
TRAFFIC SIGN RECOGNITION SYSTEM FOR

AUTONOMOUS VEHICLE

Project report submitted in partial fulfilment of the requirement for the degree

of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

By

Saransh Rohilla (191023)

Sannidhya Yadav (191008)

UNDER THE GUIDANCE OF

Dr Emjee Puthooran

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT

May 2023

TABLE OF CONTENTS

CAPTION PAGE NO.

DECLARATION i

PLAGRIGISM CERTIFICATE ii

ACKNOWLEDGMENT iii

LIST OF ACRONYMS AND ABBREVIATIONS iv

LIST OF FIGURES v

LIST OF TABLES vi

ABSTRACT vii

CHAPTER 1: INTRODUCTION

1.1 Introduction

1.2 Problem Statement

1.3 Objective

1.4 Methodology

1.5 Organisation

1

6

7

8

9

CHAPTER 2: LITERATURE REVIEW

2.1 Literature Review

2.2 Issues to be addressed in Dataset

10

14

CHAPTER 3: METHODOLOGY

3.1 Dataset

3.2 Brief Description of Parameters

3.2.1 Optimizers

3.2.1.1 Adam

3.2.1.2 RMSProp

3.2.1.3 Nadam

3.2.1.4 AdaMax

3.2.2 Pooling Layers

3.2.2.1 Max Pooling

3.2.2.2 Average Pooling

3.2.3 Activation Function

3.2.3.1 ReLU

16

18

20

22

23

25

26

28

29

30

31

31

3.2.3.2 Softmax

3.2.4 Dropout Layer

3.3 Pre-processing

3.3.1 Resizing

3.3.2 RGB to Gray Scale

3.3.3 Histogram Equalisation

3.3.4 Data Augmentation

3.4 Le-Net Model

3.5 Modified Le-Net Model

3.6 Evaluation Parameters

33

34

35

36

37

38

39

39

41

42

CHAPTER 4: RESULTS & DISCUSSIONS

4.1 Results

4.2 Discussions

44

47

CHAPTER 5: CONCLUSION & FUTURE WORK

5.1 Conclusion

5.2 Future Work

53

55

REFERENCES 57

APPENDIX A 61

APPENDIX B 62

PLAGRISM REPORT 63

i

DECLARATION

We hereby declare that the work reported in the B.Tech Project Report entitled “TRAFFIC SIGN

RECOGNITION SYSTEM FOR AUTONOMOUS VEHICLE” submitted at Jaypee University

of Information Technology, Waknaghat, India is an authentic record of our work carried out under the

supervision of Dr Emjee Puthooran, Associate Professor. We have not submitted this work elsewhere

for any other degree or diploma.

Saransh Rohilla

191023

Saanidhya Yadav

191008

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

Dr Emjee Puthooran

Associate Professor

Jaypee University of Information Technology, Waknaghat

Date:

ii

PLAGRISM CERTIFICATE

iii

ACKNOWLEDGEMENT

I would want to convey my heartfelt gratitude to Dr Emjee Puthooran, my guide, for his invaluable

advice and assistance in completing my project. He was there to assist me every step of the way, and

his motivation is what enabled me to accomplish my task effectively. I would also like to thank all

the other supporting personnel who assisted me by supplying the equipment that was essential and

vital, without which I would not have been able to perform efficiently on this project.

I would also want to thank the Jaypee University of Information Technology for accepting my project

in my desired field of expertise. I would also like to thank my friends and parents for their support

and encouragement as I worked on this assignment.

iv

LIST OF ACRONYMS AND ABBREVIATIONS

CNN Convolutional Neural Network

ML Machine Learning

TSR Traffic Sign Recognition

SIFT Scale Invariant Feature Transform

SURF Speeded Up Robust Features

HOG Histogram of Oriented Gradients

LBP Local Binary Patterns

DCT Discrete Cosine Transform

ELM Extreme Learning Machine

GTSRB German Traffic Sign Recognition Benchmark

BTSC Belgium Traffic Sign Classification

TSDR Traffic sign detection and recognition

ReLU Rectified Liner Unit

v

LIST OF FIGURES

Figure

Number

Caption Page

Number

1 Distribution of images in 43 different traffic sign classes. 16

2 Max-Pooling operation on a matrix 30

3 Average Pooling operation on a Matrix 31

4 Graphical Representation of ReLU activation function 32

5 Comparison of neural network with and without dropout layer 35

6 Input image at different steps of pre-processing (a) Image

resized in 32x32 (b) RGB to grayscale (c) Histogram

equalization

38

7 Example of Rotation, Translation and Shear mapping 39

8 Architecture of Le-Net Model 40

9 Architecture of Modified Le-Net Model 41

10 (a) Random image of a traffic sign (b) Pre-processed image of

the traffic sign

52

11 Results of the prediction of the model 52

vi

LIST OF TABLES

Table

Number

Caption Page

Number

1 43 Traffic Sign Classes with the corresponding Class ID 16

2 Summary of the Le-Net Model 40

3 Summary of the Modified Le-Net Model 42

4 Accuracy achieved using different parameters on the Le-Net

model

44

5 Accuracy achieved using different dropout layers 44

6 Accuracy achieved using different parameters on the modified

Le-Net model

45

7 Accuracy achieved using different dropout layers 45

8 Classification report of all 43 classes 45

vii

ABSTRACT

Automated driving and driver assistance systems heavily rely on accurate traffic sign recognition.

This involves two steps: detection and classification, which require sophisticated vision algorithms

due to the diverse visual characteristics of traffic sign images. Researchers are actively working on

developing novel methods to tackle this challenging problem. Traffic sign recognition is crucial for

self-driving cars as it enables them to understand the traffic environment and make informed decisions

based on road signs and markings.

The German Traffic Sign Recognition Benchmark (GTSRB) and the German Traffic Sign Detection

Benchmark (GTSDB) have provided standardized datasets for evaluating and comparing traffic sign

recognition and detection algorithms. These benchmarks have facilitated the development of more

accurate and robust systems and have accelerated progress in the field through international

competitions and challenges.

Deep learning, particularly convolutional neural networks (CNNs), has revolutionized traffic sign

detection. CNNs automatically extract relevant features from input images, eliminating the need for

manual feature extraction. The use of CNNs in traffic sign recognition has become a popular research

focus, as they are effective in image classification tasks. CNNs consist of convolutional layers,

pooling layers, and fully-connected layers, which collectively extract features, reduce spatial

dimensions, and classify images.

The Le-Net model, modified for traffic sign recognition, achieved 95.08% accuracy, while the

Modified Le-Net model achieved 97.86% accuracy. Different optimizers were used for training these

models, and the choice of optimizer depended on the model's architecture. RMSProp performed best

for the Le-Net model, preventing overshooting and providing smooth updates. Nadam performed best

for the Modified Le-Net model, converging quickly to the optimal point. It is important to experiment

with different optimizers and hyperparameters to find the best combination for a specific model

architecture.

The learning rate is another critical aspect in training neural networks. A learning rate of 0.001 was

found to provide better results than 0.01. A higher learning rate can cause overshooting and instability,

while a lower learning rate enables more stable convergence and accurate predictions. The optimal

learning rate depends on the problem and network architecture, and it is crucial to experiment with

different values.

viii

Regularization techniques, such as dropout, can improve the generalization performance of neural

networks by reducing overfitting. The choice of dropout percentage should be determined through

experimentation. Pooling methods like max pooling and average pooling have their strengths and

weaknesses, with max pooling being effective for identifying important features and average pooling

for identifying overall trends. The optimal pooling method depends on the specific requirements of

the task and the characteristics of the input data.

1

CHAPTER – 1

INTRODUCTION

1.1 Introduction

Automated driving and driver assistance systems heavily rely on the ability to recognize traffic signs,

which is a challenging task for computers due to the diverse visual characteristics of traffic sign

images, such as partial opacity, varying angles, lighting conditions, and weather. To identify traffic

signals in an image, the common approach involves two steps: detection and classification, both of

which require sophisticated vision algorithms. Consequently, researchers are actively working on

developing novel methods or modifying existing ones to tackle this demanding problem. Traffic sign

recognition system is crucial for self-driving cars as it enables them to perceive and understand the

traffic environment and make decisions accordingly. In the absence of human intervention, self-

driving cars rely entirely on sensors and cameras to detect, classify, and respond to traffic signs, road

markings, and other objects.

The ability to accurately recognize and interpret traffic signs is essential for self-driving cars to

navigate safely and efficiently. For instance, self-driving cars need to identify and respond to speed

limit signs, stop signs, no-entry signs, and other regulatory signs. They also need to detect warning

signs, such as pedestrian crossings, school zones, and construction zones, and adjust their speed and

behaviour accordingly. Moreover, the traffic sign recognition system can assist self-driving cars in

making informed decisions based on the road network and traffic conditions. By analysing data

collected from cameras and sensors, self-driving cars can optimize their route and speed, avoid

congestion, and reduce travel time.

Autonomous vehicles, also known as self-driving cars, have become increasingly prevalent in recent

times. They are designed to function without human intervention, relying on sensors, cameras, and

software to perceive their surroundings and determine their route. The traffic sign recognition system

is a vital component of this technology, enabling autonomous vehicles to detect and react to road

signs.

2

Traffic sign recognition is a critical technology for self-driving cars. It enables these vehicles to

understand the rules of the road and respond accordingly, making them safer and more efficient. With

traffic sign recognition, self-driving cars can detect and interpret a wide range of traffic signs,

including speed limits, stop signs, yield signs, and more.

Here are some of the key reasons why traffic sign recognition is so important for self-driving cars:

1. Safety: By recognizing traffic signs, self-driving cars can ensure that they are driving safely

and within the law. For example, a self-driving car that can recognize a stop sign can slow

down and come to a complete stop, preventing accidents, and improving overall safety on the

road.

2. Efficiency: Traffic sign recognition can also help self-driving cars operate more efficiently.

By understanding speed limits and other traffic regulations, self-driving cars can adjust their

speed and driving behaviour to optimize fuel consumption and reduce travel times.

3. Compliance: Traffic sign recognition is also important for regulatory compliance. Self-driving

cars must adhere to the same traffic laws as human drivers, and failure to recognize and obey

traffic signs can result in legal issues and penalties.

While traffic sign recognition is a critical technology for self-driving cars, there are also several

challenges that must be overcome in order to make it effective. Here are some of the key challenges

in traffic sign recognition for self-driving cars:

1. Environmental Factors: Traffic signs can be affected by a variety of environmental factors,

such as weather, lighting conditions, and even vandalism. Self-driving cars must be able to

recognize signs even in difficult conditions, which can be a challenging task.

2. Variability: Traffic signs can also vary in appearance, depending on factors such as location,

design, and age. Self-driving cars must be able to recognize a wide range of sign variations to

operate effectively.

3

3. Speed: Traffic sign recognition must be fast and accurate in order to keep up with the pace of

driving. Self-driving cars must be able to recognize and respond to signs quickly in order to

ensure safety and compliance.

4. Integration: Finally, traffic sign recognition must be integrated with other autonomous vehicle

technologies, such as object detection and path planning. This integration can be complex and

requires careful coordination and engineering.

To overcome these challenges and enable effective traffic sign recognition for self-driving cars, a

variety of technologies are used. These include:

1. Machine Learning: ML algorithms are used to train self-driving car systems to recognize and

interpret traffic signs. These algorithms use large datasets of images of traffic signs to learn

patterns and features that can be used to identify signs in the real world.

2. Computer Vision: Computer vision technologies, such as image processing and object

detection, are used to analyse images of traffic signs and extract relevant features. These

features can be used to identify the type of sign and its location in the environment.

3. Deep Learning: Deep learning algorithms, such as CNNs, are used to process images and

extract features for traffic sign recognition. These algorithms are capable of learning complex

patterns and features that can be used to identify signs in a wide range of conditions.

4. Sensor Fusion: Sensor fusion technologies, such as lidar and radar, are used in conjunction

with cameras and other sensors to provide a more comprehensive view of the environment

around the self-driving car. By combining data from multiple sensors, self-driving cars can

better recognize and respond to traffic signs, as well as other objects and obstacles on the road.

5. Localization: Localization technologies, such as GPS and map data, are used to help self-

driving cars understand their position and navigate the road. This information can be used in

conjunction with traffic sign recognition to ensure that the self-driving car is complying with

traffic laws and driving safely.

4

6. Artificial Intelligence (AI): AI technologies are used to enable self-driving cars to make

decisions based on the data they receive from sensors and other technologies. This includes

recognizing and responding to traffic signs, as well as identifying potential hazards on the

road and making decisions about how to navigate around them.

Traffic sign recognition is a critical technology for self-driving cars, with a wide range of applications.

