
THREE LAYERED ARCHITECTURE IN JAVA

Project report submitted in partial fulfillment of the requirement for
the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Ishita (191326)

Under the supervision of

Dr. Rajni Mohana

to

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology Waknaghat,
Solan-173234, Himachal Pradesh



Candidate’s Declaration

This is to certify that the work which is being presented in the project report titled “Three

Layer Architecture in Java” in partial fulfillment of the requirements for the award of the

degree of B.Tech in Computer Science And Engineering and submitted to the Department of

Computer Science And Engineering, Jaypee University of Information Technology,

Waknaghat is an authentic record of work carried out by Ishita (191326) during the period

from 7 Feb & 2022 to 29 May under the supervision of Dr.Rajni Mohana, Department of

Computer Science and Engineering, Jaypee University of Information Technology,

Waknaghat.

Ishita

(191326)

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Dr.Rajni Mohana

Assistant Professor (SG)

Computer Science & Engineering and Information Technology

JUIT, Waknaghat

Dated: 10th May,2023



Plagiarism Certificate



Acknowledgement

I would like to thank Rashmi Singh, Manager of HR in Talent Acquisition, of Zopsmart

Technologies, Bangalore for allowing me to do an internship within the organization.

I also would like to thank Mr. Ujjawal Misra, Mr. Prakhyat Saini, and all the people that

worked along with me at Zopsmart Technologies, Bangalore for their patience and

openness. They created an enjoyable working environment. I am extremely grateful to

my supervisor, Dr.Rajni Mohana, Assistant Professor (SG) ,Department of CSE Jaypee

University of Information Technology, Waknaghat, for her assistance. To complete this

assignment, my supervisor has extensive knowledge and a deep interest in the subject of

Cloud Computing. Her never-ending patience, intellectual direction, constant

encouragement, constant and energetic supervision, constructive criticism, good

suggestions, and reading many poor versions and fixing them at all stages made it

possible to finish this job.

Ishita (191326)

.



Table Of Content

S. No Contents Page No.

1.
2.
3.
4.
5.
6.
7.
8.

9.
10.

11.

12.

Candidate’s Declaration
Plagiarism Certificate
Acknowledgement
Table of Content
List of Figures
List of Tables
Abstract
Chapter 1: Introduction
1.1 Introduction
1.2 Problem Statement
1.3 Objectives
1.4 Methodology
1.5 About the Company
1.6 Organization
Chapter 2: Literature Survey
Chapter 3: System Development
3.1 Framework Used
3.2 Technical Requirements
3.2.1 Intellij
3.2.2 Postgres
3.2.3 Hardware Configuration
3.2.4 Software Configuration
3.3 Model Development
3.3.1 Algorithm
3.3.2 Deployment
Chapter 4: Experiment and Result Analysis
4.1 Api Request
4.2 Exceptional Handling
4.3 Validations
4.4 Swagger
4.5 Unit testing using Mockito
Chapter 5: Conclusions
5.1 Conclusion
5.2 Future Scope
5.3 Limitations

i
ii
iii
iv
v
vii
viii
1
1
3
4
4
6
8
9
15
15
15
15
16
17
17
17
18
19
22
22
26
27
28
35
38
38
39
40



List Of Figures

Figure No. Title Page no.

Figure 1 Three Layer Architecture 3

Figure 2 Architecture Methodology 5

Figure 3 ZopSmart Logo 6

Figure 4 Intellij 16

Figure 5 Docker 20

Figure 6 Post request to add category 22

Figure 7 Post request to add product 23

Figure 8 Get request to get all
categories

23

Figure 9 Get request to get product
by category id

24

Figure 10 Patch request to update a
product

25

Figure 11 Exceptional Handling 26

Figure 12 Validation 27

Figure 13 Swagger 28

Figure 14 Input to add a category 29

Figure 15 Output of adding a category 29

Figure 16 Edge case input 30

Figure 17 Edge case output 30

Figure 18 Output of get category 31

Figure 19 Input to create a product 32

Figure 20 Output of post a product 32

Figure 21 Edge case of productName 33

Figure 22 Output of edge case 33

Figure 23 Get product by product id 34

Figure 24 Get product by category id 35



Figure 25 Category controller test case 35

Figure 26 Product controller test case 36

Figure 27 Category service test case 36

Figure 28 Product service test case 37



List Of Tables

Table No. Title Page No.

Table 1 Hardware Requirement 17

Table 2 Software Requirement 17



Abstract

Developing a web application may seem like an easy task, but the difficulty lies in testing,

organizing, refining, and sustaining the code. To tackle these challenges, we utilize the Three

Layered Architecture approach, using Java programming language.

The three layers are Presentation layer, Business Logic Layer and Data Access layer which

are independent of each other. The presentation layer is responsible for providing a user

interface that enables users to interact with the application. It is the topmost layer of a

multi-tier architecture, and it communicates with the underlying business logic layer to

facilitate data processing and management. The business logic layer is responsible for

implementing the application's core logic and rules. It acts as an intermediary between the

presentation layer and the data storage layer, processing user requests and manipulating data

to produce meaningful results. It is essential to design this layer in a way that is modular,

scalable, and maintainable to ensure that the application functions efficiently and can evolve

over time with changing business requirements. Data Access Layer provides a standardized

way of accessing data from different sources, such as databases, files, and web services.



