was a

secondary key that referred to the "BrandID" field in the "Brands" table. The

"Brands" table had fields for brand ID and brand name, with the brand ID

serving as the primary key and the brand name serving as a unique identifier.

We also created five methods to communicate with the SQL database using

Test Driven Development (TDD). The first function, GetByID, took a product

ID as input and returned the product data from the database, comprising the

product name, description, price, quantity, category, and brand name. The

second function, GetByName, took a product name as input and returned the

product data from the database. GetAllProducts, the third function, got all of

the items and their associated information from the database. The fourth

function, Update, received product information such as the product name,

description, price, quantity, category, and brand name and updated the

database record pertaining to that product. The function checked the supplied

data before updating it and provided an error if it was incorrect. The fifth

function, Create, took the product data as input and produced a new product

record in the database, containing the product name, description, price,

quantity, category, and brand name. The function evaluated the supplied data

before putting it into the database and returned an error if it was incorrect.

In addition, we built a Swagger interface that enabled users to access the

system's features. The "products/id" endpoint lets users get product data from

7

the database using the product ID. Users could also use the ID to change

product information such as the product name, description, price, quantity,

category, and brand ID. Similarly, the "product" endpoint enabled users to

enter product details to create a new product record in the database. The input

was checked before being inserted, and an error was returned if it was invalid.

We used a variety of technologies to build the system, including MySQL for

the database, Postman for testing endpoints, Swagger for the API interface,

Golang for system implementation, Lintercheck for code quality checking, and

middleware to handle requests and responses between layers.

1.4 Organization

The rest of this report is organized as follows:

Chapter 2 provides the literature of the technologies required

Chapter 3 discusses system development and workflow

Chapter 4 presents performance analysis

Chapter 5 covers conclusions and future scope.

8

CHAPTER - 2

LITERATURE SURVEY

1. GO

Go, often known as Golang, is an open-source compiled and statically typed

computer language created by Google. Rob Pike, Ken Thompson, and Robert

Griesemer invented the language, which was originally made accessible to the

public in November 2009.

Go is a general-purpose programming language with an easy-to-use syntax

and a robust standard library. It is particularly good at developing scalable and

highly accessible online applications, in addition to command-line apps,

desktop apps, and even mobile apps.

➢ Advantages of Golang:

● Simple syntax:

The grammar is straightforward and succinct, and the language

is devoid of superfluous features. This makes it simple to

develop understandable and maintainable code.

● Easy to write concurrent programs:

Concurrency is built into the language. As a result, creating a

multithreaded program is a breeze. This is accomplished

through the use of Goroutines and channels, which will be

covered in the next chapter.

● Compiled language:

Go is a compiled programming language. The source code gets

9

transformed into a native binary. This is lacking in interpreted

languages like JavaScript, which is utilized in nodejs.

● Fast compilation:

The Go compiler is incredible because it was built from the

ground up to be quick.

● Static linking:

Static linking is supported by the Go compiler. The complete

go project may be statistically linked into a single large binary

that can be quickly deployed in cloud servers without regard for

dependencies.

2. WEB DEVELOPMENT

The process of generating and managing websites and online applications is

known as web development. It includes a wide range of jobs, from the creation

of a simple static website to the creation of complicated web-based apps, e-

commerce solutions, and social network services. Web engineering, web

design, web content creation, client-side scripting, web server and network

security settings, and e-commerce development are some of the

responsibilities involved in web development.

Web development is often done by a team of specialists, with each team

member specialized in a certain area of web development. Front-end

developers, for example, are in charge of the visual and interactive parts of a

website, such as its layout, user interface, and functionality. Back-end

developers, on the other hand, concentrate on the website's server-side

components, such as the database, server-side scripting, and APIs. Full-stack

engineers are skilled in both front-end and back-end development and are

capable of handling all parts of web development.

10

Content Management Systems (CMS) have grown to be a popular solution for

non-technical users to maintain the content of their websites without requiring

technical skills. CMS systems can be built from the ground up, be proprietary,

or open source. In a larger sense, a CMS serves as a bridge between the

database and the user via the browser.

Smaller organizations may only need a single permanent or contract developer,

or secondary assignment to related job positions like a graphic designer or

information systems technician. While larger organizations and businesses

frequently have dedicated web development teams that adhere to standard

methods like agile methodologies. Instead of being the purview of a single

department, web development can also be a collaborative effort between

departments.