Here are some of the key ways in which traffic sign recognition is used in autonomous vehicles:

1. Speed Limit Recognition: Self-driving cars can use traffic sign recognition to identify and

respond to speed limit signs. By adjusting their speed to comply with speed limits, self-driving

cars can improve safety and efficiency on the road.

2. Stop Sign Recognition: Self-driving cars can also use traffic sign recognition to identify and

respond to stop signs. By coming to a complete stop at stop signs, self-driving cars can prevent

accidents and ensure compliance with traffic laws.

3. Yield Sign Recognition: Yield signs indicate that a driver should give way to other vehicles

or pedestrians. Self-driving cars can use traffic sign recognition to identify and respond to

yield signs, ensuring safety and compliance on the road.

4. Lane Marking Recognition: Traffic sign recognition can also be used to identify and follow

lane markings on the road. This can help self-driving cars navigate complex roadways and

stay within the appropriate lanes.

5. Traffic Light Recognition: Traffic sign recognition can be used to identify and respond to

traffic lights, enabling self-driving cars to stop at red lights and proceed at green lights. This

can improve safety and efficiency at intersections and other traffic control points.

Traffic sign recognition is a critical technology for self-driving cars. By enabling autonomous

vehicles to recognize and respond to traffic signs, self-driving cars can improve safety, efficiency, and

compliance on the road. While there are several challenges associated with traffic sign recognition, a

variety of technologies, including machine learning, computer vision, sensor fusion, localization, and

AI, are being used to overcome these challenges and enable effective traffic sign recognition for self-

5

driving cars. With further development and refinement of these technologies, self-driving cars have

the potential to revolutionize transportation and make our roads safer and more efficient.

Prior to the release of the GTSRB in 2011 [1] and the GTSDB in 2013 [2], there was no publicly

available dataset for evaluating traffic sign recognition and detection systems. Therefore, it was

challenging to compare different methodologies. However, with the release of these benchmarks,

researchers can now evaluate and compare their algorithms using the same standardized datasets. The

availability of standardized datasets such as GTSRB and GTSDB has allowed researchers to assess

the performance of their traffic sign recognition and detection algorithms using the same test data,

providing a fair and reliable means of comparing different methodologies. Furthermore, these datasets

have facilitated the development and testing of new approaches and algorithms, ultimately leading to

more accurate and robust systems. The adoption of GTSRB and GTSDB benchmarks has been

widespread in the research community and has been used as the foundation for several international

competitions and challenges in traffic sign recognition and detection. These events have served to

accelerate progress in the field and have fostered the creation of innovative and novel solutions.

The emergence and rapid development of deep learning have revolutionized the process of traffic

sign detection. Deep neural networks have gained popularity among researchers, eliminating the need

for manual feature extraction and annotation. Instead, the built-in network can automatically extract

relevant features from input images, even for complex images. These features can then be used for

target classification [3]. The advancements in deep learning have played a crucial role in accelerating

the development of traffic sign recognition systems. For example, Bouti et al. [4] adjusted the Le-Net

network to achieve good classification results on the GTSRB dataset. In another study, a neural

network combined with a hinge loss function and a loss of function was used to recognize traffic signs

[5].

CNN has become a popular research focus in traffic sign recognition as academics devote more

attention to this area [6], [7], [8]. In computer vision, CNN has become one of the most frequently

used models for image classification. A CNN typically comprises three fundamental components: a

convolutional layer, a pooling layer, and a fully-connected layer.

6

The convolutional layer is an essential element of a convolutional neural network (CNN) [9]. This

layer applies a convolution kernel to a section of the input image with a predetermined step size,

resulting in a two-dimensional feature map. This process increases the image's dimensionality,

enabling the extraction of high-dimensional features. The convolutional layer also provides

translation invariance, allowing the network to detect features at various locations in the image. The

pooling layer is another key component of the CNN, which reduces the size of the input image while

preserving important information to accelerate network training. Various pooling techniques such as

maximum pool, average pool, and random pool can be used for this purpose. Regardless of the

technique, the primary goal of pooling is to decrease the spatial feature dimension, reduce the system's

workload, and speed up the network training rate. Finally, the CNN's last layer typically consists of

one or more fully-connected layers. Its role is to transform the high-dimensional feature information

extracted into a one-dimensional feature map, which is then used to classify the image. The final fully

connected layer outputs the classification results.

1.2 Problem Statement

Traffic sign recognition is an essential component of modern autonomous vehicles, where a vehicle

is equipped with sensors and cameras that help it perceive its surroundings and make decisions based

on that perception. The traffic sign recognition system is designed to detect, classify, and interpret

traffic signs such as speed limits, stop signs, and warning signs, among others. However, there are

several challenges and problems that can arise in traffic sign recognition systems, making it difficult

to achieve accurate and reliable results. In this article, we will discuss some of the most common

problems encountered in traffic sign recognition systems.

1. Variations in lighting conditions: One of the most significant challenges in traffic sign

recognition is variations in lighting conditions. Traffic signs can be affected by different

lighting conditions, such as glare, shadows, and low light conditions, which can make it

difficult for the system to recognize them accurately. For example, a traffic sign that is well-

lit during the day may appear significantly darker and harder to see at night, making it harder

for the system to detect and recognize it. Similarly, a sign that is located in the shade may

appear differently than a sign located in direct sunlight, making it difficult for the system to

recognize it accurately.

7

2. Occlusions and obstructions: Another common problem in traffic sign recognition is

occlusions and obstructions. Obstructions such as trees or other vehicles can obstruct the view

of traffic signs, making them difficult to detect. Additionally, signs can be partially or fully

occluded by other objects on the road, making it harder for the system to recognize them.

3. Variation in sign shape and size: Traffic signs can vary in shape and size depending on the

location, which can make it difficult for the system to detect them accurately. For example, a

stop sign in one country may be a different shape and color than a stop sign in another country,

making it challenging for the system to recognize it accurately.

4. Changes in weather conditions: Weather conditions such as rain, snow, or fog can significantly

impact the performance of traffic sign recognition systems. For example, snow can cover the

traffic signs, making them difficult to detect, while fog can reduce visibility, making it harder

for the system to recognize the signs accurately.

In recent years, there has been a rapid growth in the development of self-driving vehicles, which has

led to advancements in technologies such as LiDAR sensors and cameras. To process the input data

from these sensor fields, computer vision has shown significant growth. Deep neural networks have

been implemented for object detection and recognition, but they require substantial computation

power for learning and prediction. Researchers worldwide are striving to develop more efficient

algorithms that can provide better accuracy while requiring less computation.

In the domain of traffic sign recognition, the most used model is the Le-Net model. Although this

model is relatively simple, it suffers from problems such as over-fitting and difficulty in learning

complex shapes due to the limited number of convolutional layers, which results in fewer feature

maps. Our project aims to contribute to the development of more efficient algorithms that can provide

better accuracy in traffic sign recognition while overcoming the limitations of current models.

1.3 Objective

• The project involves a thorough literature review.

• The aim is to develop a more efficient and accurate algorithm for traffic sign recognition.

8

• The project will address the limitations of current models, including over-fitting and difficulty

in recognizing complex shapes due to a limited number of convolutional layers.

• All hyper-parameters of the CNN model will be studied in-depth.

• The project will contribute to the broader research efforts in computer vision, specifically in

the area of object detection and recognition.

• Novel approaches and techniques will be explored to improve traffic sign recognition.

1.4 Methodology

The purpose of this experiment is to investigate the impact of different optimizers, pooling layers,

and learning rates on the accuracy of traffic sign classification models. To achieve this, we will use

the GTSRB dataset, which contains 43 different classes of traffic signs, with a total of 39,209 training

images and 12,630 testing images.

We will begin by pre-processing the dataset, which will involve resizing the images to gray scale,

normalizing the pixel values, and applying histogram equalization. This step will ensure that the data

is in a suitable format for the models to learn from.

Next, we will use the Le-Net model, which is a well-known CNN architecture for image

classification. We will experiment with four different optimizers - Adam, Nadam, RMSprop, and

AdaMax, and two different pooling layers - Average and Max, on the Le-Net model. We will also use

two different learning rates for the Le-Net model.

We will train and test each model configuration for 25 epochs and evaluate their performance based

on their accuracy in predicting the class of a random image from the testing dataset. To ensure that

the results are consistent, we will repeat each experiment five times and take the average accuracy as

the result. Furthermore, we will also use a modified version of the Le-Net model, which will have

one pooling layer and one learning rate. We will experiment with three different optimizers - Adam,

RMSprop, and AdaMax, on the modified Le-Net model.

9

Finally, we will compare the results of all model configurations and determine which optimizer,

pooling layer, and learning rate combination achieves the highest accuracy in classifying traffic signs.

Overall, this experimental design will provide insight into the impact of different model

configurations on the accuracy of traffic sign classification models. The findings of this study could

be useful in enhancing road safety by improving the accuracy of traffic sign classification models.

1.5 Organisation

The project is organized into several chapters, starting with the Introduction in Chapter 1, which

provides a brief overview of the topic and its relevance. This chapter also covers the problem

statement, methodology, and objectives of the study.

Chapter 2, titled Literature Survey, reviews the previous studies conducted in this field, with a focus

on Machine Learning, Datasets, Le-Net models, and Neural networks.

Chapter 3, the Methodology, explains the project's methodology in detail, including the pre-

processing phase, the training phase, and the testing phase. It also includes a thorough discussion of

the dataset, experimentation, and the results of the project.

Chapter 4, Results and Discussion, presents the findings of the experiment and provides a detailed

discussion of the results. This chapter also includes a comparison of the different model

configurations and discusses the impact of optimizers, pooling layers, and learning rates on the

accuracy of the models.

Finally, all the sources, including research studies, datasets, algorithms, and others, are referenced in

the last section of the project.

10

CHAPTER - 2

LITERATURE REVIEW

2.1 Literature Review

There are two main approaches for solving the problem of recognizing road signs: color-based and

Gray-scale based methods. Color-based recognition aims to reduce false positives by using color

information [10]-[18], while Gray-scale recognition focuses on the object's shape [19]-[22]. Recent

studies have combined both approaches to improve detection rates. For instance, in [23], a threshold

is applied to a hue, saturation, and value representation of the image to identify regions likely to

contain a traffic sign. However, this method may detect objects in the background that share similar

colors with traffic signs, which is why size and aspect ratio heuristics are used to reduce false alarms.

Once the regions are normalized to a standard size, a linear support vector machine (SVM) is used

for coarse classification, followed by a fine classification using an SVM with Gaussian kernels.

However, color information is subject to camera type, lighting conditions, and sign aging, which

complicates the recognition process. To address this, de la Escalera et al. [24] apply an enhancement

step before thresholding color values. After removing non-sign regions using size heuristics, the

authors use a combination of color information, gradient, and distance images to eliminate regions

with a low probability of containing a traffic sign. Final classification is performed using a neural

network. Some recent studies have focused on improving the final classification step. For example,

Paclik et al. [25] propose a road-sign data representation based on extending the normalized cross-

correlation approach to a similarity based on individual matches in a set of local image regions.

Xie et al. [26] use Histogram of Oriented Gradient (HOG) descriptors trained with one-versus-all

Support Vector Machines (SVMs) for each class. The Forest Error Correcting Output Code (FECOC)

classifiers were found to have high performance rates in [27]. Multilayer Perceptron (MLP) models

were also shown to produce high accuracy rates in [28] and [29]. Additionally, low false positive rates

were achieved in [30] for recognizing characters in speed limit signs. In [31], the neural network

performance was improved by preselecting color-shape features using Principal Component Analysis

(PCA) and Fisher's Linear Discriminant.

The GTSRB dataset has been employed in numerous research studies to devise algorithms for traffic

sign recognition and classification. For example, Persson S [32] utilized a pre-trained VGG16

11

network to categorize traffic signs. Another study by R. Rajesh, K. Rajeev, K. Suchithra, V.P. Lekhesh,

V. Gopakumar, and N.K. Ragesh [33] proposed the Coherence Vector of Oriented Gradients (CVOG)

and neural network to recognize and classify traffic signs. They conducted various experiments using

CVOG characteristics and a combination of other features.

Dongfang et al. proposed a CNN based on GoogleLeNet to recognize and classify traffic signs, which

prevents over-fitting by enhancing Inception Modules and adding Batch Normalization [34]. Sun et

al. proposed a CNN model that utilizes the Hough transform to locate circular images after pre-

processing to emphasize important information [35]. These studies demonstrate the efficacy of deep

learning algorithms for traffic sign recognition and classification. The use of different models such as

pre-trained VGG16 network, capsule network, and GoogleLeNet-based CNN provides diverse

options for developing efficient algorithms. These models have proven to overcome issues such as

over-fitting and difficulty in learning complex shapes due to limited convolutional layers in traditional

models. Moreover, the GTSRB dataset is widely used in these studies as a standardized benchmark

for evaluating algorithm performance.