CHAPTER 1

INTRODUCTION

1.1 Introduction

Frameworks contain pre-written code that developers can reuse to construct applications or

web applications without starting from scratch each time. Everything required to construct an

app is provided or manifested as functions and classes in a comprehensive framework.

Frameworks written in a language are unique to that language.Frameworks can be used by

calling their methods, inheriting them, and providing "callbacks", listeners, or other Observer

pattern implementations. Framework is a collection of libraries that provide a skeletal

architecture for the implementation of specific software. The abstraction allows for common

design patterns to be easily reused while still allowing the specific details to be left to the

developers.

It is a basic web application that implements CRUD operations based on the three layered

architecture. Programs at each layer have their own unit test. There is also an

implementation of middleware that authenticates the http request before sending it to the

server. The three-tier architecture is a software architecture pattern that divides an application

into three interrelated layers: the presentation layer, the business logic layer, and the data

storage layer. Each layer is in charge of a distinct set of duties and has a well-defined

interface for interacting with the other layers. Presentation layer displays the application's

features and data to the user. It is used for interacting with the user. It gets the input from the

user and displays the associated output. The business logic layer is in charge of processing

data and enforcing the application's rules. It comprises all of the business logic of the

application, including as calculations, validations, and decision-making procedures. To

collect user input and retrieve and store data, the business logic layer connects with the

display layer and the data storage layer. The business logic layer in Java is often implemented

using Java classes. Data from a database or other data sources must be stored and retrieved

via the data storage layer. It consists of elements like file systems, database servers, and web

services. To send and receive data, the business logic layer and the data storage layer

communicate. Frameworks like Hibernate, JPA, or JDBC are frequently used to implement

Java's data storage layer.

1



ZopSmart has its own java framework that helps in implementing three layered architecture

easily and efficiently. Rocket is an application framework built using enterprise Java 11

intended to create high performing, easily testable and reusable code. This framework uses

various new techniques such as Plain old Java Object (POJO) and Dependency Injection(DI)

to develop enterprise applications thereby removing the complexities involved while

developing enterprise applications using Enterprise Java Beans (EJB). It is not open source.

The framework mainly focuses on providing various ways to help you manage your business

objects. It makes the development of Web applications much easier as compared to classic

Java frameworks and Application Programming Interfaces (APIs), such as Java database

connectivity(JDBC). It is a lightweight application framework used for developing enterprise

applications. The Rocket framework can be considered as a collection of sub-frameworks,

such as Core, HTTP, ORM. You can use any of these modules separately while constructing a

Web application. The modules may also be grouped together to provide better functionalities

in a Web application. The framework is loosely coupled because of dependency Injection.

The framework includes a health check and heartbeat mechanisms, enabling applications to

monitor their own health status and respond accordingly. This helps maintain the availability

and responsiveness of the application.

It supports caching to improve application performance by reducing repetitive computations

and enhancing response times. File operations, cron scheduling, tracing, and performance

monitoring features are also available, allowing developers to optimize their applications for

better efficiency.

The framework integrates with a flexible logger, enabling developers to log application

events, errors, and other relevant information for debugging and troubleshooting purposes. It

also provides middleware support, allowing developers to add additional functionality to the

request-response cycle, such as authentication, logging, rate limiting, and more. Furthermore,

Rocket seamlessly integrates with metrics systems enabling the collection and analysis of

application metrics. This helps developers monitor performance, identify trends, and make

data-driven optimizations.

2



Figure 1. Three Layer Architecture

1.2 Problem Statement

When used in Java applications, the three-layered architecture is a significant software design

pattern that can provide various advantages. A three-layered architecture may be required in

Java for a number of important reasons, including:

1. Separate needs- The display, business logic, and data storage layers are clearly separated

by the design from one another in terms of concerns. This makes it simpler to manage, test,

and maintain the programme by enabling developers to concentrate on separately developing

each layer.

2.Scalability and Reusability- One layer can be scaled up if it needs additional resources or

processing power without affecting the other layers. Since each layer can be written as a

3



standalone module that can be utilized in other applications, the architecture promotes code

reuse. This means that rather than starting from scratch, developers can save time and effort

by reusing code from already existing modules.

3.Increased security- The architecture offers better security since critical data can be housed

in a separate layer and protected using a variety of encryption techniques. As a result, even if

one layer's security is compromised, the remaining layers are still secure.

1.3 Objective

To create testable, structured, clean and maintainable web applications by using industrial

best practices. The aim is to simplify the task of developers who are creating applications that

require product and category data by providing a dependable and efficient API. By

simplifying data administration and retrieval, the API frees developers to focus on the

primary functionality of their applications. The API is built according to RESTful principles,

allowing it to be linked with other platforms and applications, making it a versatile and

adaptable solution for managing product and category data. In summary, the API provides

both users and developers with a trustworthy and effective solution.