3. CRUD OPERATIONS

CRUD stands for Create, Read, Update, and Delete. It refers to the four

fundamental functionalities of persistent storage in computer programming.

These operations are mapped to conventional HTTP methods, SQL statements,

or DDS actions and may be implemented in relational database systems.

CRUD can also refer to user-interface principles that enable viewing, finding,

and editing information via computer-based forms and reports.

CRUD operations are used to read, create, update, and remove entities. Before

sending it back to the service for an update, data from a service can be updated

by altering the setting's properties. CRUD is data-focused and uses common

HTTP action verbs.

Every programmer has worked with CRUD functionality at some time because

it is present in the majority of apps. Forms are used in CRUD applications to

access databases and return data. James Martin's book Managing the Database

11

Environment from 1983 is credited with popularizing the phrase "CRUD

operations." 1990's "From Semantic to Object-Oriented Data Modeling" essay

by Haim Kilov also made mention of CRUD activities.

Here's a breakdown of CRUD operations:

● CREATE: executes the INSERT command to add a new entry to the

database.

● READ: depending on the input parameter's primary key, reads the

table's records.

● UPDATE: Executes an UPDATE statement on the table based on the

supplied primary key for a record specified in the statement's WHERE

clause.

● DELETE: Deletes a specified row in the WHERE clause.

CRUD activities are carried out in accordance with the system's requirements,

and various users may have various CRUD cycles. A consumer, for example,

may utilize CRUD to establish an account and access it when returning to a

certain site. Users may then alter personal information or billing details. A

product record may be created by an operations manager, and then line items

may be modified.

CRUD processes were the core of most dynamic websites throughout the Web

2.0 era. Therefore, it is critical to distinguish between CRUD and HTTP action

verbs. For example, "POST" is used to add a new record, "PUT" or "PATCH"

is used to change an existing record, and "DELETE" is used to delete a record.

Users and administrators can utilize CRUD to edit, remove, create, or explore

online records.

12

For performing CRUD activities, application designers have numerous

alternatives. To perform processes, one of the most efficient methods is to

establish a collection of stored procedures in SQL.

Here are some common naming conventions for CRUD stored procedures:

● The procedure name should finish with the CRUD operation's

implemented name, and the prefix should not match that of the prefix

for other user-defined stored procedures.

● If you put the table name after the prefix, CRUD methods for the same

table will be grouped together.

● You can edit the database schema after adding CRUD procedures by

identifying the database object where CRUD operations will be

conducted.

4. UNIT TESTING

It is a critical sort of software testing in which individual units or components

of a software program are tested to ensure that they work as intended.

Developers use it during the development process to isolate a part of code and

test its accuracy. Individual functions, methods, processes, modules, or objects

might be considered units.

In SDLC, STLC, and V Models, unit testing is the initial level of testing

performed before integration testing. It is a WhiteBox testing approach that is

normally conducted by developers, although in practice, due to time

restrictions or developer unwillingness to test, QA engineers also undertake

unit testing.

➢ Why is unit testing important?

Inadequate unit testing can result in large expenses for flaw correction during

System Testing, Integration Testing, and even Beta Testing after application

13

release. Effective unit testing performed early in development saves time and

money in the long run. Excellent unit tests serve as project documentation, aid

in code reuse, and allow developers to easily comprehend and modify the

testing code base.

There are two types of unit testing:

● Manual

● Automated

While there is no preference in software engineering, automation is preferable

since it saves time and resources. Unit testing requires developers to write a

chunk of code to test a particular function in a software application and can

involve the usage of a UnitTest framework to create automated test cases.

Black box testing, white box testing, and grey box testing are the three types

of unit testing approaches.

Unit testing code coverage strategies include:

● Statement Coverage

● Decision Coverage

● Branch Coverage

● Condition Coverage

● Finite State Machine Coverage.

These strategies assist in ensuring that unit tests cover all potential

circumstances and that the code is resilient and dependable.

In summary, unit testing is an important part of the software development

process since it assures code quality and dependability. It aids in the early

detection of defects, saves time and money, and aids developers in

understanding the codebase. Manual unit testing is favored over automated

14

unit testing, and there are several ways available to obtain thorough code

coverage.