To overcome the limitations of color-based detection techniques, shape-based detection methods have

been developed that detect traffic signs based on their geometric properties. Common traffic sign

shapes include triangles, rectangles, octagons, and circles. Several shape analysis algorithms have

been proposed in the literature for traffic sign detection. For instance, a Hough transform is employed

to detect circular and triangular traffic signs using the Canny edge detection method in [36]. To reduce

computational costs, some contours are rejected based on their area and perimeter before applying

the Hough transform. The authors achieved high detection rates of 97.2% and 94.3% for speed limit

and warning signs, respectively, using this method.

In [37], a grayscale-based approach using the radial symmetry transform was proposed for detecting

speed limit traffic signs. This method involves calculating the gradient of each pixel, creating two

vote images with gradient orientation and magnitude information, and then combining them to form

a radial symmetry image. Circles are detected through thresholding the radial symmetry image, but

this method is only effective for regular polygons and not for signs with geometric distortion.

12

Another template-based approach for traffic sign detection is proposed in [38]. This method involves

using two binary images, the feature image (I) and the feature template (T). The Distance Transform

is used to measure the matching between T and I, with each pixel value in the DT image representing

the distance of that pixel to its nearest edge. The template is matched against the DT image to identify

the shape of interest, but this method can result in high computational costs.

Traffic sign detection is crucial in ensuring safety in autonomous driving systems. One of the main

challenges in this task is the variation in ambient illumination, which affects color-based detection

methods. To address this, shape-based detection methods have been developed, including algorithms

for shape analysis.

In one study, a novel technique was proposed for detecting speed limit traffic signs. The radial

symmetry transform was used, which involved converting the original image to grayscale and

calculating the gradient of each pixel. From this, two vote images were created, one containing

gradient orientation and the other containing magnitude information, and these were combined to

produce a radial symmetry image. By applying a threshold to this image, circles were detected.

However, this method was limited to regular polygons and could not be used for signs with geometric

distortion.

Detecting traffic signs accurately is a critical task in developing advanced driver assistance systems.

Since detecting traffic signs based on color can be challenging due to varying illumination conditions,

shape-based detection methods have become more popular. Common traffic sign shapes include

circles, rectangles, octagons, and triangles. In a previous study, the Hough transform was applied to

detect circular and triangular signs using Canny edge detection to identify edges in the image.

Rejecting some contours based on area and perimeter reduced computational costs, and the remaining

contours were then processed using the Hough transform.

To improve the accuracy of traffic sign detection and reduce interferences, combining color and shape

information has shown promising results. A recent study used RGB ratios for segmentation and the

Douglas-Peucker (DP) algorithm for shape analysis. The DP algorithm approximates contours and

detects traffic signs based on the number of object boundaries, allowing for detection even with

13

geometric distortions. In another study, color segmentation was performed in the HSV color space,

and bounding boxes were added to detected regions. The traffic sign was then identified using features

such as mean color, size, and the number of pixels enclosed in the boundary box.

In a pioneering work [41], Maximally Stable Extremal Regions (MSERs) were employed to detect

traffic signs. The RGB frame was first converted to grayscale and then binarized using various

threshold levels to identify MSERs, which are known for their robustness to changes in illumination.

Another approach [42] utilized a color probability model and Histogram of Oriented Gradient (HOG)

features to detect traffic signs. The color probability model transformed the image into probability

maps, enhancing the colors associated with traffic signs and suppressing other colors. The MSER

region detector was then utilized to identify regions likely to contain traffic signs. SVM was trained

using color HOG features computed on the probability maps. In [43], the HSI color space was adopted

to improve segmentation performance. The segmentation process produced blobs, for which Distance

to Border features were computed. SVM was then used to classify the blobs.

A pixel classification algorithm using SVM was introduced in [44], which trained the SVM using

labelled samples of the target color and other colors from training images. The RGB color space was

used for simplicity, and the SVM outperformed conventional color thresholding methods. However,

the main drawback of SVM is its speed.

Traffic sign recognition (TSR) is crucial in computer vision as it enhances road safety. Various

methods have been developed for TSR, including SIFT and SURF [44], HOG [45][46], DCT [47],

LBP [48], and Gabor features [45]. These methods have achieved high accuracy in traffic sign

recognition tasks, with HOG being particularly successful in capturing the object's shape, which

represents the orientation of the gradient image.

LBP-based techniques have gained popularity for their superior performance in TSR [48][49],

although they have some limitations, such as ignoring global shape distribution and only considering

the sign of the difference between two Gray values in the rotational invariant version [45]. For

classification, SVM is widely used [50], and a novel learning algorithm called ELM has also shown

promising results with HOG-based features [51][52]. The ELM algorithm requires additional

14

computing cost for more hidden neurons but has demonstrated better performance than traditional

methods.

However, these state-of-the-art methods are computationally expensive, and achieving real-time

performance is a challenge. To overcome this, a fusion of descriptors has been proposed in this paper.

Specifically, three descriptors, namely Circular Local Binary Patterns (CLBP), HOG, and Gabor, are

fused at the feature level in conjunction with ELM as a basic classifier. CLBP captures both the local

texture and the shape of the object, Gabor captures the local frequency and orientation information,

and HOG captures the shape of the object. The fusion of these descriptors aims to overcome the

insufficiency of a single descriptor in the visual classification task, due to the high level of intra-class

variability coupled with low interclass distance.

The proposed method was extensively evaluated on two benchmark datasets, including the GTSRB

and the BTSC datasets. The results showed the effectiveness of the proposed method, achieving high

accuracy with reduced computational cost.

2.2 Issues to be addressed in Dataset

TSDR systems are an essential component of intelligent transportation systems. However, developing

an efficient TSDR system is not a trivial task, as there are various challenges and issues that need to

be considered. Major issues that need to be addressed while developing a TSDR system.

1. Variable lighting conditions [53]: The TSDR system's accuracy can be negatively affected by

variations in lighting conditions, which can alter the distinct color of a traffic sign. Hence, it

is crucial to develop a system that can adapt to changes in lighting caused by various weather

conditions and times of day.

2. Fading and blurring effect [54]: Fading and blurring effects caused by sunlight and rain can

result in inaccurate detection and decreased efficiency of the TSDR system. To address this

issue, techniques such as adaptive thresholding and Hough transformation can be used, which

are resilient to varying illumination and lighting conditions.

3. Affected visibility: Visibility of traffic signs can be impacted by several factors such as

shadows, glare from headlights, precipitation, and atmospheric conditions. These elements

15

can have a significant negative impact on the precision of the TSDR system, particularly in

real-time scenarios. Therefore, developing a system that can withstand changes in visibility

conditions is necessary for consistent and accurate results.

4. Multiple appearances of signs [55]: Overlapping traffic signs or man-made objects with

similar shapes can result in inaccurate detection, especially due to factors like rotation,

translation, scaling, and partial occlusion. To mitigate these issues, techniques such as HSI

transform and fuzzy shape recognizer can be used as they are robust and not impacted by these

challenges.

5. Motion artifacts [56]: Motion artifacts caused by the movement of the vehicle or using low-

resolution cameras can result in blurred and noisy images. Using techniques like Haar-like

features, support vector machines (SVM), and PWP3D algorithm can address these issues by

reducing the effect of motion blur, rotation, scaling, and other related problems.

6. Chaotic background and viewing angle problem: The chaotic nature of the background and

foreground scenery, as well as the continuous changes in the viewing angle while driving, can

make the detection process challenging. Techniques like adaptive thresholding, adaptive

shape analysis, and self-organizing maps can be employed to address these issues and improve

the accuracy of detections.

7. Damaged and partially obscured signs [57]: Damaged or partially obscured signs can create

challenges for detection and recognition, particularly when the system includes a shape

recognizer. To mitigate these issues, 3D reconstruction methods can be utilized in real-time

environments to detect damaged signs.

8. Unavailability of public database: The lack of free and well-organized publicly available

databases is a significant challenge in developing a TSDR system. This limitation limits the

ability to train and test models, leading to compromised system performance. Currently, only

a few recognized publicly available datasets such as GTSRB, KUL, and STS are available.

16

CHAPTER - 3

METHODOLOGY

3.1 Dataset

The German Traffic Sign Recognition Benchmark (GTSRB) dataset is a widely used dataset for

training and evaluating computer vision models for traffic sign recognition. The dataset was

introduced in 2011 and consists of more than 50,000 images of 43 different traffic sign classes, with

each class containing between 180 and 2000 images. The images were captured under different

weather and lighting conditions and from different camera angles, simulating real-world scenarios.

The dataset is split into a training set of 34,799 images, a test set of 12,630 images, and a validation

set of 4410 images. The distribution of images in each class is represented in Figure 1. Table 1

illustrates the 43 different traffic sign classes with the corresponding Class ID.

Figure 1: Distribution of images in 43 different traffic sign classes.

Table 1: 43 Traffic Sign Classes with the corresponding Class ID

Class ID Traffic Sign Name

0 Speed limit (20km/h)

1 Speed limit (30km/h)

2 Speed limit (50km/h)

3 Speed limit (60km/h)

4 Speed limit (70km/h)

17

5 Speed limit (80km/h)

6 End of speed limit (80km/h)

7 Speed limit (100km/h)

8 Speed limit (120km/h)

9 No passing

10 No passing for vehicles over 3.5 metric tons

11 Right-of-way at the next intersection

12 Priority road

13 Yield

14 Stop

15 No vehicles

16 Vehicles over 3.5 metric tons prohibited

17 No entry

18 General caution

19 Dangerous curve to the left

20 Dangerous curve to the right

21 Double curve

22 Bumpy road

23 Slippery road

24 Road narrows on the right

25 Road work

26 Traffic signals

27 Pedestrians

28 Children crossing

29 Bicycles crossing

30 Beware of ice/snow

31 Wild animals crossing

32 End of all speed and passing limits

33 Turn right ahead

34 Turn left ahead

35 Ahead only

36 Go straight or right

37 Go straight or left

38 Keep right

39 Keep left

40 Roundabout mandatory

41 End of no passing

42 End of no passing by vehicles over 3.5 metric

18

3.2 Brief Description of Parameters

CNNs are a popular type of deep learning model that is commonly used for image and video

processing tasks. These models typically have many parameters, which can greatly impact their

performance. The process of choosing the right set of parameters for a CNN model is crucial to ensure

that it performs well and can be generalized to new data.

In this article, we will discuss the importance of choosing parameters in a CNN model, including the

various types of parameters and how to tune them effectively.

There are several types of parameters in a CNN model that need to be chosen carefully to ensure

optimal performance. These include:

1. Filter Size: The filter size is the size of the kernel that is used to convolve the input image.

The filter size determines the receptive field of each neuron in the convolutional layer, which

affects the size and complexity of the learned features. Choosing the right filter size is crucial

to ensure that the model can capture the relevant features in the input data.

2. Number of Filters: The number of filters utilized in each convolutional layer influences the

model's capacity to learn features. While increasing the number of filters can aid the model in

capturing complex features, it may lead to overfitting.

3. Stride Size: The stride size defines the distance between the application of each filter to the

input image. A larger stride size can decrease the size of the output feature map and the number

of parameters in the model, but it may also result in information loss.

4. Padding: Padding involves adding extra pixels around the edge of the input image to ensure

that the output feature map is the same size as the input. Selecting the appropriate padding

can prevent information loss at the edges of the input image.

5. Pooling: Pooling is the process of down-sampling the output feature map from the

convolutional layer. This helps in reducing the size of the feature map and preventing

overfitting. The size of the pooling window is a crucial parameter that needs to be selected

carefully.

19

6. Learning Rate: The learning rate is a hyperparameter that controls the step size taken during

gradient descent optimization. A higher learning rate can result in faster convergence, but it

can also result in instability and overshooting. A lower learning rate can result in more stable

convergence, but it can also result in slower convergence.

7. Dropout: Dropout is a regularization technique that randomly removes neurons during

training to avoid overfitting. The dropout rate is a parameter that needs to be selected carefully

to prevent excessive regularization.

To ensure that a CNN model performs optimally, it is important to tune the parameters effectively.

The following techniques can be used to achieve this:

1. Grid Search: Grid Search involves systematically searching a range of parameter values to

find the optimal combination. It may take some time, but it can effectively identify the optimal

set of parameters.

2. Random Search: Random Search involves randomly sampling the parameter space to find the

optimal combination. It can be more efficient than Grid Search as it doesn't require searching

the entire parameter space.

3. Bayesian Optimization: Bayesian Optimization involves building a probabilistic model of the

objective function and using it to guide the search for the optimal set of parameters. It's more

efficient than Grid Search or Random Search as it considers the uncertainty in the objective

function.

4. Early Stopping: Early Stopping involves stopping the training process when the validation

loss starts to increase. This technique helps to prevent overfitting by avoiding overtraining the

model, which can lead to memorizing the training data instead of generalizing to new data.