1.4 Methodology

To develop web applications, work was done on linux environment.Intellij Idea is the

tool used to write code, debug and check metrics of the application . Java is the

language used to develop the framework. Since the framework is used to develop the

backend of a web application, it doesn’t need a UI. Three layered architecture was

implemented to build the project and all the layers were independent of each other. The

testing of the layers were done independently.The Spring-Boot API was created

utilizing a methodical process that adhered to the listed requirements. The requirements

collecting, planning, implementation, testing, and deployment stages were all part of

the development process.

The first stage in the strategy was to comprehend the API's needs by looking at the

problem description and the project's main goal. Following the definition of the

requirements, a three-tier architecture for the API was created, with a controller layer, a

service layer, and a dao layer.

The implementation of the API utilizing the Spring-Boot framework came after the

4



architecture had been created. Using Spring-Boot Controllers, Services, and Data

Access Objects, the controller layer, service layer, and dao layer were individually

implemented.

Once the implementation was complete, the API was rigorously tested to confirm that

it satisfied the requirements. There were several testing techniques used, including unit

testing with frameworks like Mockito and JUnit5. After all problems were fixed, the

API was set up using Docker containers and deployed to an AWS EC2 server for public

use. The chosen approach worked well in creating a scalable, useful Spring-Boot API

that complied with the specifications. The three-layer strategy employed provided for a

distinct separation of responsibilities and made it easy to maintain and upgrade the

API.Furthermore, the deployment process was efficient and streamlined, thanks to the

use of Docker containers and the Spring-Boot framework, which enabled rapid

development and easy deployment.

Figure 2. Three Layer Architecture Methodology

5



Three Layered Architecture -

The three layers are independent of each other and communicate with each other with the

help of an interface.

Controller Layer- It interacts with the user for the input and output.

Service Layer- It has all the business logic written inside it and this layer further interacts

with the Database layer.

Repository Layer- It interacts with the database where the data is stored like a table.

1.5 About the Company

ZopSmart is a software solution firm that offers you all the resources you need to launch an

online store. ZopSmart's product line can assist you in building and running the ideal

business. It provides a range of products, including, among others, Smart Store Eazy and

Smart Payment Gateway. Zopsmart, a company that creates cutting-edge technologies for the

retail sector, with clients ranging from small, independent furniture retailers to huge,

international chains. An e-commerce platform, digital marketing, mobile commerce,

automated logistics systems, management platforms, order management platforms, and

internet of things (IoT) gadgets are just a few of the company's offerings. It delivers software

solutions to some of the best businesses and has its own framework for operation.

Figure 3. ZopSmart logo

ZopSmart Solutions

● E-Commerce- Prioritizing your consumers' requirements and preferences is vital if you want

to give them an outstanding shopping experience. Implementing intuitive search capability,

6



which enables users to easily and quickly find what they're looking for, is one approach to

accomplish this. Additionally, you may streamline the ordering procedure and make it easier

for clients to complete their purchase by personalizing the product listing. It's critical to

provide self-service return and reschedule options in order to further improve the consumer

experience. Customers can quickly return products if they are dissatisfied with their purchase

thanks to the ability to easily adjust orders in accordance with changing needs.

● M-Commerce- In the current digital era, it is essential to offer customers a seamless and

pleasurable purchasing experience on mobile devices. Investing in a responsive website that

can adapt to all screen sizes will guarantee that your clients have a wonderful shopping

experience. Customers will be able to browse your online store on any device thanks to this,

regardless of screen size or quality, and will have a consistent and optimized browsing

experience. You can create native Android and iOS mobile applications that offer a top-notch

experience to advance your mobile buying experience.

● E-Wallet: To enhance customer loyalty, consider utilizing an integrated wallet feature. With

an integrated wallet, the checkout process becomes quicker and easier, which can lead to a

more satisfying shopping experience for customers. Additionally, by offering refunds and

wallet cashback, you can incentivize customers to make repeat purchases and further build

their loyalty towards your brand.Furthermore, integrating wallet-credit as gift cards can be a

cost-effective strategy for acquiring new customers while simultaneously increasing sales.

● Order Management: All of the orders will be displayed in a single interface, together with

information about them like the client, the total, and the order status. Order statuses are

updated as each step of the process is finished. Option to change the order's contents.

● Operations: Using the Store-manager mobile app to manage daily tasks will allow you to

provide your customers with outstanding service at the lowest possible cost. Mobile

inventory checker app to assure catalog accuracy. Picker is a smartphone app that makes

picking and packaging effortless and effective. For the most effective delivery route, use the

dispatch module. App for reliable order fulfillment, risk-free money collection, and carefully

selecting returns.

7



● Monitoring and Analytics: Using real-time tracking to keep an eye on every aspect of your

operation, you can manage your organization with little supervision. alerts of deviations in

the operations process that call for immediate action Analytics with intelligence helps

identify patterns and improve procedures. You can track down any problems with the help of

thorough logs for each activity.

1.6 Organization

The rest of this report is organized as follows:

Chapter 1: In Chapter 1, we evaluate our Spring Boot application and briefly explore the

advantages of constructing our Spring Boot application utilizing a three-layered design. A

summary of the system's rationale and purpose is offered together with the issue statement,

which serves as the foundation for our project's objectives.

Chapter 2: In Chapter 2, we conduct a literature research in which we collect several papers

and other resources that assisted us in creating our RESTful API utilizing the advised

three-layered architecture technique.