5. GOMOCK

GoMock [3] is a mock framework for the Go programming language that is

used for testing. It is approved by the github.com/golang organization,

interacts easily with the built-in testing package, and offers a configurable

expectation API.

The use of GoMock entails four basic steps:

1. The first step is to construct a mock for the interface you want to

simulate using mockgen.

2. Create a gomock object in your test.

3. Send it to your mock object's Object() [native code] method to get a

fake object.

4. Configure your mock's expectations and return values by invoking

EXPECT() on it.

5. Call Complete() on the fake controller to ensure that the mock's

requirements are satisfied.

15

CHAPTER - 3

SYSTEM DESIGN AND DEVELOPMENT

3.1 Technologies Required

➢ Go Programming Language:

Go, often known as Golang, is an open-source compiled and statically typed

computer language created by Google. Rob Pike, Ken Thompson, and Robert

Griesemer invented the language, which was originally made accessible to the

public in November 2009.

Go is a general-purpose programming language with an easy-to-use syntax

and a robust standard library. It is particularly good at developing scalable and

highly accessible online applications, as well as command-line apps, desktop

applications, and even mobile applications.

GOPATH and GOROOT are two significant environment variables in Go. The

former gives your workspace's location, while the latter specifies the location

of your Go SDK.

Go Programming Tools:

Go is well-equipped with various powerful tools that help developers write

better code. These tools include:

● gofmt: format automatically Use tabs for indentation and blanks for

alignment in your Go source code.

● golint: identifies styling issues in the code.

Garbage Collection:

Because Go employs garbage collection, memory management is handled

automatically, allowing developers to easily construct concurrent programs.

16

Simple Language Specification:

The whole Go language specification is contained on a single page, making it

simple and straightforward.

Open Source:

Go is an open-source project, and anybody may help create and enhance it.

Popular Products Built with Go:

Go has been used to develop many popular products, including

● Kubernetes, developed by Google.

● Docker, a containerization platform.

● Dropbox has migrated its performance-critical components from

Python to Go.

● Infoblox's next-generation networking products are developed using

Go.

Variables

A variable is a designated memory area that stores a certain type of data.

Variables in Go may be declared by using the var keyword followed by the

variable's name and type.

For example, var age int

defines an int variable named "age." Variables can also be initialized with a

value when declared using the syntax var name type = value.

For example, var score float64 = 9.5

initializes a variable named "score" of type float64 with a value of 9.5.

Type Inference

Type inference is a Go feature that enables the compiler to automatically

deduce the type of data of a variable based on its value. When a variable is

17

initialized with a value, its kind can be inferred, allowing the type declaration

to be omitted.

var name = initial_value

Go will automatically infer the type of that variable from the initial value.

Go also provides another concise way to declare variables. This is known as

short-hand declaration and it uses “:=” operator.

name := initial_value

It is the short-hand syntax to declare a variable.

For example, age := 30

declares a variable named “age” of type int and initializes it with a value of 30.

Functions

In Go, functions are chunks of code that execute certain tasks. They receive

parameters as input, process them, and return output values.

In Go, the syntax for defining a function is:

18

func functionName(param1 type1, param2 type2) returnType {

// function body

}

The function name is accompanied by the input arguments, which are

separated by commas in brackets. Each parameter has a name as well as a type.

The data type of the value returned by the function is specified by the

returnType.

In Go, functions can return multiple values, which are provided in brackets

following the function

parameters:

Go Packages

Packages are used in Go to organize and reuse code. A package is a grouping

of similar Go source files in the same directory. Go has a standard package

library that can be exported and used in any Go program.

The main function of Go is the point of entry for program execution. Every

executable Go program must have a main function that is located in the main

package. The main package is Go's default package for creating executable

19

applications. The package name should be specified in the first line of every

Go source file using the syntax package packagename.

Package

packagename specifies that a particular source file belongs to package

packagename. This should be the first line of every Go source file.

Init Function

An init function may be found in every Go package. There must be no return

type and no arguments in the init function. In our source code, the init method

cannot be invoked explicitly. After the package is initialized, it will be called

automatically. The syntax for the init function is as follows:

func init() {

// initialization tasks go here

}

The init function can be used to execute initialization duties as well as to

validate the program's correctness before execution begins.

