

Use of Deep Learning/ML Algorithms for the Classification of

Brain Tumor

Project report submitted in partial fulfilment of the requirement

for the degree of Bachelor of Technology

in

Computer Science and Engineering

By

Prince Nag (191257)

Under the supervision of

Dr. Yugal Kumar

to

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat,

Solan-173234, Himachal Pradesh

i

CERTIFICATE

CANDIDATE’S DECLARATION

I hereby declare that the work presented in this report entitled “Use of Deep

Learning/ML Algorithms for the Classification of Brain Tumor” in partial

fulfilment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering submitted in the department of

Computer Science & Engineering and Information Technology, Jaypee University

of Information Technology Waknaghat is an authentic record of my own work

carried out over a period from August 2022 to May 2023 under the supervision of

Dr. Yugal Kumar (Associate Professor, Department of CSE, Jaypee University of

Information Technology, Waknaghat). I also authenticate that I have carried out the

above-mentioned project work under the proficiency stream Machine Learning.

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

(Student Signature)

Prince Nag

191257

This is to certify that the above statement made by the candidate is true to the best of

my knowledge.

(Supervisor Signature)

Dr. Yugal Kumar

Associate Professor

Computer Science & Engineering

Dated: May 01,2023

ii

PLAGIARISM CERTIFICATE

iii

ACKNOWLEDGEMENT

All compliments and praise are due to God who empowered me with strength and

sense of devotion to successfully accomplish this project work successfully.

I am also deeply thankful to my supervisor, Dr. Yugal Kumar, an associate

professor at the Department of CSE, Jaypee University of Information Technology,

Waknaghat, for his extensive knowledge and interest in the field of Machine

Learning, which made this project possible. His unwavering patience, scholarly

guidance, continual encouragement, constant supervision, constructive criticism,

valuable advice, and meticulous reading of many inferior drafts have been invaluable

to me.

I am also grateful to Sh. Mohan Sharma and Sh. Ravi Raina of the Department of

CSE for their kind assistance in completing my project.

I extend my heartfelt thanks to all those who have directly or indirectly contributed

to the success of this project. I would like to acknowledge the many staff members,

both teaching and non-teaching, who have provided timely assistance and facilitated

my project.

Finally, I would like to express my sincere appreciation to my parents for their

unwavering support and patience throughout this journey.