Chapter 3: The objective of Chapter 3 is to outline the detailed procedure we utilized to

construct the study arrangement. To begin, we combed through many documents and

e-commerce portals to build a list of essential components that ought to be included in the

project's API backend. The primary subjects in this chapter are the equipment and technology

employed in the procedure.

Chapter 4: In Chapter 4 of the report, we present the results and outputs of our RESTful API

project. It aims to demonstrate how precise and effective our implementation is. This chapter

also provides a thorough analysis of a number of API use cases with an emphasis on potential

applications.

Chapter 5: The final project model and a summary of the study results are included in

Chapter 5 of the report. It highlights areas that would benefit from more research and effort.

Additionally, the creative work that was created as a result of the study is presented in this

chapter.

8



Chapter 2

Literature review

The Java Framework, developed by ZopSmart Technologies, incorporates various

technologies to achieve its objectives. In this literature survey, we delve into the research and

literature pertaining to the technologies employed in the Java Framework.

Java- Since its introduction in the middle of the 1990s, Java, a high-level programming

language, has grown significantly in popularity. Java is a great language for novices to learn

because of how simple its syntax is to understand and write. Furthermore, Java is

platform-independent, allowing programmes written in it to operate without change on a

variety of different operating systems[1]. Java is now one of the most popular programming

languages for creating cross-platform apps as a result of this functionality. The success of

Java is also largely due to its object-oriented programming approach. This architecture

enables programmers to group their code into reusable objects, which makes managing and

maintaining their programmes simpler. Automatic garbage collection is another feature that

Java enables, which lessens the possibility of memory leaks and other memory-related

problems. Java is also heavily utilized while creating mobile applications for Android-based

devices. Because Android is built on top of the Java Virtual Machine (JVM), programmers

may utilize Java to create robust, adaptable, and simple-to-maintain Android apps.

Java is very well-known for its security capabilities. Because it is intended to prevent harmful

code from being executed, it is a popular choice for developing secure apps. This is

accomplished by running Java code in a "sandbox" environment that limits the code's access

to system resources. It also has a large ecosystem of libraries and frameworks. Because they

provide ready-made solutions to common problems, these pre-written code modules can be

used to save time when developing applications. Spring, Hibernate, and Struts are some

popular Java frameworks. Java is very widely used in the business world. Many major

organizations rely on Java-based apps for day-to-day operations, making it a vital talent for

developers interested in working in the enterprise arena.

9



Gradle- Java applications can be created more easily thanks to Gradle, a well-liked build

automation tool. Due to its adaptability and simplicity of usage, it has grown in popularity

among developers since its initial introduction in 2007. One of Gradle's main benefits is its

adaptability.Programmers can use its difficult scripting language to develop innovative logic

and automate difficult processes. This means that developers can adapt their build process to

meet the specific requirements of their application rather than being constrained by the

restrictions of a predetermined build system. Gradle also offers a number of useful features

that streamline the building process. It has a dependency management system, for instance,

which automatically manages and downloads the application's dependencies. Developers are

no longer required to manually acquire and maintain dependencies, which can be laborious

and prone to mistakes.

Another essential trait is the ability to work on several projects at once. Due to this,

developers are able to define and control massive projects with several modules and

dependencies as a single entity. By ensuring that modifications to one module do not effect

another, this makes maintaining big codebases simpler. Gradle is also very extensible, with a

huge selection of plugins and extensions available right away to enhance the build process.

Because of this, it is a very configurable tool that can be tailored to the unique needs of each

Java project.

In conclusion, Gradle is a powerful and flexible build automation tool that accelerates the

creation of Java applications. Developers frequently choose it because of its adaptability,

simplicity, and potent capabilities. It is a helpful tool for managing large codebases because it

supports multi-project builds and has a dependency management system.

Java Mock for testing- A simulated or artificial object used in software development to test

the behavior of other objects or methods is referred to as a "Java mock." To put it another

way, a Java fake is a stand-in for a real object that enables programmers to test their code in a

supervised setting[2]. In order to evaluate interactions between objects, which might be

challenging or time-consuming to test with real items, mock objects are frequently used. A

mocking framework like Mockito or EasyMock can be used to construct a Java mock.

Without writing complicated code, these frameworks let developers rapidly and easily

construct mock objects.

10



To make sure that code is operating as expected, test-driven development (TDD) and

behavior-driven development (BDD) practices frequently employ Java mocks. Developers

can isolate particular sections of code and test them using mocks without affecting other

components of the application. A Java mock, to put it simply, is a simulated object used in

software development to test the functionality of other objects or methods. It is an effective

tool for code testing and making sure that programmes are running properly.

Pub-Sub- Additionally, the Rocket framework utilizes various pub-sub systems for

asynchronous messaging and event-driven architectures. These systems encompass Kafka,

Avro, EventHub, EventBridge, and Amazon SNS. Extensive research has been conducted on

these systems, exploring aspects like performance, scalability, reliability, and security.

In conclusion, thorough research has been conducted on the technologies employed in the

Java Framework. The effectiveness of pub-sub systems as tools for software development

and distribution has been thoroughly investigated. These technologies are incorporated into

the Java platform, which offers a dependable and scalable platform for creating software

systems such as web applications.