The order of initialization of a package is as follows:

1. Package-level variables are initialized first.

2. The function init is called next. A package can have numerous init

functions (either in a single file or spread over multiple files), and the

compiler calls them in the order they are provided to it.

3. When a package imports other packages, the imported packages are the

first to be initialized.

4. Even if a package is imported from numerous packages, it will only be

started once.

Arrays

20

A collection of items of the same kind is called an array. An array, for

example, is formed by the numbers 5, 8, 9, 79, and 76. Combining values of

multiple kinds, such as an array containing both strings and integers, is not

permitted in Go.

Declaration

An array is of the type '[n]T'. The letter 'n' signifies the number of items in an

array, while the letter 'T' represents the type of each element. The type

additionally includes the number of components 'n'.

var a [3]int

The preceding code declares a 3-dimensional integer array. Every item in an

array is immediately allocated the array type's zero value. Because 'a' is an

integer array in this example, all of its elements are assigned to 0, the zero

value of 'int'.

In Go, arrays are value types rather than reference types. This implies that

when they are allocated to a new variable, they are assigned a duplicate of the

original array. If you alter the new variable, the changes will not be reflected

in the original array.

The for loop may be used to traverse across array

elements:

21

The range version of the for loop in Go is a more efficient and succinct

approach to iterate over an array. 'range' delivers the index as well as the value

at that index.

Slices

A slice is an array's handy, versatile, and powerful wrapper. Slices do not have

their own data. These are simply pointers to existing arrays.

Creating a Slice

'[]T' represents a slice having elements of type 'T'. A slice does not have its

own data. It is nothing more than a representation of the underlying array. Any

changes to the slice will be reflected in the underlying array. The number of

items in the slice is represented by the slice's length. The slice's capacity is the

number of items in the underlying array beginning at the index from which the

slice is formed.

Creating a slice using make:

func make([]T, len, cap) []T

`make` can be used to create a slice

Channels

In Go, channels are used to interact between goroutines. They function in the

same way as pipes do, with data provided from one end and received from the

other.

Declaring channels

Every channel may only transmit one type of data; additional types are not

authorized. "chan T" specifies a channel of type T. The zero value of a channel

is nil, and it, like maps and slices, should be defined using make.

22

In this example, "a" is a nil int channel, as defined by the if expression. When

data is sent to a channel, the transmitter is disabled until the channel is read by

a receiver, and vice versa. This feature allows goroutines to successfully

interact without the use of explicit locks or conditional variables.

Deadlock

A deadlock can arise when a goroutine is waiting to send data on a channel but

there is no recipient. A deadlock can also arise if a goroutine is waiting to

receive data on a channel but no other goroutine is transmitting data on that

channel.

Layered Architecture

A layered architecture is divided into three distinct layers: delivery, use-case,

and datastore. Each instruction and learning with the others via an interface

allows for easy application maintenance and expansion.

23

Delivery Layer:

● Accept the request and parse everything necessary from it.

● Calls use case layer

● Check that the response is in the proper format and send it to the

response writer.

Use-Case Layer:

● Business logic

● Communicates with datastore layer

Data Store Layer:

● If the datastore changes, the complete application does not need to

update. Just the datastore layer will be modified.

● Easy to isolate any bugs, maintain the code and grow the application.

Dependency Injection

Dependency injection (DI) is a coding approach in which an object's

dependencies are given when the object is initialized. This gives you more

flexibility over when to add new dependencies and when to reuse old ones. DI

eliminates the connectivity between objects and their dependents, making code

maintenance and modification easier.

Factory Method

The factory method is a design pattern that allows objects to be created

without providing their particular classes. Instead of utilizing a function

Object() { [native code] } call directly, a factory function may be used to

generate objects. Factory approaches are classified into two types: basic

factories and interface factories. Straightforward factories yield struct

instances, whereas interface factories return interfaces, allowing the behavior

to be defined without revealing implementation specifics.

1.

24

➢ MySQL:

MySQL [] is a prominent relational database management system (RDBMS)

used by both small and big enterprises. MySQL, which is developed, sold, and

maintained by the Swedish corporation MySQL AB, is highly regarded for a

variety of reasons, including

● It is open-source and free to use.