Prince Nag

191257

iv

TABLE OF CONTENT

ABBREVIATIONS vii

LIST OF FIGURES viii

LIST OF TABLES x

1 INTRODUCTION .. 1

 1.1 Overview ... 1

 1.2 Motivation for the work .. 2

 1.3 Problem Statement .. 3

 1.4 Objectives ... 3

 1.5 Methodology ... 5

 1.6 Organization .. 5

 1.7 Summary ... 6

2 LITERATURE SURVEY ... 7

 2.1 Overview ... 7

 2.2 A summary of the relevant papers .. 7

 2.3 Summary ... 8

3 BACKGROUND ... 9

 3.1 Brain Tumor .. 9

 3.1.1 Causes .. 9

 3.1.2 Classification of Brain Tumor .. 10

 3.1.3 MRI Image and Treatments .. 10

 3.2 Deep Learning ... 11

 3.2.1 Artificial Neural Network .. 12

 3.2.1.1 Artificial Neurons .. 12

 3.2.1.2 Basic Operation of Neural Networks 12

v

 3.2.2 Convolutional neural network .. 13

 3.2.2.1 Convolutional Neural Network Architecture 13

4 SYSTEM DEVELOPMENT .. 15

 4.1 Overview ... 15

 4.2 Overall Design .. 15

 4.3 Software & Environment ... 15

 4.3.1 Software Requirements ... 16

 4.4 Dataset Description ... 17

 4.5 Data visualization ... 18

 4.6 Data preprocessing .. 19

 4.6.1 Data Augmentation .. 19

 4.7 Feature Extraction .. 20

 4.8 Train and Test set ... 20

 4.8.1 Training Data .. 20

 4.8.2 Test Data .. 20

 4.9 Define CNN model .. 21

 4.10 Train & observe the model .. 21

 4.11 Predict & save model ... 22

 4.12 Proposed System ... 22

 4.12.1 Traditional CNN Approach ... 23

 4.12.2 Transfer Learning Approach .. 41

 4.13 Module Division .. 46

 4.13.1 Proposed Workflow .. 47

 4.13 Summary ... 48

5 PERFORMANCE ANALYSIS ... 49

 5.1 Overview .. 49

vi

 5.2 Performance Measures .. 49

 5.2.1 Confusion Matrix .. 49

 5.2.2 Accuracy ... 50

 5.2.3 Precision ... 50

 5.2.4 Recall ... 50

 5.2.5 F-Score ... 50

 5.3 Experimental Results ... 51

 5.4 Traditional CNN Approach .. 51

 5.4.1 Visualization ... 51

 5.4.2 Model Evaluation ... 51

 5.4.3 Visualize the Results [CNN Model] .. 53

 5.4.4 Classification of Images ... 54

 5.5 Transfer Learning Approach .. 54

 5.5.1 ResNet50 Model Evaluation ... 54

 5.5.1.1 Visualize the Results [ResNet50] 55

 5.5.2 EfficientNetB0 Model Evaluation .. 56

 5.5.2.1 Visualize the Results [EfficientNet50] 58

 5.6 Performance Comparison .. 59

 5.6.1 Comparison Between Traditional CNN and Transfer Learning 59

 5.7 Performance comparison b/w existing model proposed CNN model 59

 5.8 Summary ... 60

6 CONCLUSIONS ... 61

 6.1 Conclusion ... 61

 6.2 Future Scope .. 61

REFERENCES .. 62

vii

LIST OF ABBREVIATIONS

1. AI .. Artificial Intelligence

2. CNN ... Convolutional Neural Network

3. ML ... Machine Learning

4. ReLU .. Rectified Linear Unit

5. FCN .. Fully Convolutional Network

6. MRI .. Magnetic Resonance Imaging

7. ANN ... Artificial Neural Network

8. Tanh ... Hyperbolic Tangent

9. MLP ... Multi Layer Perceptron

10. MSE .. Mean Squared Error

11. SGD ..Stochastic Gradient Descent

12. ResNet ... Residual Network

viii

LIST OF FIGURES

1.1 Basic Tumor Image .. 1

1.2 Brain Cancer Deaths in India(2010-2020) ... 2

3.1 Basic Structure of Human Brain .. 9

3.2 Picture of Deep Learning in the context of AI .. 12

3.3 Biological Neuron Illustration ... 12

3.4 Mathematical Neuron Illustration .. 13

3.5 Overview of the proposed method for brain tumor classification. 14

4.1 Glioma Tumor .. 17

4.2 Meningioma Tumor ... 18

4.3 No Tumor ... 18

4.4 Pituitary Tumor .. 18

4.5 Sample Images from each class of the dataset ... 19

4.6 Data Augmentation .. 19

4.7 Basic Architecture of CNN Model .. 23

4.8 Process of convolution ... 24

4.9 Convolution Operation of CNN ... 25

4.10 Applying a filter while moving a source image when the stride is 1 26

4.11 An input with zero padding (padding amount = 1) 26

4.12 Max Pooling .. 27

4.13 Average Pooling ... 27

4.14 Fully Connected Layer .. 28

4.15 Sigmoid Function Curve ... 29

4.16 tanh Function Curve ... 29

4.17 ReLU Function Curve ... 30

4.18 Network before and after Dropout .. 31

4.19 Gradient Descent ... 34

ix

4.20 Mini-Batch Gradient Descent ... 35

4.21 Stochastic Gradient Descent (SGD) with momentum 36

4.22 Basic Architecture of ResNet50 Model .. 41

4.23 Skip Connection .. 42

4.24 Residual Block .. 42

4.25 Identity Block and Convolutional Block .. 43

4.26 EfficientNetB0 Architecture ... 44

4.27 Existing workflow of brain tumor classification .. 48

5.1 Sample images from the dataset ... 51

5.2 Classification Report [CNN Model] ... 52

5.3 Accuracy Across Multiple Classes [CNN Model] 52

5.4 Accuracy [CNN Model] .. 53

5.5 Model Accuracy[CNN Model] ... 53

5.6 Model Loss[CNN Model] ... 53

5.7 Classification of Images [CNN Model] .. 54

5.8 Classification Report [ResNet50] ... 55

5.9 Accuracy [ResNet50] ... 55

5.10 Model Accuracy[ResNet50] .. 56

5.11 Model Loss[ResNet50] ... 56

5.12 Classification Report[EfficientNetB0] ... 57

5.13 Accuracy Across Multiple Classes [EfficientNetB0] 57

5.14 Accuracy[EfficientNetB0] ... 57

5.15 Model Accuracy[EfficientNetB0] .. 58

5.16 Model Loss [EfficientNetB0] ... 58

5.17 Accuracy Across Multiple Models ... 58

x

LIST OF TABLES

4.1 Summary of Used Image Dataset ... 17

4.2 Create a Train and Test set ... 21

5.1 Comparison table of CNN vs. Pretrained Model .. 59

5.2 Performance comparison with existing models & proposed CNN model 60

xi

ABSTRACT

The quality of life and life expectancy of patients can be significantly impacted by

brain tumours, which are a serious health concern. According to the World Health

Organisation, cancer is the second most common cause of death in the world,

accounting for 22% of all chronic illnesses and causing an estimated 9 million deaths

annually. Different types of brain cells can give rise to brain tumours, and the

location, size, and grade of the tumour can affect the symptoms. The diagnosis of

brain tumours can be difficult, and the available treatments may vary depending on

the patient's age, general health, and the grade and location of the tumour.