Redis- Keeping common in-memory data structures stored Redis is becoming increasingly

popular. The primary benefit of Redis is its capacity to store and retrieve data from memory,

enabling quick access to data. Strings, hashes, lists, sets, and sorted sets are among the data

structures that Redis supports. Redis is a well-liked solution for numerous use cases,

including caching, messaging, and real-time data processing, because to its adaptability.

Redis enables data replication and sharding, providing fault tolerance and high availability.

Because Redis can store data in memory, it is also ideal for use cases where quick access to

data is crucial. Redis has also been widely used by many different industries, including

e-commerce, social networking, and gaming. IIts fast performance and flexible data

structures make it the ideal platform for applications that require real-time data processing

and analysis.

Cassandra- Cassandra's ability to grow horizontally across several nodes, offering high

availability and fault tolerance, is its main advantage. Cassandra excels in processing

enormous volumes of data due to its distributed architecture, which makes it simple to add or

remove nodes to accommodate changing data needs.

11



Cassandra's capacity to manage enormous amounts of data at quick read and write speeds is

one of its main advantages. Cassandra is the best option for applications that need quick and

effective data writes since it has a data model that is designed for workloads that involve a lot

of writing. Finance, healthcare, and social media are just a few of the sectors where

Cassandra has been widely implemented. It is the perfect platform for managing massive

volumes of data in real-time due to its scalability, quick read and write rates, and distributed

architecture.

Docker- Since its introduction in 2013, the well-known containerization platform Docker has

grown in popularity. The ability to bundle and distribute software in containers is Docker's

key feature. Because they separate software from the underlying system and guarantee that it

operates consistently regardless of the host environment, containers are a quick and effective

way to run programmes. The portability of Docker is one of its main advantages. Developers

may more quickly test and deploy software across several platforms since Docker containers

are simple to move between various environments[3]. A central repository for storing and

distributing containers is another feature of Docker that makes it simpler for teams to work

together on software development projects.

The scalability of Docker is an additional advantage. Applications may be scaled to suit

changing demand because of Docker's simplicity in managing many containers. Additionally,

developers can manage and automate container deployments thanks to Docker's interface

with well-known orchestration technologies like Kubernetes. Docker also includes a number

of tools and features that make container management simple. For instance, Docker

Compose, a built-in orchestration tool, enables developers to create multi-container

applications and control their deployment and scalability. Additionally, a variety of security

features in Docker make it simple to create safe containerized programmes. For instance, it

facilitates user namespaces, allowing containers to run with their own user and group IDs,

thereby preventing unauthorized access to system resources.

Postman- The API (Application Programming Interface) platform Postman is a stand-alone

tool for testing applications that creates, tests, designs, modifies, and documents APIs. For

sending and examining HTTP requests and answers, it offers a straightforward Graphical

User Interface. For testing purposes, utilizing Postman eliminates the need to create any

HTTP client network code. Instead, we create collections of test cases and let Postman

communicate with the API.Almost all of the functionality that a developer would want is

12



contained in this tool. This tool can transform the API into code for languages like JavaScript

and Python as well as perform other HTTP requests including GET, POST, PUT, and PATCH.

Postman's rich feature set and ability to work with various technologies make it a valuable

tool for developers working with the java framework. The automation features of Postman

are another important aspect. API testing can be automated by developers using Postman,

which can save testing time and increase testing precision. A crucial tool for DevOps

organizations, Postman may also be linked with well-known CI/CD programmes like Jenkins

and Travis CI.

Additionally, Postman offers a large selection of pre-built integrations with well-known APIs

like Twilio, Stripe, and Slack. Developers may easily create and test APIs that interface with

these well-known services thanks to these integrations. Postman's simplicity of use is one of

its key advantages. The platform's user-friendly interface makes it straightforward and

intuitive for developers to construct and test APIs without needing much technical

knowledge. Additionally, Postman offers thorough support materials and documentation to

aid developers in getting up and running quickly.

Swagger- For creating, outlining, and testing RESTful APIs, many people use Swagger. We

will look into Swagger's numerous characteristics, advantages, and disadvantages in this

literature review, as well as its uses in a variety of sectors. The ability of Swagger to produce

interactive documentation for APIs is one of its key advantages. This documentation offers

developers a simple interface for exploring and comprehending API endpoints, parameters,

and answers. Java, Python, and JavaScript are just a few of the programming languages that

Swagger supports for code creation. Through less manual coding needed to create an API,

this can hasten the development process.

Swagger enables API design and administration functions in addition to documentation and

code creation. For instance, Swagger enables developers to specify and enforce API

standards, such as parameter formats and naming conventions. The quality and consistency of

APIs throughout an organization may be enhanced as a result. Swagger also includes a

number of useful tools for testing and troubleshooting APIs. It comes with an in-built testing

framework that allows developers to rapidly and simply test their APIs to ensure that they are

working properly. Furthermore, numerous debugging tools, such as logging and tracing

support, are provided, making it simple to locate and fix API issues. Swagger also offers API

13



versioning, which is a useful feature. Developers can declare a variety of API versions using

Swagger, each with its own set of endpoints and parameters. This allows for easy backward

compatibility while providing extra features and capabilities.