● It has a powerful collection of capabilities that can handle a significant

portion of the functionality provided by more costly database solutions.

● It uses the SQL data language standard.

● It works with a wide range of operating systems and computer

languages, including PHP, PERL, C, C++, and JAVA..

● Even with enormous datasets, it executes rapidly and efficiently.

● It is very compatible with PHP, the most extensively used web

development language.

● Large databases can be supported, with a theoretical limit of 8 million

gigabytes (TB).

● The open-source GPL license allows for extensive customization.

25

Some of the key features of MySQL include

Plenty of good websites, including Facebook, Wikipedia, YouTube, Flickr,

and Google, which use MySQL (not for search). It's also popular for content

management systems (CMS) like WordPress, Drupal, Joomla, and phpBB.

Furthermore, a big number of web developers all around the world utilize

MySQL to create online applications.

➢ Docker:

Docker [6] is a software platform that makes it easier to design, test, and

deploy applications. This is accomplished by packaging software into

standardized units known as containers, which include everything the software

requires to function, such as libraries, system tools, code, and runtime. Docker

allows applications to be instantly deployed and scaled in any environment,

providing developers with confidence that their code will work smoothly.

Docker is a component of the Moby project, which is a framework for creating,

operating, and managing containers on servers and in the cloud. The name

"docker" can refer to both the tools (commands and daemon) and the

Dockerfile file format. Formerly, deploying a web application involved

purchasing a server, installing Linux, configuring a LAMP stack, and

26

executing the program. Yet, as cloud-based systems have grown in popularity,

the idea of a server has been abstracted into a software-based container that

can run on any hardware.

Containers are a mixture of the Linux operating system with a hyper-localized

runtime environment, allowing them to be highly portable and scalable.

➢ Understanding Containers

Container technology can be divided into three categories: builder, engine, and

orchestration.

● Builders are tools used to create containers, such as Dockerfile for

Docker or distro builder for LXC.

● Engines run the container, such as the docker command and daemon

for Docker, or contained and postman for other engines.

● Orchestration technologies, such as Kubernetes and OKD, manage a

lot of containers at once.

Containers contain both software and its settings, saving system administrators

time and effort as compared to installing an application from a traditional

source. Dockerhub and Quay.io are repositories of pre-built pictures that

container engines can utilize.

One of the most appealing features of containers is their ability to "die" gently

and revive as needed for load balancing. Containers are built to emerge and

vanish invisibly, making them incredibly scalable and cost-effective.

Container orchestration systems, such as Kubernetes and OKD, can handle

huge numbers of containers efficiently.

➢ Why use Docker?

Open-source technologies enable developers to select the tools that best suit

their needs. Docker is a compact and clean environment ideal for developers

27

who wish to test without the need for complicated orchestration. If Docker is

not accessible, Podman can be used instead. To maintain long-term flexibility

and avoid vendor lock-in, it is critical to favor open-source and open-

standards-based solutions.

Finally, Docker facilitates application deployment by abstracting hardware

and offering standardized containerized environments. Containers are great for

cloud-based applications because they are very portable and scalable.

Managing many containers is simple and efficient with the right container

orchestration tools. Open-source solutions such as Docker and Podman

provide developers with flexibility and choice while avoiding vendor lock-in.

➢ Postman:

Postman[7] is a robust API testing, development, and modification tool. It has

over 5 million monthly users and provides a user-friendly graphical interface

that enables various sorts of HTTP queries (e.g., GET, POST, PUT, PATCH),

environmental savings, and API-to-code translation for languages such as

JavaScript and Python.

28

Fig 3. Postman Endpoints

29

Postman provides collections to help arrange tests. These are folders where

requests are saved and can be organized in any way the team sees fit. They can

also be exported and imported.

Also, Postman users may utilize variables to build distinct setups. A URL

variable, for example, might be addressed towards distinct test environments

(for example, dev-QA), allowing tests to be conducted in different contexts

utilizing existing queries.

➢ Swagger:

Swagger is a tool that allows you to define the structure of your APIs in a

machine-readable language, enabling the development of attractive and

interactive API documentation automatically. It can also produce client

libraries and automate testing in a variety of computer languages.