Early Stopping is especially useful for large datasets as it saves time and computational

resources.

5. Data Augmentation: Data Augmentation involves generating new training examples from

existing ones by applying transformations like rotations, translations, and scaling. It can help

20

to increase the size of the training dataset and prevent overfitting by exposing the model to a

wider range of variations in the input data.

6. Transfer Learning: Transfer Learning involves using a pre-trained CNN model as a starting

point for a new task. This technique can be useful when working with limited data, as it allows

the model to leverage the knowledge gained from a larger dataset.

7. Regularization: Regularization involves adding a penalty term to the objective function during

training to prevent overfitting. It encourages the model to learn simpler representations that

generalize better to new data.

Choosing the proper set of parameters is critical for a CNN model's performance. To provide optimal

performance, several factors like as filter size, number of filters, stride size, padding, pooling, learning

rate, and dropout must be properly set. Grid search, random search, Bayesian optimisation, early

halting, data augmentation, transfer learning, and regularisation are all techniques that can be used to

do this. We can ensure that a CNN model performs well and can be generalised to new data by

carefully selecting and modifying its parameters.

3.2.1 Optimizers

Optimizers are essential components of ML algorithms that are used to optimise model learning. An

optimizer's main goal is to minimise the loss function by modifying the model's weights and biases.

The loss function quantifies how well the model performs on a given set of data. The optimisation

process is iterative, with the optimizer updating the model's weights and biases based on the gradients

of the loss function.

Optimizers are useful because they can dramatically increase the performance of machine learning

models. The optimizer used can influence the model's convergence rate, stability, and accuracy. The

optimizer employed can have a significant impact on the performance of a model, so selecting the

correct optimizer for the task at hand is critical.

21

There are various sorts of optimizers available, each with their own set of advantages and

disadvantages. Stochastic gradient descent (SGD), Adam, Adagrad, and RMSProp are some of the

most commonly used optimizers.

The optimizer used can have a substantial impact on model performance. Different optimizers may

be better suited to different sorts of datasets or designs in specific circumstances. Adagrad, for

example, has been demonstrated to perform well on sparse datasets, whereas Adam has been

demonstrated to perform well on a wide range of deep learning tasks.

One of the most important advantages of optimizers is that they can help to prevent overfitting. When

a model performs well on training data but poorly on test data, this is referred to as overfitting. This

can occur when a model becomes overly sophisticated and begins memorising the training data rather

than understanding the underlying patterns. Optimizers can help to prevent overfitting by modifying

the model's weights and biases to reduce training error while raising test error.

Another advantage of optimizers is that they can aid in the speeding up of the learning process.

Optimizers can help to reduce the number of iterations required to obtain convergence by more

efficiently modifying the model's weights and biases. This is especially crucial for deep learning

models, which might take a long time to converge.

Optimizers can also help to increase a model's stability. Optimizers can help to lessen the likelihood

of the model becoming trapped in a local minimum by more efficiently modifying the weights and

biases. This can help to improve the model's robustness and lower the likelihood of it being locked in

inferior answers. Furthermore, certain optimizers, such as Adam, incorporate a momentum term,

which can assist the optimizer in moving through local minima and converge to a superior solution.

Furthermore, optimizers can be used to improve the interpretability of a model. By selecting an

appropriate optimizer and tuning its hyperparameters, it is possible to adjust the trade-off between

model complexity and accuracy. This can help to ensure that the model is not overfitting the data and

22

that the underlying patterns are being learned correctly. This can be particularly important in

applications where interpretability is critical, such as in the medical or financial industries.

Optimizers are also necessary for deep neural network training. Deep neural networks are challenging

to train since they are highly nonlinear and contain numerous parameters. Because some optimizers

may be more effective at dealing with the high-dimensional, non-linear nature of deep neural

networks, the optimizer used can have a substantial impact on the training process. Furthermore, some

optimizers, such as Adam, can do adaptive learning rate scheduling, which can help to speed up the

training process and enhance model accuracy.

Finally, optimizers are an important component of ML algorithms that can have a substantial impact

on a model's performance, stability, and interpretability. The optimizer selected should be based on

the task at hand as well as the features of the dataset and architecture being used. It is possible to

improve the accuracy, speed, and stability of an ML model by selecting an appropriate optimizer and

tweaking its hyperparameters. The importance of optimizers will only grow as machine learning is

employed in a growing number of sectors.

3.2.1.1 Adam

Adam is a machine learning optimisation technique that is specifically developed to train deep neural

networks. It is a learning rate adaptable algorithm that combines the features of two previous

optimisation algorithms: Adagrad and RMSprop.

Adam computes distinct adaptive learning rates for each parameter based on estimates of the

gradient's first and second moments. The programme can then alter the learning rates of the

parameters during the training process to improve model optimisation. Because of its adaptability,

Adam is an efficient and effective algorithm for training deep neural networks.

The advantages of Adam are:

• Efficiency: Adam is an efficient optimization algorithm that can converge faster than other

optimization algorithms such as Adagrad and SGD.

23

• Robustness: Adam is robust to noisy gradients and is capable of handling sparse gradients, which

can be useful for large-scale deep learning problems.

• Adaptive learning rates: Adam adaptively tunes the learning rates of the parameters during

training, making it more effective at optimizing the model.

However, there are also some disadvantages to using Adam:

• Sensitivity to hyperparameters: Adam requires the tuning of several hyperparameters, such as the

learning rate and the decay rates, which can be time-consuming and require careful

experimentation.

• Memory requirements: Adam requires storing additional parameters for each parameter in the

model, which can be memory-intensive for large models.

Mathematically, the update rule for Adam is defined by Equation(9-12),

𝑚𝑡 = 𝛽1 ∗ 𝑚𝑡−1 + (1 − 𝛽1) ∗ 𝑔𝑡 (8)

𝑣𝑡 = 𝛽2 ∗ 𝑣𝑡−1 + (1 − 𝛽2) ∗ 𝑔𝑡
2 (9)

𝑚ℎ𝑎𝑡𝑡
=

𝑚𝑡

(1 − 𝛽1𝑡)
 (10)

𝑣ℎ𝑎𝑡𝑡
=

𝑣𝑡

(1 − 𝛽2𝑡)
 (11)

𝜃𝑡+1 = 𝜃𝑡 −
𝛼 ∗ 𝑚ℎ𝑎𝑡𝑡

(√𝑣ℎ𝑎𝑡𝑡
+ 𝜀)

(12)

where θ is the parameter vector, g is the gradient, m and v are the first and second moments of the

gradient respectively, 𝑚ℎ𝑎𝑡 and 𝑣ℎ𝑎𝑡 are bias-corrected estimates of the moments, α is the learning

rate, 𝛽1and 𝛽2 are the decay rates for the first and second moments respectively, t is the current time

step, and ε is a small constant added for numerical stability.

3.2.1.2 RMSProp

RMSProp is an optimisation approach that is often used for neural network training. It is a gradient

descent version that adjusts the learning rate during training. The moving average of the squared

gradients for each weight in the network is calculated by RMSProp and used to change the learning

24

rate for that weight. This allows the method to efficiently decrease the learning rate for weights with

big gradients while increasing it for weights with small gradients, hence boosting the optimisation

process.

The advantages of RMSProp are:

• Adaptive learning rates: RMSProp adaptively tunes the learning rates of the parameters during

training, making it more effective at optimizing the model.

• Efficient: RMSProp is an efficient optimization algorithm that can converge faster than other

optimization algorithms such as SGD.

• Robust: RMSProp is robust to noisy gradients and can handle sparse gradients, which can be

useful for large-scale deep learning problems.

However, there are also some disadvantages to using RMSProp:

• Sensitivity to hyperparameters: RMSProp requires the tuning of several hyperparameters, such as

the learning rate and the decay rate, which can be time-consuming and require careful

experimentation.

• Local minima: RMSProp may get stuck in local minima, especially if the learning rate is not set

appropriately.

Mathematically, the update rule for RMSProp is defined by Equation(13-14),

𝑦𝑡 = 𝛽 ∗ 𝑣𝑡+1 + (1 − 𝛽) ∗ 𝑔𝑡
2 (13)

𝜃𝑡+1 =
𝜃𝑡 − 𝛼 ∗ 𝑔𝑡

√(𝑦𝑡 + 𝜀)

(14)

where θ is the parameter vector, g is the gradient, v is the moving average of the squared gradients, α

is the learning rate, β is the decay rate, t is the current time step, and ε is a small constant added for

numerical stability.

25

In this update rule, the squared gradients are accumulated over time with a decay rate of β, which

allows the algorithm to adaptively adjust the learning rate based on the history of the gradients. The

learning rate is then scaled by the square root of the moving average of the squared gradients, which

effectively divides the learning rate by a larger value for weights with large gradients and by a smaller

value for weights with small gradients.

3.2.1.3 Nadam

Nadam (Nesterov-accelerated Adaptive Moment Estimation) is an optimization algorithm that

combines the benefits of Nesterov accelerated gradient (NAG) and Adam optimization algorithms.

Nadam is designed to efficiently optimize the loss function in deep neural networks with large datasets

and numerous parameters.

The advantages of Nadam are:

• Fast convergence: Nadam utilizes both Nesterov momentum and Adam optimization to accelerate

convergence and reduce the number of iterations required for training.

• Robust: Nadam is robust to noisy gradients and can handle sparse gradients, which makes it useful

for large-scale deep learning problems.

• Adaptive learning rates: Nadam adjusts the learning rates adaptively, which helps to optimize the

model effectively.

However, there are also some disadvantages to using Nadam:

• Hyperparameters: Nadam requires the tuning of several hyperparameters, such as the learning

rate and decay rate, which can be time-consuming and require careful experimentation.

• Complexity: Nadam is a complex algorithm that may not be easy to implement for beginners.

The mathematical explanation of Nadam is as follows:

First, the algorithm computes the gradient of the loss function w.r.t the parameters. The gradient is

then used to update the exponentially weighted moving average of the first moment (𝑚𝑡) and second

26

moment (𝑣𝑡) of the gradients, which are used to compute the adaptive learning rates for each

parameter.

The update rule for the first moment is like the Adam algorithm, and is defined by Equation 15.

𝑚𝑡 = 𝛽1 ∗ 𝑚𝑡−1 + (1 − 𝛽1) ∗ 𝑔𝑡 (15)

where 𝑔𝑡 is the gradient at time step t, and 𝛽1 is the exponential decay rate of the first moment.

The update rule for the second moment is also like the Adam algorithm, and is defined by Equation

16.

𝑦𝑡 = 𝛽2 ∗ 𝑣𝑡−1 + (1 − 𝛽2) ∗ 𝑔𝑡
2 (16)

where 𝛽2 is the exponential decay rate of the second moment.

Finally, the parameters are updated using the Nesterov accelerated gradient descent algorithm, which

combines the current gradient and the previously computed gradient to estimate the gradient at the

next time step is defined by Equation 17.

𝜃𝑡+1 = 𝜃𝑡 − 𝛼 ∗
(𝛽1 ∗ 𝑚𝑡 + (1 − 𝛽1) ∗ 𝑔𝑡)

(√(𝑦𝑡) + 𝜀)

(17)

where θ is the parameter vector, α is the learning rate, and ε is a small constant added for numerical

stability.

In summary, Nadam is an optimization algorithm that combines the benefits of Nesterov accelerated

gradient (NAG) and Adam optimization algorithms. It is a robust and efficient algorithm that adjusts

the learning rates adaptively, but it requires the tuning of several hyperparameters and may be

complex to implement.

3.2.1.4 AdaMax

AdaMax is an optimization algorithm that extends the Adam optimization algorithm by using the L-

infinity norm instead of the L2 norm for computing the second moment estimates. AdaMax is

designed to provide better convergence and stability when training deep neural networks.

27

The advantages of AdaMax are:

• Better convergence: AdaMax is designed to provide better convergence than Adam by using the

L-infinity norm, which can provide more accurate estimates of the gradients and result in faster

convergence.

• Stability: AdaMax is designed to be more stable than Adam, which can prevent the algorithm

from diverging during training.

• Robustness: AdaMax can handle sparse gradients and noisy data, which makes it useful for deep

learning problems with large datasets.

However, there are also some disadvantages to using AdaMax:

• Hyperparameters: AdaMax requires tuning several hyperparameters, such as the learning rate and

the β1 and β2 decay rates, which can be time-consuming and require careful experimentation.

• Complexity: AdaMax is a complex algorithm that may not be easy to implement for beginners.