Git and Github- Developers can follow changes to their code over time using the distributed

version control system known as Git. It offers tools like branching, merging, and tagging that

let developers manage many versions of a project and work together on code. Git's speed and

efficiency, which enable developers to work on vast codebases without experiencing

productivity hiccups, are among its key advantages. In contrast, GitHub is a web-based

platform that offers hosting for Git repositories in addition to extra tools for teamwork and

project management. Developers can monitor issues and defects on GitHub, share their code

with others, and participate in open-source projects.

14



Chapter 3

System Development

3.1 Framework Used

SpringBoot

A well-liked open-source framework called Spring Boot is used to create web apps in Java. It

is frequently used because of how simple it is to use, how quickly it can be developed, and

how well it can interface with other Spring frameworks. The framework offers a subjective

method for creating applications, allowing the developer to concentrate on business logic

rather than setup. By cutting down on the amount of time needed for setup, configuration, and

deployment, Spring Boot increases developer productivity[4]. Along with these built-in

capabilities and connectors, the framework offers starter packs and auto-configuration, which

streamline development and cut down on external dependencies. Due to its optimized

application startup and runtime behavior, it had higher performance. The framework also has

integrated caching, which can enhance the performance of applications even more. It also

offers a testing-friendly environment with support for end-to-end, unit, and integration

testing. The framework offers several tools and modules, including JUnit and Mockito, that

make testing easier and raise code quality.

3.2 Technical Requirements

3.2.1. Intellij

For Java developers, IntelliJ IDEA is a well-liked integrated development environment

(IDE). It was created by JetBrains and is renowned for its strong features, approachable

interface, and comprehensive support for a variety of technologies. Another significant

advantage of IntelliJ is its support for version control systems. It supports Git, Subversion,

and other version control systems, which makes it simple to manage code changes and

communicate with other developers. Additionally, it supports code reviews and pull requests,

enabling teams to study and combine code changes more quickly.

A number of software development and deployment tools are also included with IntelliJ. It

supports widely used deployment platforms like Docker and Kubernetes as well as build tools

like Maven and Gradle. In a variety of settings, from local development machines to

cloud-based production environments, this makes it easier to create and deliver software.

15



One of IntelliJ's most useful features is the ability for plugins. With thousands of them freely

available, it offers a robust ecosystem for plugins that enables developers to increase the

IDE's functionality. It is simple to modify the IDE to meet the unique requirements of a

project thanks to the plugins for well-known frameworks, code analysis tools, and

productivity tools that are included.

A variety of productivity tools are also included in IntelliJ in addition to these characteristics,

which can aid developers in working more effectively. The use of keyboard shortcuts, code

templates, and a variety of code completion and suggestion tools can all help programmers

create code more quickly and with fewer mistakes.

Figure 4. Intellij Idea

3.2.2. Postgres

With features like transaction support, crash recovery, and data integrity checks, postgreSQL

is created to be very dependable. Replication is also supported, enabling high availability and

failover[5]. PostgreSQL supports huge databases and high concurrency since it is made to be

scalable. Additionally, partitioning is supported, enabling dispersed databases and better

performance. It is intended to be extendable and supports the use of unique data types,

16



operators, and functions. Additionally, it supports procedural languages like PL/SQL and

PL/Python, enabling the development of sophisticated stored procedures.

3.2.3 Hardware Configuration

Table 1. Hardware Configuration

3.2.4 Software Configuration

Table 2. Software Configuration

3.3 Model Development

Developing a model for a Spring Boot application involves several steps, which include:

1. Creating the Model: The creation of the application's data model is the first step in the

model development process. In order to store and manipulate data, it is necessary to

determine the entities and relationships that will be used. For example- for an ecommerce

store’s catalog , it would have a variety of categories and projects. The relation between them

would be a category can have a variety of products like electronics can have mobile, laptops,

television etc.

2. Selecting a database for storing data : Selecting a data storage place that works with Spring

Boot is the next step. Relational databases like PostgreSQL and MySQL as well as NoSQL

17



databases like MongoDB and Cassandra are popular options. This project is using postgres

for the management of data.

3. Create Entity class - Create the relevant Java entity classes in accordance with the

recognised entities and their connections. These classes should contain the necessary

constructors, methods, and fields to represent the entities.

4. Creating Dao interface- The ways in which a user interacts with a repository are specified

by its interfaces. These interfaces can be built manually or with the aid of programmes like

Spring Data JPA. Following that, the built-in support for database access in Spring Boot can

be used to build the repository APIs.

5. Implementing Dao interface- Apply Spring Data JPA to the repository interface

implementation. As a result, you will be able to use straightforward method calls to carry out

CRUD actions on the entity classes.

6. Creating Service class The service layer interacts with the dao layer and fetches and post

data into the database with the help of crud api. The service layer stores the business logic of

the application. It specifies the procedures to be followed when interacting with the

repositories and carrying out the required tasks.

7. Creating Controller class - It interacts with the user and performs functions based on what

the user demands. It interacts with the service class and api are defined in the controller class.