Swagger operates by requesting a YAML or JSON file with a full description

of the API in accordance with the OpenAPI Standard. This file contains

information on the API's available operations, arguments, return values, and

authentication requirements. It may also include conditions of use, contact

information, and license information.

Fig 4. Swagger endpoints

A Swagger specification can be written by hand or generated automatically

from comments in your source code. In swagger.io/open-source-integrations,

30

you may find a list of tools that can help you build Swagger from code. You

may ease API development, testing, and documenting by using Swagger to

explain the structure of your API, making it more accessible to others.

➢ Version Control:

Version control is a critical component of software development because it

provides a centralized mechanism for programmers to access, monitor, update,

and report on project progress. Github is a popular and free version control

application that includes functionality such as pull requests, merge, and fork.

Version control isn't only for software engineers. A Version Control System

(VCS) may also help graphic and web designers maintain track of all versions

of an image or layout. Designers may use a VCS to easily restore chosen files

to a prior state, analyze changes over time, and discover who last edited

anything that may be creating an issue. It also enables users to retrieve files

that have been lost or destroyed.

Git is a popular version control system (VCS) that offers various benefits.

Users may work offline, commit changes locally, and subsequently push those

changes to a centralized repository. Git also includes a distributed design,

which implies that developers may work on an identical project at the same

time without clashes. Git also supports branching, which allows programmers

to collaborate on multiple features at the same time without interfering with

each other's work.

To use Git efficiently, you must first grasp its foundations. Git differs from

other VCSs in how it saves and thinks about information. Understanding these

distinctions will thus assist users in avoiding misunderstanding when using the

tool.

31

3.2 Project Development Approach

● Software Development Life Cycle

The SDLC (Software Development Life Cycle) is a framework that describes

the activities that must be completed at each stage of the software

development process. A development team inside a software organization

follows this structure. The SDLC is a thorough strategy that explains how to

create, maintain, and replace specific software. This life cycle presents a

mechanism for enhancing software quality and the development process as a

whole. The SDLC is often known colloquially as the software development

process.

Fig 5: Software development cycle

32

● SDLC Models

The Software Development Life Cycle (SDLC) is a project management

model that explains the processes required in producing an information system,

from early feasibility analysis through post-development maintenance. Several

SDLC models, often known as Software Development Process Models, have

been developed to assist software development. Each model follows a unique

set of phases to guarantee effective software development.

The following are some of the most widely used and important SDLC models:

- Waterfall model

- Iterative model

- Spiral model

- V-shaped model

- Agile model.

● Scrum Model

Scrum is a software development technique that is agile and based on

incremental and iterative procedures. It is intended to be adaptive, quick,

flexible, and effective, with the purpose of providing value to the client

throughout the project's life cycle. Scrum aims to assure customer

happiness via open communication, joint ownership, and continual

development. The development process begins with a high-level concept

of what needs to be produced, followed by the formulation of a

prioritized list of characteristics (product backlog) desired by the

product owner.

33

Fig 6. Scrum Life Cycle

The Scrum technique is distinguished by small, periodic pieces of work known

as Sprints, which generally span 2-4 weeks and are used for feedback and

reflection. Each Sprint is a self-contained entity that creates a releasable

product increment that may be supplied to the client with minimum effort

upon request.

The process starts with a list of project objectives/requirements that will be

used to create the project plan. The customer prioritizes these goals by

weighing their worth and cost, which defines the number of iterations and

future delivery.

34

3.3 Code Development

Below I have provided the screenshots of the code used to create the product-

brand management system in an orderly manner.

a. DATABASE:

First the database for the product and brand is set. The table for both is

created in MySQL.

- setup.sql

Fig 7. Setting up the database

b. THREE-LAYER ARCHITECTURE CODE:

1. Data store layer

2. Service layer

3. Handler layer

35

1. DATA STORE LAYER

- productstore.go

Fig 8. Product datastore layer code

- brandstore.go

Fig 9. Brand datastore layer code

36

2. SERVICE LAYER

- productservice.go

Fig 10. Product service layer code

- brandservice.go

Fig 11. Brand service layer code

37

3. HANDLER LAYER

- httpproduct.go

Fig 12. Product handler layer code

- httpbrand.go

Fig 13. Brand handler layer code

38

c. MAIN

- main.go: source file

Fig 14. Source file code

Upon running the main file using:

go run main.go,

● Http server established on port 8000.