The mathematical explanation of AdaMax is as follows:

The algorithm uses the first moment estimate (𝑚𝑡) and the L-infinity norm of the second moment

estimate (𝑢𝑡) to update the parameters. The update rule for the first moment is the same as that used

in Adam is defined by Equation 18,

𝑚𝑡 = 𝛽1 ∗ 𝑚𝑡−1 + (1 − 𝛽1) ∗ 𝑔𝑡 (18)

where 𝑔𝑡 is the gradient at time step t, and 𝛽1 is the exponential decay rate of the first moment.

The update rule for the second moment estimate is defined by Equation 19.

𝑢𝑡 = 𝑚𝑎𝑥(𝛽2 ∗ 𝑢𝑡−1, |𝑔𝑡|) (19)

where 𝛽2 is the exponential decay rate of the second moment and |𝑔𝑡| is the L-infinity norm of the

gradient at time step t.

28

Finally, the parameters are updated using the following rule is defined by Equation 20.

𝜃𝑡+1 =
𝜃𝑡 − 𝛼 ∗ 𝑚𝑡

(𝑢𝑡 + 𝜀)

(20)

where θ is the parameter vector, α is the learning rate, and ε is a small constant added for numerical

stability.

In summary, AdaMax is an optimization algorithm that extends the Adam optimization algorithm by

using the L-infinity norm instead of the L2 norm for computing the second moment estimates.

AdaMax provides better convergence and stability than Adam, but it requires tuning several

hyperparameters and may be complex to implement.

3.2.2 Pooling Layers

CNNs, which are commonly used for image identification, object detection, and other computer

vision tasks, rely heavily on pooling layers. The use of pooling layers is critical in increasing the

performance of these models. The following are the primary benefits of pooling layers in CNN

models:

• Feature reduction: Pooling layers reduce the dimensionality of the feature maps generated by the

convolutional layers. This helps in reducing the number of parameters in the model, which can

lead to better generalization and faster training. The pooling operation summarizes the local

features in each feature map by taking the maximum, average, or other aggregation function,

which creates a smaller and more abstract representation of the input.

• Translation invariance: Pooling layers provide translation invariance to the model, which means

that the model can recognize patterns even if they appear in different locations in the input. This

is because the pooling operation aggregates the features in a local neighbourhood, which makes

the output of the pooling layer less sensitive to small translations of the input.

• Robustness to noise: Pooling layers can improve the robustness of the model to noise and small

perturbations in the input. The pooling operation averages the local features, which can help to

smooth out noisy or spurious features in the input.

29

• Computational efficiency: Pooling layers can reduce the computational cost of the model by

reducing the size of the feature maps. This makes it possible to use deeper and more complex

models, which can achieve higher accuracy on challenging tasks.

Pooling layers are classified into three types: maximum pooling, average pooling, and global pooling.

The most common type of pooling layer is max pooling, which has been found to be useful in

capturing the most prominent aspects of the input. Average pooling can be effective in situations when

geographical information is less critical, such as time-series data jobs. Global pooling is a technique

for reducing the spatial dimension of feature maps to a single value that may be utilised as a feature

vector in classification or regression applications.

3.2.2.1 Max Pooling

The max pooling procedure is a necessary component of CNN models that are used to downsample

input feature maps. The method entails splitting the feature map into non-overlapping rectangular

parts and picking the maximum value inside each sector as the max pooling layer's output. The spatial

resolution of this downsampled output has been lowered by a factor of the pooling size.

In CNN models, max pooling has various advantages. It decreases the spatial dimension of the feature

maps, lowering the number of parameters and lowering the danger of overfitting. Furthermore, it

improves the model's translation invariance by minimising its sensitivity to tiny changes in the input,

making it more robust to fluctuations in feature location.

To build a hierarchical representation of the input, max pooling is frequently used with convolutional

layers. Convolutional layers capture local patterns, whereas max pooling layers summarise the most

prevalent features and reduce the dimensionality of the representation. This allows the model to

discover and classify complicated and abstract properties by exploiting the object's overall structure

rather than simply individual pixels. Figure 2 depicts an illustration of the Max-Pooling operation.

30

Figure 2: Max-Pooling operation on a matrix

3.2.2.2 Average pooling

The average value of the local features in a rectangular neighbourhood is used to aggregate them.

Average pooling, like max pooling, is used to minimise the spatial dimension of feature maps while

capturing the most important features of the input.

Average pooling has the advantage of smoothing out the local features in the input, making the model

more resilient to noise and tiny fluctuations. This is because averaging decreases the impact of outlier

features and makes the pooling layer's output more stable.

However, when compared to maximum pooling, average pooling has several drawbacks. For starters,

it can result in a loss of spatial resolution because the pooling layer's output is a down-sampled version

of the input feature map. This can impair the model's capacity to accurately localise the characteristics

in the input. Second, because it does not select the most prominent characteristics in each local region,

average pooling does not provide as much translation invariance as max pooling.

Despite these drawbacks, average pooling can be a beneficial alternative to max pooling in some

instances, particularly where spatial information is less relevant or the input contains a high level of

noise or fluctuation. In general, the pooling layer selected is determined by the specific properties of

the input and the task requirements. Figure 3 depicts an example of an Average-Pooling procedure.

31

Figure 3: Average Pooling operation on a Matrix

3.2.3 Activation Function

Activation functions are critical components of CNN models because they enable the model to learn

non-linear correlations between input and output. Without these functions, the model could only learn

linear correlations, which may not be enough for complex tasks like object recognition.

CNN models can use a variety of activation functions, including sigmoid, hyperbolic tangent (tanh),

and Rectified Linear Unit (ReLU) functions. The precise activation function chosen is determined by

the task at hand and the model design.

The significance of activation functions stems from their capacity to create nonlinearity, which aids

in the capture of complicated patterns in the input. This is especially important for applications such

as object identification, which require the model to detect complicated properties and relationships in

the input.

Furthermore, activation functions have a role in preventing vanishing gradients in deep CNN models.

The model can learn and update its parameters more efficiently if gradients are not too tiny. Finally,

activation functions can help to normalize the output of the model, which promotes stable training

and prevents numerical errors that could otherwise occur.

3.2.3.1 ReLU

The Rectified Linear Unit (ReLU) is a commonly used activation function in CNNs. Its functionality

involves returning the input if it is positive and zero otherwise, making it a non-linear function.

32

Other activation functions, such as the sigmoid or hyperbolic tangent functions, have certain

advantages over the ReLU activation function. For starters, because it is a basic function that only

requires a comparison to zero, it is computationally efficient. This feature makes it suited for large-

scale CNN models with many parameters.

Second, the ReLU function mitigates the vanishing gradient problem, which occurs when gradients

get extremely small, causing the model to stop learning. This is because the ReLU function's

derivative is either 0 or 1, which means it is always straightforward to compute and does not become

extremely small.

Finally, the ReLU function has been demonstrated to enhance the performance of CNN models,

particularly in object recognition tasks. This is because the function can capture the non-linearities

and intricate patterns in the input, thus enabling the model to learn more discriminative features. The

graphical representation of the ReLU activation function is illustrated in Figure 4.

Figure 4: Graphical Representation of ReLU activation function.

33

Advantages of ReLU Activation Function:

• Efficient Computation: ReLU is a simple function that requires only a comparison to zero, making

it computationally efficient. This makes it suitable for large-scale CNN models with many

parameters.

• Prevents Vanishing Gradient Problem: The ReLU function helps to prevent the vanishing gradient

problem, which can occur when the gradients become very small and cause the model to stop

learning. This is because the derivative of the ReLU function is either 0 or 1, which means that it

is always easy to compute and does not become very small.

• Improves Model Performance: The ReLU function has been shown to improve the performance

of CNN models, especially in object recognition tasks. This is because the function can capture

the non-linearities and complex patterns in the input, allowing the model to learn more

discriminative features.

Disadvantages of ReLU Activation Function:

• Dead Neurons: The ReLU function can lead to dead neurons, where the output of the neuron is

always zero and the gradient cannot be updated during training. This can occur when the input to

the neuron is negative, as the ReLU function returns a zero output for negative inputs.

• Unbounded Output: The ReLU function has an unbounded output, which means that it can lead

to exploding gradients. This can cause the model to become unstable during training, making it

difficult to optimize the parameters.

• Non-centred Output: The ReLU function has a non-centred output, which means that the output

is always non-negative. This can be a problem when the input data has negative values, as the

ReLU function will always return a zero output for negative inputs, which can cause information

loss.

3.2.3.2 Softmax

The Softmax is a mathematical function frequently utilized in machine learning, particularly in

classification tasks. It is an extension of the logistic function and can transform a vector of real values

into a probability distribution where the values lie between 0 and 1 and sum up to 1. Softmax is

34

usually employed as the final layer in a neural network for classification problems to output a

probability distribution over the classes.

Advantages:

• Softmax provides a smooth and continuous probability distribution over classes that can be easily

interpreted.

• The outputs of the softmax function can be used directly for calculating the cross-entropy loss,

which is commonly used as the loss function for classification tasks.

• Softmax is differentiable, which allows it to be used in backpropagation-based optimization

algorithms like gradient descent.

Disadvantages:

• Softmax requires the input vector to be of fixed size, which can be a limitation in some

applications.

• The output of the softmax function is sensitive to outliers in the input vector, which can result in

misclassification of the samples.

• Softmax does not account for the relationships between the classes and assumes that they are

independent, which may not be true in some applications.

3.2.4 Dropout Layer

The Dropout layer is an important component in convolutional neural networks since it acts as a

regularisation approach to reduce overfitting and improve the model's generalisation capabilities. The

Dropout layer works by omitting some neurons in the network at random during the training phase

by setting their values to zero. The dropout probability hyperparameter can be tuned to change the

degree of regularisation. The Dropout layer's significance in CNN models can be summarised as

follows:

35

• Prevents Overfitting: One of the main advantages of Dropout is that it prevents overfitting, which

can occur when the model is trained too well on the training data and cannot generalize well to

unseen data. By randomly dropping out neurons, the model is forced to learn more robust features

that are not dependent on the specific input data

• Improves Generalization: Dropout improves the generalization performance of the model by

reducing the sensitivity of the model to specific features of the input data. This means that the

model can perform better on unseen data and is less likely to make errors due to noise or irrelevant

features.

• Reduces Complexity: Dropout can be seen to simplify the model by reducing the number of

neurons in the network during training. This can make the model easier to optimize and reduce

the risk of overfitting.

• Speeds up Training: Dropout can speed up the training process by reducing the number of

iterations required to converge to a good solution. This is because the model is trained on a smaller

subset of neurons, which reduces the computation required for each iteration.

Figure 5 represents two neural network one with dropout layer and other without dropout layers.

Figure 5: Comparison of neural network with and without dropout layer

3.3 Pre-processing

The importance of pre-processing in CNN can be attributed to the fact that the quality of the input

data is directly related to the accuracy and performance of the model. Pre-processing techniques can

help extract important features from the input data, reduce the impact of noise, and simplify the data

to make it easier for the model to learn.

36

Pre-processing also helps to reduce overfitting by creating more diverse training data via data

augmentation. This allows the model to generalise better to new, previously unknown data.

Furthermore, normalisation of the input data can help to stabilise the learning process, making it more

consistent and increasing the model's convergence speed. Another key advantage of pre-processing

is that it can aid in model optimisation by lowering the complexity of the incoming data. Reduced

data dimensionality improves the computational efficiency of the model and allows it to handle vast

amounts of data more effectively.

In summary, pre-processing is a critical step in CNN that can help improve the quality of the input

data, optimize the performance of the model, and reduce the likelihood of overfitting. By applying

various pre-processing techniques, we can prepare the input data in a way that makes it easier for the

model to learn and make accurate predictions.

3.3.1 Resizing

Resizing is an important pre-processing step in CNN that involves changing the size of the input

images to a fixed size. The importance of resizing in CNN can be summarized as follows:

• Standardization: Resizing ensures that all the input images have the same size, regardless of their

original size. This makes it easier to process the images and reduces the need for complex resizing

algorithms during training. Standardizing the input size also enables us to compare the

performance of different models accurately.

• Reducing Computational Complexity: Resizing can help reduce the computational complexity of

the model by reducing the size of the input images. Smaller images require fewer computations

and parameters, making the model faster and more efficient. This is especially important when

working with large datasets or limited computing resources.

• Improving Model Performance: Resizing can also improve the performance of the model by

reducing the noise and irrelevant features in the input images. This can help the model learn more

important features and improve its accuracy on the test data.

37

• Enabling Transfer Learning: Resizing can also make it easier to use pre-trained models or transfer

learning. Pre-trained models are typically trained on images of a specific size, and resizing the

input images to match this size is necessary for the model to work properly. This makes it easier

to use pre-trained models and speeds up the training process.

3.3.2 RGB to Gray Scale

Converting RGB (Red, Green, Blue) images to grayscale is an important pre-processing step in CNN

that involves converting each color image into a grayscale image that has only one channel (Gray).