It will manage incoming HTTP requests, then call the relevant service methods to carry out

the required tasks.

8.Testing - It is crucial to test the model after it has been developed and put into use to make

sure it functions as intended. Unit tests, integration tests, or end-to-end tests can all be used to

do this. JUnit, Mockito, and other tools are available for testing.

3.3.1 Algorithm

1. Create a class called Category Entity that defines the category's properties, including

its id, name, description, and any other pertinent fields.

2. Make a CategoryRepository interface that extends JpaRepository and includes

methods for CRUD operations such findAll(), findById(), save(), deleteById(), and

others.

18



3. Making a CategoryService interface will allow you to specify the business logic for

categories' methods. This could provide tools for adding, reading, updating, and

deleting categories

4. Create a class called CategoryController that will handle HTTP requests and

responses for operations related to categories. In order to provide CRUD operations

on the Category resource, it should implement RESTful endpoints .

5. The Create, Read, Update, and Delete methods should be used: In order to conduct

CRUD operations on the Category entity, these methods should make use of the

repository and service layers.

6. To prevent bad data from being stored, make sure that the proper data validation is

done.

7. Run tests on each endpoint to ensure that they produce the desired results. An

automated testing framework like JUnit is used.

8. Launch the application, and test the endpoints using swagger or postman.

3.3.2 Deployment

The foremost step before deploying an application is to create the jar of the file and create a

docker image. Docker image is necessary so that the application can easily run on any of the

applications. Since Docker images are self-contained, they have all the configurations and

dependencies required to run an application. By doing this, the programme will function

reliably across various contexts and platforms.

19



Figure 5. Docker

To deploy the application, AWS is used. Following steps are followed to deploy an

application.

1. Create an EC2 instance- This requires selecting the appropriate EC2 instance type,

creating and configuring the instance, configuring the security groups, and

configuring the key pairs. Configure inbound and outbound rules and security groups

to set up access to your application.

2. Install Docker on the instance- Inside containers, applications may be created,

transported, and run thanks to a technology called Docker. Using the package

management, you may manually download and install Docker on the EC2 instance.

3. Build image of docker - It is necessary to create a Dockerfile, which is a script

containing instructions for building the Docker image. The application code must be

added, the base image must be provided, and any necessary customizations must be

configured. Before deploying the Docker image to the EC2 instance, the image must

be submitted to a container registry. Docker Hub, Amazon ECR, and Google

Container Registry are a few well-known container registries.

4. Building the spring boot application - A build tool like Maven or Gradle can be used

to build your Spring Boot application. Make sure to create a WAR file for your

application's packaging. The image is then pushed onto the docker hub and pulled

back on the ec2 instance.

20



5. Pull docker on ec2 instance - After the Docker image is made available in the

container registry, you can use the Docker CLI to pull it onto the EC2 instance.

6. Run docker container - You can use the Docker CLI to pull the Docker image onto the

EC2 instance after it becomes accessible in the container registry.

21



Chapter 4

Experiment and Result Analysis

4.1 API Requests-

An API (Application Programming Interface) request is a web service request that enables

two different software applications to connect with one another. To get or send data from one

system to another, API calls are widely utilised.A common method for transferring data over

the internet, the HTTP protocol, is used to submit API inquiries. The most popular HTTP

methods for API inquiries are GET, POST, PUT, and DELETE.To initiate an API request,

you must first know the endpoint of the API that you want to use, as well as any required

parameters or headers. Once you have this information, you may send the request to the API

using a programming language or a tool like Postman.

Different types of HTTP request-

1. Post

Figure 6. Post request to add a category

22



Figure 7. Post request to add a product

The post request is made to add data to the database. Post request is made to add categories

and products to the respective table and map them to each other.

2. Get

Figure 8. GET request to get all categories

23



Figure 9. Get request to get all product and get by category id

Get request is used to fetch items from the database. For the product, get calls are being made

in two ways. First get call is getting all the products from the database and second get call is

getting the products based on specified product id since the category id and product id are

mapped to each other.

3. Put

In RESTful APIs, a PUT request is a sort of HTTP request method used to update or replace

an existing resource with new data. In other words, a PUT request is used to change the

content of a server resource.

4. Delete

It is used to delete a resource from the server in RESTful APIs. A DELETE request, in other

words, is used to remove a resource from the server. To make a DELETE request, the client

24



sends an HTTP request to the server containing the URL of the resource to be deleted. The

server gets the request and deletes the requested resource.

5. Patch

Figure 10. Patch request to update a product

A patch request is used to make modifications to an existing resource rather than replacing it

completely. To make a patch request, the client makes an http request to the server that

includes the url of the resource as well as instructions on how to edit the resource. The server

gets the request and makes the necessary changes to the resource.patch requests, unlike put

requests, only change the parts of a resource indicated in the request. Patch requests are

handy when you wish to make minor changes to a resource without having to replace the

entire resource.

25



4.2 Exceptional Handling

Figure 11. Exceptional Handling

The @ExceptionHandler annotation gives us a lot of leeway when it comes to handling

exceptions. To begin, all we need to do is annotate a method with the @ExceptionHandler

annotation, either in the controller itself or in a @ControllerAdvice class, to use it.