● Metric server which is part of the GOFR framework, starts on port

2121.

● Upon hitting the endpoint on port 8080 on Postman, the control

transfers to the main and then our middleware for authentication.

39

d. MIDDLEWARE

- middleware.go:

Fig 15. Middleware code

e. SWAGGER DOCUMENTATION

- swagger.yaml and swagger online editor

40

Fig 16. Swagger yaml file

Fig 17. Swagger online editor

f. POSTMAN

41

Fig 18. Sample output for product_GetByID

Fig 19. Sample output for brand_Get

42

Fig 20. Postman collection

43

CHAPTER - 4

PERFORMANCE ANALYSIS

4.1 Unit Test Coverage

Ran unit test coverage and discovered that all 32 tests passed, i.e. PASS, with

a total coverage of 100%.

Fig 21. Unit Test Coverage Check

4.2 Linter Check

A linter check was performed using the command

‘golangci-lint run’, which ensures that the program is properly structured and

follows standard code rules such as no gocognit complexity or funlen to be 0

and so on. In this project, no linter mistakes were discovered.

Fig 22. Linters check

44

CHAPTER - 5

CONCLUSIONS

5.1 Results Achieved

Throughout the course, I successfully learned and applied the principles of

GoLang, MySQL, and unit testing. The primary goal was to obtain practical

skills in these technologies, which I did by creating a web application that

performs basic CRUD operations. To ensure a well-structured and maintained

codebase, I created the application using a three-layered architecture. I also

used Postman for efficient testing and verification of the application's

functioning.

5.2 Application Contributions

GoLang has become a popular language in both open-source and commercial

applications. It has various benefits, including concurrency support, robust

typing, and fast performance. Among the major examples of GoLang usage in

the business are:

● Docker: Docker, a containerization platform, is built with GoLang as

one of its major components. Because of its simplicity, speed, and

compatibility with Linux containers, the language is an excellent

candidate for Docker's infrastructure.

● Swagger: Swagger, a popular framework for designing, implementing,

and documenting RESTful APIs, has included GoLang in its

ecosystem. The efficiency of GoLang and its ability to handle

concurrent queries contribute to Swagger's great speed.

● Postman: GoLang support has been added to Postman, a popular API

testing and development tool. GoLang's simplicity and speed make it

ideal for effectively processing API requests and answers.

45

5.3 Limitations

While the built program executes backend operations correctly, it needs a

frontend component. To improve the entire user experience, a user-friendly

and visually appealing front-end is required. As a result, future work should

focus on creating and implementing a front-end interface to supplement the

existing backend capabilities.

5.4 Future Work / Scope

The following areas for future improvement can be addressed in order to

further improve the application:

1. Frontend Development: The inclusion of a frontend component would

substantially improve the application's usability and appearance. This includes

creating user interfaces that are easy to use, adding interactive elements, and

maintaining a consistent user experience.

2. Functionality Expansion: Additional features can be introduced to make the

application more comprehensive and feature-rich. Advanced CRUD

operations, user authentication and authorization, data validation, and

interaction with external services or APIs are all possible.

The program may be developed into a more robust and user-friendly solution

by focusing on these areas of future growth.

46

REFERENCES

[1] About Zopsmart Technologies from ZopSmart.com https://zopsmart.com

[2] Documentation Go. Available at: https://go.dev/doc/

[3] Gomock gomock package - github.com/golang/mock/gomock - Go

Packages.

Available at: https://pkg.go.dev/github.com/golang/mock/gomock

[4] Swagger https://swagger.io/

[5]MySQL documentation MySQL. Available at: https://dev.mysql.com/doc/

[6] Docker. Available at: https://hub.docker.com/_/docker-docs

[7] Postman (2023) Overview, Postman Learning Center. Available at:

https://learning.postman.com/docs/introduction/overview/

	DECLARATION
	CERTIFICATE
	ACKNOWLEDGEMENT
	TABLE OF CONTENT
	LIST OF ABBREVIATIONS
	LIST OF FIGURES
	ABSTRACT
	CHAPTER - 1
	CHAPTER - 2
	CHAPTER - 3
	CHAPTER - 4
	CHAPTER - 5
	REFERENCES