The importance of converting RGB to grayscale in CNN can be summarized as follows:

• Simplifying the input data: By converting RGB images to grayscale, we simplify the input data

for the model, reducing the complexity and computational requirements of the model. This is

because grayscale images only have one channel, whereas color images have three channels.

• Reducing Overfitting: Grayscale images contain fewer features than color images, which can help

reduce overfitting of the model to the training data. This is because the model is forced to focus

on the most important features of the image and ignores less relevant information.

• Enhancing Contrast: Converting RGB to grayscale can enhance the contrast of the image, which

can improve the ability of the model to distinguish between different features of the image.

• Preserving Spatial Information: Converting RGB to grayscale preserves the spatial information

of the image, which can be important in tasks such as image segmentation, where spatial

information is crucial.

• Saving Computational Resources: Since grayscale images have only one channel, they require

less computational resources than color images, which can reduce the computational requirements

of the model.

38

3.3.3 Histogram equalization

Histogram equalization is a method that redistributes the intensity values of an image in order to

adjust its contrast. This technique is frequently used as a pre-processing step in CNN models due to

its significance in the following ways:

• Improving Image Contrast: Histogram equalization enhances the contrast of the image by

distributing the intensity values uniformly across the entire range. This improves the visibility of

details in the image and makes it easier for the model to detect features.

• Removing Image Bias: In some cases, images can have a bias towards specific intensity values,

which can affect the performance of the model. Histogram equalization can help remove this bias

and ensure that the model is not biased towards any specific intensity value.

• Normalizing Image Intensity: Histogram equalization can normalize the intensity values of the

image, which can make it easier for the model to learn and generalize features across different

images.

• Enhancing Features: Histogram equalization can also enhance the features of an image, making

it easier for the model to detect important details and classify the image accurately.

The reduction of dimensions in an image is depicted in Figure 6(a), which is then transformed into

an 8-bit grayscale image. Figure 6(b) represents the resulting grayscale image. To enhance the contrast

of the image, histogram equalization is performed on all images. The outcome of histogram

equalization on the grayscale image is demonstrated in Figure 6(c).

(a) (b) (c)

Figure 6: Input image at different steps of pre-processing (a) Image resized in 32x32 (b) RGB to

grayscale (c) Histogram equalization

39

3.3.4 Data Augmentation

Data augmentation is a technique used in ML and computer vision to increase the size of a dataset by

generating new data from existing data, without collecting new data from the real world. In the case

of image data, data augmentation involves applying a variety of transformations to existing images

to create new images that are variations of the original images. The augmented images are then used

to train ML models. It is a crucial technique in computer vision, as it allows deep learning models to

be trained on a larger and more diverse dataset, which can improve their accuracy and generalization

performance. In addition, data augmentation can help to mitigate overfitting, as it introduces

randomness and variability to the training data. Figure 7 represents the results of transformations on

a traffic sign image.

Transformations we used in this model are:-

1. Height and Width Shift

2. Zoom

3. Shear

4. Rotation

5. Translation

Figure 7: Example of Rotation, Translation and Shear mapping

3.4 Le-Net Model

The Le-Net is a popular CNN architecture that's frequently used for image recognition tasks. It

comprises multiple layers, including convolutional layers, pooling layers, and fully connected layers.

40

This implementation of the Le-Net model consists of a total of 7 layers, with 2 convolutional layers,

2 pooling layers, 1 flatten layer, and 2 fully connected layers. The first convolutional layer contains

60 filters with a 5 x 5 kernel size and uses the ReLU activation function. The input shape of this layer

is (32, 32, 1), indicating that grayscale images of size 32 x 32 pixels are used as inputs. The resulting

feature maps are then passed through a max pooling layer with a pool size of (2, 2), which decreases

their spatial dimensions.

The second convolutional layer comprises 30 filters with a kernel size of 3 x 3 and uses the ReLU

activation function. This is followed by another max pooling layer with the same pool size as the

previous layer. The output of the second pooling layer is then flattened into a 1-dimensional array and

passed through a fully connected layer with 500 neurons and the ReLU activation function. To reduce

overfitting, a dropout layer is added. Finally, the output layer has the same number of neurons as the

number of classes and uses the softmax activation function. The architecture of the Le-Net model is

depicted in Figure 8.

Figure 8: Architecture of Le-Net Model

The summary of the Le-Net Model is mentioned in Table 2.

Table 2: Summary of the Le-Net Model.

Layer (type) Output Shape Parameters

Convolution 2D (28, 28, 60) 1560

Max-Pooling 2D (14, 14, 60) 0

Convolution 2D (12, 12, 30) 16230

Max-Pooling 2D (6, 6, 30) 0

Flatten (1080) 0

41

Dense (500) 540500

Dropout (500) 0

Dense (43) 21543

Total parameters 5,79,833

Trainable parameters 5,79,833

Non-trainable parameters 0

3.5 Modified Le-Net

The Modified Le-Net model function defines a CNN model based on the Le-Net architecture for

image classification tasks. The model takes as input grayscale images of size 32x32 pixels. Figure 9

represents the Modified Le-Net Model. Table 3 represents the summary of the model.

Figure 9: Architecture of Modified Le-Net Model

The model is composed of three blocks of layers:

• The first block consists of two Conv2D layers with 60 filters each, followed by a MaxPooling2D

layer with a 2x2 pooling size. The activation function used is LeakyReLU, which helps to prevent

the vanishing gradient problem.

• The second block consists of two Conv2D layers with 30 filters each, followed by a

MaxPooling2D layer with a 2x2 pooling size. The activation function used is also LeakyReLU.

• The final block consists of a Flatten layer, which flattens the output of the previous block into a

1D vector, followed by a Dense layer with 128 units and a LeakyReLU activation function. A

Dropout layer with a rate of 0.5 is then applied to reduce overfitting.

42

• The output layer is a Dense layer with the number of units equal to the number of classes in the

dataset, and a softmax activation function to produce class probabilities.

Table 3: Summary of the Modified Le-Net Model

Layer (type) Output Shape Parameters

Convolution 2D (30, 30, 60) 1560

Convolution 2D (28, 28, 60) 90060

Max-Pooling 2D (14, 14, 60) 0

Convolution 2D (12, 12, 30) 16230

Convolution 2D (10, 10, 30) 1560

Max-Pooling 2D (5, 5, 30) 0

Flatten (750) 0

Dense (128) 540500

Dropout (128) 0

Dense (43) 21543

Total parameters 1,59,095

Trainable parameters 1,59,095

Non-trainable parameters 0

3.6 Evaluation Parameters

3.6.1 Accuracy

Accuracy is a commonly used evaluation metric in deep learning that measures the percentage of

correctly classified instances over the total number of instances in a dataset. It is a simple and intuitive

metric that gives a quick understanding of the overall performance of a model. It is defined in

Equation (21).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(21)

43

3.6.2 Precision

Precision is a measure of a classifier's exactness. It is the ratio of true positives to the total number of

positive predictions made by the classifier. It is defined in Equation 22.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑖𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(22)

3.6.3 Recall

Recall is also known as sensitivity or the true positive rate (TPR). It is calculated as the ratio of true

positive (TP) instances to the sum of true positives and false negatives (FN). In other words, recall

tells us the percentage of actual positive cases that are correctly identified by the model. It is defined

in Equation 23.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(23)

3.6.4 F1-Score

F1 score (also known as F-measure, or balanced F-score) is a widely used metric in deep learning for

evaluating the performance of classification models. It is a harmonic mean of precision and recall,

which makes it a balanced measure of a model's accuracy. It is defined in Equation 24.

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(24)

44

CHAPTER - 4

RESULTS & DISCUSSIONS

4.1 Results

This project aimed to test the performance of different optimizers, pooling layers, activation

functions, and dropout layers on the Le-Net model. In total, four optimizers, including Nadam, Adam,

RMSProp, and AdaMax, were evaluated with two learning rates of 0.01 and 0.001, and two pooling

layers, namely Average and Max, were considered. Additionally, three activation functions, including

ReLU and Softmax, were used along with four different dropout layers, namely No Dropout, 30%,

50%, and 70% dropout percentages in each layer.

Table 4 and Table 5 demonstrate the performance of the Le-Net model with different parameters and

dropout layers, respectively. Based on the results, the top three performing parameters were selected

for testing on the Modified Le-Net model.

Table 4: Accuracy achieved using different parameters on the Le-Net model

Learning

Rate

Pooling Layers Optimizers

 Nadam Adam RMSProp AdaMax

0.01 Average Pooling 89.59% 87.90% 89.48% 90.06%

 Max Pooling 88.96% 82.29% 91.40% 92.17%

0.001 Average Pooling 92.20% 91.22% 93.34% 88.58%

 Max Pooling 93.58% 93.49% 94.17% 91.33%

Table 5: Accuracy achieved using different dropout layers

S. No. Dropout Percentage Accuracy

1 No Dropout 92.92%

2 30% 93.20%

3 50% 94.17%

4 70% 95.08%

45

The experiment involved testing different parameters for the Le-Net model, including four

optimizers, two pooling layers, three activation functions, and four dropout layers. The results were

then analysed, and the top three parameters were selected to test on the Modified Le-Net model. The

top three optimizers were Nadam, Adam, and RMSProp, and they were tested on the Modified Le-

Net model. The results of these tests were then presented in Table 6 and Table 7, which showed the

performance of the Modified Le-Net model with different parameters and dropout layers respectively.

Table 6: Accuracy achieved using different parameters on the modified Le-Net model

Learning Rate Polling Layers Optimizers

 Nadam Adam RMSProp

0.001 Average Pooling 97.68% 97.43% 96.73%

 Max Pooling 97.07% 96.88% 96.06%

Table 7: Accuracy achieved using different dropout layers

S. No. Dropout Percentage Accuracy

1 No Dropout 94.36

2 30% 96.49

3 50% 97.86

4 70% 96.58

The classification report of the model is illustrated in Table 8. Which denotes the Precision, Recall

and F1-Score of individual classes.

Table 8: Classification report of all 43 classes

Class ID Precision Recall F1-score

0 1.00 0.92 0.96

1 0.98 0.99 0.99

2 0.99 0.98 0.99

3 0.98 0.98 0.98

4 0.98 1.00 0.99

5 0.96 0.98 0.97

46

6 0.93 1.00 0.97

7 0.99 0.98 0.99

8 0.98 0.99 0.98

9 1.00 1.00 1.00

10 0.99 1.00 0.99

11 0.98 0.94 0.96

12 0.99 0.94 0.96

13 1.00 0.99 1.00

14 1.00 0.92 0.96

15 0.98 0.93 0.95

16 1.00 1.00 1.00

17 0.94 1.00 0.97

18 0.85 0.98 0.91

19 1.00 0.78 0.88

20 0.99 0.99 0.99

21 0.67 0.98 0.79

22 0.98 0.98 0.98

23 1.00 0.95 0.97

24 0.93 0.97 0.95

25 0.94 0.99 0.97

26 0.97 0.86 0.91

27 0.62 0.43 0.51

28 1.00 0.98 0.99

29 1.00 0.97 0.98

30 0.85 0.95 0.90

31 0.97 0.99 0.98

32 0.98 1.00 0.99

33 0.99 0.99 0.99

34 1.00 0.99 1.00

35 0.99 0.99 0.99

36 1.00 0.98 0.99

37 1.00 0.95 0.98

38 0.96 0.98 0.97

39 0.99 0.95 0.97

40 0.90 0.98 0.94

41 0.98 0.98 0.98

42 0.99 0.99 0.99

47

4.2 Discussions

The optimizer used can have a big impact on the performance of a deep learning model. The Le-Net

model was examined with four distinct optimizers in this case: Nadam, Adam, RMSProp, and

AdaMax. The model performed best with the RMSProp optimizer, according to the results. However,

the Modified Le-Net model fared best with the Nadam optimizer since it has more convolutional

layers.

RMSProp is an optimizer that normalises the gradient by taking a moving average of the squared

gradients. This prevents the learning rate from becoming too high and beyond the ideal point in the

cost function. RMSProp also includes a momentum term, which smooth out the updates and allows

the optimizer to move faster in the direction of the optimal point. As a result, it may be a viable choice

for models with less convolutional layers, such as Le-Net.

In contrast, Adam combines the benefits of RMSProp and momentum optimisation. Adam is well-

known for his ability to perform well with a wide range of deep learning models, including those with

larger datasets and more sophisticated architectures. However, it did not outperform RMSProp for

the Le-Net model in this example.

AdaMax is another Adam optimizer variation that is intended to address disappearing and exploding

gradient concerns. It is an Adam optimizer extension that computes the gradient moving average

using the Lp norm rather than the L2 norm. However, AdaMax did not outperform RMSProp in this

scenario for the Le-Net model.