26



4.3 Validations

Figure 12. Validations

Validations and annotations are added to make the fields and class to act a certain way.

NotEmpty annotation confirms that a field cannot be left empty with adding it to the

database. Id annotations referring to the id would be added automatically on posting a

product or category to the database.

27



4.4 Swagger

Figure 13. Swagger

Swagger has all the endpoints for the product and category. Users can hit any end point and

from the controller it will call the service layer and then it will call the dao layer.

28



Category Api-

Create a category-

Figure 14. Input to add category

Figure 15. Output to get category

29



Edge case

If the category name is empty -

Figure 16. Edge case

Figure 17. Edge case in case category name is empty

30



Get all categories-

Figure 18. Output of get request

Do a get http request to get all the categories present in the database at that moment.

31



Product Api-

Create a new product

Figure 19. input to create a product

Figure 20. Output of product

32



Edge Case -

If the product name is empty -

Figure 21. Edge case if productName is empty

Figure 22. Output of edge case

33



Get products by product ID -

Figure 23. Get product by product id output

34



Get product by category id

Figure 24. Get product by category ID

4.5 Unit testing using Mockito -

Test for controller class -

Figure 25. Category Controller test cases

35



Figure 26. Product controller test case

Test for service class -

Category service -

Figure 27. Category service test case

36



Product service -

Figure 28. Product service test case

37



Chapter 5

Conclusion

5.1 Conclusion

Finally, with Java, a three-layered architecture is a well-established way to develop scalable

and maintainable software systems. The three levels - display, business logic, and data access

- establish a clear separation of concerns, allowing for faster software development, testing,

and maintenance. When developing a three-layered architecture, be sure that each layer has a

clear and distinct duty and that they communicate with one other via well-defined interfaces.

Furthermore, the usage of design patterns such as MVC or MVP might help to improve the

architecture's scalability and maintainability. Overall, a three-layered architecture in Java is a

strong and effective method to designing software applications, and it can help to produce

high-quality software systems with careful planning and implementation.

In a nutshell, we have successfully created a highly functioning REST API that is both

dependable and scalable using Spring Boot. The API's three-layer architecture makes it

simple to maintain and adjust the codebase as needed. We have successfully stored and

efficiently retrieved massive volumes of data by using a PostgreSQL database. The versatility

of the API is one of its key characteristics; it can be applied to a variety of applications, such

as e-commerce platforms and inventory management systems. It is straightforward to

construct specialized interfaces for a range of applications since it is possible to quickly

obtain all commodities, all categories, and all products under a certain category. Another

useful feature that makes it easier to find and fix problems in complex applications is the

logging capabilities of the API.

To make using the API easier, request and response headers have been introduced. Now that

developers can send sensitive information in the headers, including authentication tokens, the

API is more secure. Building a solid API also requires having the ability to determine a

response code. It can be used by developers to tell the client application whether the request

was successful or not.

38



The API's capability has been enhanced by the implementation of a product creation and

update API. Developers can now programmatically create and update goods, saving time and

effort. To sum up, our Spring Boot-based REST API is a flexible, scalable, and reliable tool

for creating a wide range of applications. Its three-layer design, use of a PostgreSQL

database, test cases, logging functionality, Request and Response Headers, and product

creation and update capabilities make it an excellent choice for developers. We are confident

that this API will help developers create high-quality applications that meet their business

needs.

5.2 Future Scope

1. Cloud Development -

Spring Boot apps will most likely continue to expand to accommodate cloud-native

development with technologies like Kubernetes, Docker, and serverless computing as

the use of cloud computing technology grows.

2. Microservice Architecture -

The use of microservices in application design is growing in popularity, and Spring

Boot applications will probably continue to develop with features like service

discovery and fault tolerance to better accommodate microservices architecture.

3. Reactive Programming -

Software developers are increasingly using reactive programming techniques, and

are anticipated to offer stronger support for these frameworks, which include Reactor.

4. Devops - Spring Boot applications will probably develop to offer better support for

DevOps practices and Continuous Integration and Continuous Deployment (CI/CD)

pipelines as the demand for quicker software delivery grows.

5. AI and ML -

In software development, machine learning and AI integration are becoming more and

more common. By integrating with frameworks like TensorFlow and Keras, Spring

Boot apps may offer improved support for these technologies.

39



6. Improved Security -

Software development is always concerned with security, and Spring Boot apps will

probably keep developing to offer improved assistance for secure coding procedures

and connection with security tools and libraries.

5.3 Limitations

The application implements only the backend part but front end can be done for the same to

make the application more attractive and user friendly.

40



References

1. Java documentation - get started (2023) Oracle Help Center. Available at:

https://docs.oracle.com/en/java/

2. Paraschiv, W. by: E. (2022) Getting started with Mockito @Mock, @Spy, @Captor

and @injectmocks, Baeldung. Available at:

https://www.baeldung.com/mockito-annotations

3. Overview (2023) Docker Documentation. Available at:

https://docs.docker.com/get-started/

4. Microservices. Available at: https://spring.io/microservices (Accessed: 12 May 2023).

5. PostgreSQL. Available at: https://www.postgresql.org/about/ (Accessed: 12 May

2023).

41