Nesterov accelerated gradient (NAG) and Adam optimizer are combined in Nadam. It computes the

gradient using the NAG update algorithm rather than the conventional gradient update rule. The NAG

update rule enables the optimizer to take the momentum of the previous step into account and alter

the current gradient accordingly. Nadam is a suitable choice for models with more convolutional

layers since it allows the optimizer to quickly converge to the optimal point. This is most likely why

Nadam did the best for the Modified Le-Net model.

48

The optimizer utilised is determined by the model's specific properties. Because of its capacity to

prevent overshooting the ideal point and smooth the updates, RMSProp performed best for the Le-

Net model in this scenario. However, Nadam performed better for the Modified Le-Net model with

additional convolutional layers due to its capacity to fast converge to the optimal point. Experiment

with multiple optimizers and modify the hyperparameters to discover the optimal optimizer for a

specific model.

The learning rate is a crucial hyperparameter in the training process of neural networks since it

governs the size of the steps the optimizer takes during backpropagation. A high learning rate can

accelerate convergence, but it can also cause overshooting and instability. In contrast, a low learning

rate may ensure more stable training but slower convergence. Here, we will discuss why a learning

rate of 0.001 outperforms 0.01.

When we employ a learning rate of 0.01, the optimisation process backpropagates in huge increments

in the direction of the gradient. These huge steps may cause the optimizer to overshoot the minimum

and fluctuate about it, making convergence to the optimal solution problematic. As a result,

convergence is slower and forecasts are less accurate. Furthermore, a high learning rate can cause the

optimisation process to diverge, resulting in a substantial increase in loss function and unstable

training.

On the other hand, when we used learning rate equal to 0.001, the optimization algorithm takes

smaller steps in the direction of the gradient. These smaller steps are less likely to overshoot the

minimum and lead to more stable convergence. Smaller learning rates also help to avoid the issue of

diverging during training. As a result, a learning rate of 0.001 allows the optimization algorithm to

converge more quickly and accurately to the optimal solution.

In some cases, a higher learning rate may be more appropriate, especially for shallow networks.

However, for deeper networks, a lower learning rate is generally preferred due to the increased risk

of overshooting and instability.

49

In summary, a learning rate of 0.001 yields better results than 0.01 because it permits the optimisation

process to take fewer, more steady steps in the gradient's direction during backpropagation. As a

result, the convergence to the best solution is more accurate and faster. To get the optimum

performance, the ideal learning rate must be carefully selected based on the unique problem and

neural network architecture.

Dropout is a regularisation approach that is commonly used to prevent overfitting in deep learning

models. It is a way of randomly removing some units during training, preventing the units from over-

co-adapting. Dropout has been demonstrated to improve neural network generalisation performance,

making them less prone to overfit the training data. The dropout percentage is the proportion of

neurons in the network that are dropped out at random during training.

In this project, the Le-Net model was tested with four different dropout percentages: No Dropout,

30%, 50%, and 70%, to evaluate their impact on the model's performance. It was observed that both

the Le-Net and Modified Le-Net models perform better with 50% and 70% dropout percentages, as

compared to No Dropout or 30% dropout percentage. There are several possible reasons for this.

Firstly, Dropout can be seen as a form of ensemble learning, where different sub-networks are trained

on different subsets of the input data. The dropout technique reduces the co-adaptation between the

neurons, which forces the network to learn more robust features that are useful for classification. By

randomly dropping out some of the neurons, the network becomes less sensitive to the noise in the

input data, which can help it to generalize better to new examples.

Secondly, Dropout reduces the dependence of the network on a small subset of the input features.

When the dropout percentage is high, the network is forced to learn more independent features, which

can help it to generalize better. This can also reduce the risk of overfitting, as the network is less likely

to rely on a small subset of the input features to make its predictions.

50

Thirdly, Dropout acts as a form of regularization by adding noise to the network during training. This

can help to prevent overfitting, as it forces the network to learn more general features that are useful

for the entire dataset, rather than just memorizing the training examples.

Finally, in this project, both the Le-Net and Modified Le-Net models have a relatively small number

of parameters. This means that the models are more prone to overfitting, and therefore, dropout can

be particularly effective in preventing overfitting and improving the model's performance.

Dropout is a powerful regularisation approach that can increase neural network generalisation

performance. The dropout percentage defines how many neurons are randomly dropped out during

training and has a substantial impact on the model's performance. It was discovered in this experiment

that the Le-Net and Modified Le-Net models perform better with 50% and 70% dropout percentages,

respectively, than with No Dropout or 30% dropout rate. Dropout minimises co-adaptation between

neurons, lessens the network's reliance on a limited subset of input features, adds noise to the network

during training, and works as a type of regularisation.

The choice between max pooling and average pooling depends on the specific problem and data at

hand. In general, max pooling is more effective when the task involves identifying the most important

features in the input data. This is because max pooling retains only the maximum value in each pool,

discarding the less important features. This can be particularly useful in tasks such as object

recognition, where identifying the most relevant features in an image is crucial for accurate

classification.

On the other hand, average pooling is more effective when the task involves identifying the overall

trends in the input data. This is because average pooling computes the average value in each pool,

providing a smoother and more generalized representation of the input. This can be particularly useful

in tasks such as sentiment analysis, where the overall sentiment of a text is more important than

specific words or phrases.

51

It is worth noting that there are some cases where neither max pooling nor average pooling is the best

choice. For example, if the input data contains a lot of noise or irrelevant features, both pooling

methods may struggle to produce accurate results. In these cases, other pooling methods such as Lp

pooling or stochastic pooling may be more effective.

Ultimately, the choice between max pooling and average pooling (or other pooling methods) should

be based on the specific requirements of the task and the characteristics of the input data.

Experimentation and testing different pooling methods can help determine which approach works

best for a particular problem. Certainly, In our model, both max pooling and average pooling were

tested on the Le-Net model, and it was found that they worked better in different scenarios.

Max pooling is generally preferred in scenarios where the exact spatial location of features is not as

important as their presence within a region. This is because max pooling retains the most prominent

features within a given region and discards the rest. It is also known to preserve the spatial variance

of the features to a greater extent than average pooling. Therefore, in cases where there is a lot of

variation in the input data, max pooling may work better.

Average pooling, on the other hand, is better suited for instances where the precise geographical

position of features is critical. This is since it takes into account all of the features within a region and

averages them out, which can assist retain the general structure of the input data. It may also perform

better in circumstances where the input data is less variable.

Image prediction is a critical task in computer vision, and it involves analysing and interpreting the

content of an image to make accurate predictions. In recent years, there has been significant progress

in the development of deep learning models for image prediction, which has led to the development

of highly accurate and efficient image prediction systems.

To begin the process of image prediction, an image is first taken and pre-processed to prepare it for

input into the prediction model. Pre-processing may involve tasks such as resizing the image,

converting it to grayscale or another color space, and normalizing the pixel values to improve model

52

performance. Figure 10(a) represents a random image and Figure 10(b) represent the result of the

image after being pre-processed.

(a) (b)

Figure 10: (a) Random image of a traffic sign (b) Pre-processed image of the traffic sign

Once the image is pre-processed, it can be input into the image prediction model. The model analyses

the image using various techniques such as CNNs, recurrent neural networks (RNNs), or

transformers. The output of the model is a set of predicted labels or probabilities that represent the

model's confidence in each possible prediction.

It is essential to evaluate the accuracy of the image prediction model to ensure that it is making

accurate predictions. This can be done by comparing the predicted labels with the ground truth labels

for a set of validation images. If the model's predictions match the ground truth labels, it is considered

to have predicted the image correctly. Figure 11 represents the results of prediction of the model. The

model predicts that the image belongs to the Class Id 34 which is correct according to the Table 1.

Figure 11: Results of the prediction of the model

Appendix 1 and Appendix 2 consist of the code for Le-Net and the Modified Le-Net model

respectively.

53

CHAPTER - 5

CONCLUSION & FUTURE WORK

5.1 Conclusion

To summarise, the optimizer used in deep learning model training is an important factor that can have

a major impact on the model's performance. The Le-Net and Modified Le-Net models were trained

using four different optimizers in this example, and the findings revealed that the ideal optimizer

differed based on the model's design. The optimal optimizer for the Le-Net model, which has less

convolutional layers, was found to be RMSProp. The ability of RMSProp to prevent overshooting

and smooth out updates made it an excellent choice for this model. However, Nadam was discovered

to be the best optimizer for the Modified Le-Net model, which contains more convolutional layers.

Nadam's ability to quickly converge to the optimal point was critical for this model's performance.

It is critical to experiment with different optimizers and hyperparameters until the ideal combination

for a certain model architecture is determined in order to obtain optimal performance in training

neural networks. The best optimizer may differ depending on the model's properties, such as the

number of convolutional layers, dataset size, and architecture complexity.

However, the model's performance is not only determined by the optimizer, but also by other aspects

like as the quality of the dataset, the architecture, and the hyperparameters. As a result, all these factors

must be evaluated and optimised in order for the deep learning model to function optimally.

Choosing the right learning rate is critical in achieving optimal performance when training neural

networks. While a higher learning rate can lead to faster convergence, it increases the risk of

overshooting the minimum and instability. Conversely, a lower learning rate may result in slower

convergence but more stable training. We have discussed why a learning rate of 0.001 provides better

results than 0.01. A learning rate of 0.01 can cause the optimization algorithm to overshoot the

minimum, leading to oscillations and slow convergence. In contrast, a learning rate of 0.001 allows

the optimization algorithm to take smaller steps in the direction of the gradient during

backpropagation, resulting in more stable convergence and accurate predictions. Smaller learning

rates also help to prevent the issue of divergence during training.

54

It is vital to remember that the best learning rate is determined by the individual problem being

handled as well as the neural network architecture. A higher learning rate may be more acceptable for

shallow networks, whereas a lower learning rate is often preferable for deeper networks due to the

increased danger of overshooting and instability. To achieve the optimum performance, it is critical

to carefully select the learning rate and experiment with different values.

In conclusion, choosing the correct learning rate is critical for optimising neural network training

performance. A learning rate of 0.001 produces better outcomes than 0.01 because it produces more

steady convergence and more accurate predictions. However, the appropriate learning rate is

dependent on the specific problem and neural network architecture, and experimenting with different

numbers is crucial to attain the best results.

In conclusion, regularization techniques such as dropout can significantly improve the generalization

performance of neural networks by reducing overfitting. The choice of dropout percentage can have

a significant impact on the performance of the model, and it is important to experiment with different

values to find the optimal value for a specific problem and neural network architecture. By reducing

co-adaptation between neurons and adding noise to the network during training, dropout acts as a

form of regularization that can lead to better generalization performance. Regarding pooling methods,

both max pooling and average pooling have their own strengths and weaknesses, and the choice

between them should be based on the specific requirements of the task and the characteristics of the

input data. Max pooling is generally preferred when identifying the most important features in the

input data is crucial, while average pooling is more effective in identifying the overall trends in the

input data. However, other pooling methods such as Lp pooling or stochastic pooling may be more

effective in some scenarios.

Both max pooling and average pooling were found to operate better in distinct conditions in the

context of the Le-Net model. Max pooling performed better in instances where the precise spatial

position of features was less crucial than their presence within a region. Average pooling, on the other

hand, was more effective in circumstances where recognising overall trends in the input data was

more significant. As a result, it is critical to experiment with various pooling approaches in order to

55

determine the best solution for a certain problem and neural network architecture. Finally, selecting

the best pooling approach can assist increase the model's accuracy and generalisation performance.

5.2 Future Work

There are several possible directions for future work on traffic sign recognition systems:

• Using deep learning techniques: While current traffic sign recognition systems have attained

excellent accuracy, they suffer from performance degradation in different environmental

situations such as poor lighting, rain, and fog. Deep learning techniques such as convolutional

neural networks (CNNs) have the potential to increase recognition accuracy and robustness

in a variety of environments.

• Real-time performance optimisation: For traffic sign recognition systems to ensure driver

safety, real-time performance is critical. As a result, future work might concentrate on creating

optimisation strategies to minimise the system's processing cost while maintaining high

accuracy.

• Multi-language support: Current traffic sign recognition systems are built primarily for a

single language, limiting their usability in multilingual situations. Creating a system that

recognises traffic signals in many languages will considerably expand their application in

other places.

• Pedestrian recognition: Future work could focus on establishing a system that can recognise

pedestrians and their behaviour in addition to recognising traffic signs. This would improve

safety in regions where automobiles and people share the road.

• Data crowdsourcing: Gathering data for training traffic sign recognition systems can be time-

consuming and expensive. Future research could look towards using crowdsourcing to collect

56

massive amounts of data from various countries, languages, and driving circumstances, which

could then be used to train and improve these systems' performance.

• • Integration with automated driving: As autonomous driving becomes more prevalent, traffic

sign recognition systems will become increasingly more important in guaranteeing road

safety. Future research could concentrate on combining these systems with autonomous

driving technology in order to deliver real-time information to autonomous vehicles, thereby

boosting their capacity to navigate highways safely.

57

REFRENCES

[1] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The German traffic sign recognition benchmark: A multi-class

classification competition,” in Proc. IEEE Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2011, pp. 1453–1460.

[2] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel, “Detection of traffic signs in real-world images: The

German traffic sign detection benchmark,” in Proc. IEEE Int. Joint Conf. Neural Netw. (IJCNN), Aug. 2013, pp. 1–8.

[3] Aghdam, H.H., Heravi, E.J. and Puig, D., 2016. A practical approach for detection and classification of traffic signs

using convolutional neural networks. Robotics and autonomous systems, 84, pp.97-112.

[4] Bouti, A., Mahraz, M.A., Riffi, J. and Tairi, H., 2019. A robust system for road sign detection and classification using

LeNet architecture based on convolutional neural network. Soft Computing, pp.1-13.

[5] Jin, J., Fu, K. and Zhang, C., 2014. Traffic sign recognition with hinge loss trained convolutional neural networks.

IEEE Transactions on Intelligent Transportation Systems, 15(5), pp.1991-2000.

[6] Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks.

In Advances in neural information processing systems (pp. 1097-1105).

[7] Zhang, J., Jin, X., Sun, J., Wang, J. and Li, K., 2019. Dual model learning combined with multiple feature selection

for accurate visual tracking. IEEE Access, 7, pp.43956-43969.

[8] Zhou, Y., Shi, J., Yang, X., Wang, C., Wei, S. and Zhang, X., 2019. Rotational objects recognition and angle estimation

via kernelmapping CNN. IEEE Access, 7, pp.116505-116518.

[9] Luo, W., Li, Y., Urtasun, R. and Zemel, R., 2016. Understanding the effective receptive field in deep convolutional

neural networks. In Advances in neural information processing systems (pp. 4898-4906).

[10] H. Akatsuka and S. Imai, “Road signposts recognition system,” in Proc. SAE Veh. Highway Infrastructure—Safety

Compatibility, 1987, pp. 189–196.

[11] D. Kellmeyer and H. Zwahlen, “Detection of highway warning signs in natural video images using color image

processing and neural networks,” in Proc. IEEE Int. Conf. Neural Netw., 1994, vol. 7, pp. 4226–4231.

[12] M. de Saint Blancard, “Road sign recognition: A study of vision-based decision making for road environment

recognition,” in Vision-Based Vehicle Guidance. New York: Springer-Verlag, 1992, pp. 162–172.

[13] A. D. L. Escalera, L. E. Moreno, M. A. Salichs, and J. M. Armingol, “Road traffic sign detection and classification,”

IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 848–859, Dec. 1997.

[14] D. Ghica, S. W. Lu, and X. Yuan, “Recognition of traffic signs using a multilayer neural network,” in Proc. Can.

Conf. Elect. Comput. Eng., Halifax, NS, Canada, 1994, vol. 44, pp. 848–859.

[15] A. de la Escalera, J. M. Armingol, and M. Salichs, “Recognition of traffic signs using a multilayer neural network,”

in Proc. 3rd Int. Conf. Field Service Robot., Espoo, Finland, Jun. 2001, pp. 833–834.

[16] J. Miura, T. Kanda, and Y. Shirail, “An active vision system for real-time traffic sign recognition,” in Proc. IEEE Int.

Conf. ITSC, 2000, pp. 52–57.

58

[17] D. Shaposhnikov, L. Podladchikova, A. Golovan, N. Shevtsova, K. Hong, and X. Gao, Road Sign Recognition by

Single Positioning of Space-Variant Sensor, 2002. [Online]. Available: citeseer.csail.mit.edu/ 657126.html

[18] S. Hsu and C. Huang, “Road sign detection and recognition using matching pursuit method,” Image Vis. Comput.,

vol. 19, no. 3, pp. 119–129, Feb. 2001.

[19] G. Piccioli, E. D. Micheli, and M. Campani, “A robust method for road sign detection and recognition,” in Proc.

ECCV, 1996, vol. 1, pp. 495– 500. [Online]. Available: citeseer.csail.mit.edu/piccioli96robust.html

[20] G. Piccioli, E. D. Michelli, P. Parodi, and M. Campani, “Robust road sign detection and recognition from image

sequences,” in Proc. Intell. Veh., 1994, pp. 278–283.

[21] S. Escalera and P. Radeva, “Fast gray scale road sign model matching and recognition,” in Recent Advances in

Artificial Intelligence Research and Development. Amsterdam, The Netherlands: IOS, Oct. 2004.

[22] G. Loy and A. Zelinsky, “Fast radial symmetry for detecting points of interest,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 25, no. 8, pp. 959–973, Aug. 2003.

[23] S. Maldonado-Bascon, S. Lafuente-Arroyo, P. Gil-Jimenez, H. GomezMoreno, and F. Lopez-Ferreras, “Road-sign

detection and recognition based on support vector machines,” IEEE Trans. Intell. Transp. Syst., vol. 8, no. 2, pp. 264–

278, Jun. 2007.

[24] A. de la Escalera, J. Armingol, J. Pastor, and F. Rodriguez, “Visual sign information extraction and identification by

deformable models for intelligent vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 5, no. 2, pp. 57–68, Jun. 2004.

[25] P. Paclik, J. Novovicova, and R. Duin, “Building road-sign classifiers using a trainable similarity measure,” IEEE

Trans. Intell. Transp. Syst., vol. 7, no. 3, pp. 309–321, Sep. 2006.

[26] Y. Xie, L. Liu, C. Li, and Y. Qu, “Unifying visual saliency with HOG feature learning for traffic sign detection,” in

Proc. IEEE Intell. Veh. Symp., 2009, pp. 24–29.

[27] X. Baró, S. Escalera, J. Vitriá, O. Pujol, and P. Radeva, “Traffic sign recognition using evolutionary Adaboost

detection and forest-ECOC classification,” IEEE Trans. Intell. Transp. Syst., vol. 10, no. 1, pp. 113–126, Mar. 2009.

[28] B. Hoferlin and K. Zimmermann, “Towards reliable traffic sign recognition,” in Proc. IEEE Intell. Veh. Symp., 2009,

pp. 324–329.

[29] Y.-Y. Nguwi and A. Kouzani, “Detection and classification of road signs in natural environments,” Neural Comput.

Appl., vol. 17, no. 3, pp. 265– 289, Apr. 2008.

[30] A. Bargeton, F. Moutarde, F. Nashashibi, and B. Bradai, “Improving pan-European speed-limit signs recognition

with a new global number segmentation before digit recognition,” in Proc. IEEE Intell. Veh. Symp., 2008, pp. 349–354.

[31] K. Lim, Jr., K. Seng, Jr., and L. Ang, Jr., “Intra color-shape classification for traffic sign recognition,” in Proc. ICS,

2010, pp. 642–647.

[32] Persson, Siri. "Application of the German Traffic Sign Recognition Benchmark on the VGG16 network using transfer

learning and bottleneck features in Keras," 2018.

59

[33] Rajesh, Reghunadhan, K. Rajeev, K. Suchithra, V. P. Lekhesh, V. Gopakumar, and N. K. Ragesh. "Coherence vector

of oriented gradients for traffic sign recognition using neural networks," In The 2011 International Joint Conference on

Neural Networks, pp. 907-910, IEEE, 2011.

[34] Dongfang, Zhao, Kang Wenjing, Li Tao, and Liu Gongliang. "Traffic sign classification network using inception

module," In 2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), pp. 1881-

1890, IEEE, 2019.

[35] Sun, Ying, Pingshu Ge, and Dequan Liu. "Traffic Sign Detection and Recognition Based on Convolutional Neural

Network," In 2019 Chinese Automation Congress (CAC), pp. 2851-2854, IEEE, 2019.

[36] Gracia-Garrido, M., Sotelo, M., & Martin-Gorostiza, E. (2006). Fast traffic sign detection and recognition under

challenging lighting conditions. 2006 IEEE Intelligent Transportation Systems Conference, 811-816.

[37] Barnes, N., & Zelinsky, A. (2004). Real-time radial symmetry for speed sign detection. IEEE Intelligent Vehicles

Symposium, 2004, 566-571.

[38] Garvila, D. M. (1999). Traffic sign recognition revisited. Informatik aktuell Mustererkennung 1999, 86-93.

[39] Zheng, Z., Zhang, H., Wang, B., & Gao, Z. (2012). Robust traffic sign recognition and tracking for Advanced Driver

Assistance Systems. 2012 15th International IEEE Conference on Intelligent Transportation Systems, 704-709.

[40] Oruklu, E., Pesty, D., Neveux, J., & Guebey, J. (2012). Real-time traffic sign detection and recognition for in-car

driver assistance systems. 2012 IEEE 55th International Midwest Symposium on Circuits and Systema (MWSCAS), 976-

979.

[41] Greenhalgh, J., & Mirmehdi, M. (2012). Real-time detection and recognition of road traffic signs. IEEE Transactions

on Intelligent Transportation Systems, 13(4), 1498-1506.

[42] Yang, Y., Luo, H., Xu, H., & Wu, F., (2014). Towards realtime traffic sign detection and classification. 17th

International IEEE Conference on Intelligent Transportation Systems, 17(7), 2022-2031.

[43] C.g., K., Prabhu, L.V., A. R., & K., R. (2009). Traffic sign detection and pattern recognition using support vector

machine. 2009 Seventh International Conference on Advances in Pattern Recognition, 87-90

[44] Gomez-Moreno, H., Maldonado-Bascon, S., Gil-Jimenez, P., & Lafuente-Arroyo, S. (2010). Goal evaluation of

segmentation algorithms for traffic sign recognition. IEEE Transactions on Intelligent Transportation Systems, 11(4), 917-

930.

[45] Berkaya, S. K., Gunduz, H., Ozsen, O., Akinlar, C., &Gunal, S. (2016) "On circular traffic sign detection and

recognition." Expert Systems with Applications, 48, 67-75.

[46] Chen Li, Cheng Yang, (2016) "The research on traffic sign recognition based on deep learning.", International

Symposium on Communications and Information Technologies (ISCIT), 156-161.

[47] El Margae, S., Kerroum, M. A., & Fakhri, Y. (2015) "Fusion of local and global feature extraction based on uniform

LBP and DCT for traffic sign recognition." International Review on Computers and Software (IRECOS), 10(1), 52-60.

60

[48] T. Ojala, M. Pietikäinen, and D. Harwood, (1996) "A comparative study of texture measures with classification based

on featured distributions." Pattern Recognition, 29(1), 51-59.

[49] W. Liu, J. Lv, H. Gao, B. Duan, H. Yuan, and H. Zhao, (2011) "An efficient real-time speed limit signs recognition

based on rotation invariant feature." in IEEE Intelligent Vehicles Symposium (IV), 1000-1005.

[50] Wang, W., Sun, S., Jiang, M., Yan, Y., & Chen, X. (2017) "Traffic lights detection and recognition based on multi-

feature fusion." Multimedia Tools and Applications, 76(13), 14829-14846.

[51] Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006) "Extreme learning machine: theory and applications."

Neurocomputing, 70(1), 489-501.

[52] Huang, Z., Yu, Y., Gu, J., & Liu, H., (2017). "An efficient method for traffic sign recognition based on extreme

learning machine." IEEE transactions on cybernetics, 47(4), 920-933.

[53] Wali, Safat, Mohammad A Hannan, Shahrum abdullah, Aini Hussain S.A.S., Shape Matching and Color

Segmentation Based Traffic Sign Detection System, PrzeglD Elektrotechniczny, 1 (2015) 38–42.

[54] Li Y., Pankanti S., Guan W., Real-Time Traffic Sign Detection: An Evaluation Study. 2010 20th International

Conference on Pattern Recognition, (2010), 3033–6.

[55] Li L., Li J., Sun J., Robust traffic sign detection using fuzzy shape recognizer. In: Ding M, Bhanu B, Wahl FM,

Roberts J, editors, in proc. Pattern Recognition and Computer vision, 7496 (2009), 74960Z – 74960Z – 8.

[56] Pacl P., Novoviˇ J., Vitabile S., Gentile A., Sorbello F., Torresen J., et al., Real-Time Detection and Recognition of

Road Traffic Signs, Robotics and Autonomous Systems, 13 (2012) 86–93.

[57] Soheilian B., Paparoditis N., Vallet B., Detection and 3D reconstruction of traffic signs from multiple view color

images, ISPRS Journal of Photogrammetry and Remote Sensing, 77 (2013) 1–20.

61

APPENDIX A

A.1 Pre-processing

A2. Architecture of Le-Net model

62

APPENDIX B

A1. Pre-processing

A2. Data Augmentation

A3. Architecture of Modified Le-Net model

63

PLAGRISM REPORT