Surgery, radiation therapy, and chemotherapy are all options for treating brain

tumours, but the success rate of these treatments varies, and the prognosis for patients

with high-grade brain tumours can be bleak. To detect tumours in various parts of

the body, imaging techniques such as CT, MRI, and ultrasound are used. However,

MRI is the most widely used technique for diagnosing brain tumours, and the large

amount of data generated by MRI scans makes accurate and timely tumour

identification difficult.

Convolutional neural networks (CNNs) have been developed in recent years to

automate brain tumour detection, increasing its precision and effectiveness. A deep

learning neural network called a CNN can recognise patterns in images and predict

outcomes with accuracy. With the development of automated brain tumour detection

using CNNs, there is hope for increasing the precision and effectiveness of tumour

detection, which will ultimately result in better patient outcomes in terms of

treatment and survival rates.

Further research in this area is crucial for improving outcomes for those affected by

brain tumors. Continued advancements in automated brain tumor detection can help

clinicians and researchers better understand the disease, improve treatment options,

and ultimately increase survival rates for patient.

1

CHAPTER 1

INTRODUCTION

1.1 Overview

Classification of “Brain Tumors” in early stage is crucial for better patient outcomes,

and in order to accomplish this, medical imagery is an essential tool. MRI is widely

used to examine brain abnormalities, and it has become a leading imaging technique

for detecting brain tumors. The automation of brain tumor detection from MRI scans

is essential for efficiently managing large amounts of medical data and aiding

healthcare professionals in identifying tumors and developing effective treatment

plans for patients. Recent studies demonstrate that deep learning algorithms, such as

CNNs and Transfer Learning techniques, can significantly improves the accuracy of

brain tumor classification. Figure 1.1 shows that a basic brain tumor image typically

displays a mass or abnormal growth within the brain tissue. Depending on the

imaging technique used, such as MRI or CT scans, the tumor may be highlighted

with different shades or colors to differentiate it from the surrounding healthy tissue.

Figure 1.1: Basic Tumor Image

MRI, Magnetic resonance imaging is a popular non-invasive method for generating

high-quality brain images that can be processed using algorithms. Advancements in

technology have made image processing algorithms more efficient, allowing

researchers to develop deep learning algorithms that can quickly and accurately

identify cancerous cells in brain images. Despite limitations, such as image quality

and interpretation of results, deep learning has great potential to improve brain tumor

classification and treatment.

2

1.2 Motivation for the work

Brain tumors are a serious health issue that, if not identified and treated effectively,

can be fatal. The detection and classification of brain tumors through medical image

analysis is a time-consuming process that heavily relies on human judgment.

Specialists examine various imaging scans and make decisions that inform treatment

options. With the help of powerful deep learning algorithms and advanced

technology, automated systems can help to identify and classify tumors quickly and

accurately, potentially improving patient outcomes and saving valuable time and

resources. Figure 1.2 highlights the alarming number of brain cancer deaths in India

from 2010 to 2020, with figures surpassing other types of cancer. Early detection of

brain tumors can help reduce mortality rates.

 Figure 1.2: Brain Cancer Deaths in India (2010-2020) [11]

The automation of medical image analysis has gained significant attention in India,

just like in developed countries. Thanks to advances in technology and the

availability of powerful deep learning algorithms, medical image analysis can now

be automated for various applications, including cancer diagnosis, radiology, and

ophthalmology.

However, despite the numerous advances in medical image analysis automation, the

classification of brain tumors remains a challenge, motivating several research

projects aimed at improving tumor diagnosis and treatment. The motivation for

developing an automated brain tumor classification system is to address the need for

3

faster, more accurate, and cost-effective diagnosis and treatment of brain tumors.

With such a system in place, doctors and medical professionals can make informed

decisions on patient care and treatment plans, improving patient outcomes and

quality of life.

1.3 Problem Statement

Precise identification and classification of brain tumors are pivotal for determining

optimal treatment strategies and improving patient outcomes. Historically, these

tasks have been carried out via visual examination of medical imaging scans, which

can be laborious and susceptible to inaccuracies. However, recent advancements in

deep learning techniques, notably CNNs, have yielded positive outcomes in case of

the analysis of the medical images.

Our project aims to create a precise brain tumour classification and identification

system using deep learning methods. Preprocessing will be applied to the MRI scans

to improve tumour visibility. To ensure accurate classification of tumours with

various grades, a CNN model is trained using a sizable dataset of labelled MRI scans.

The model will be put to the test on a different set of MRI scans and contrasted

against conventional visual inspection techniques in order to gauge its efficacy and

accuracy.

By increasing the precision and effectiveness of the procedure, our project has the

potential to revolutionise the diagnosis and treatment of brain tumours. Making

informed decisions about diagnosis and treatment planning could be facilitated by

the development of an automatic detection and classification system using deep

learning techniques. This would improve patient outcomes.

1.4 Objectives

The classification and treatment planning of brain tumours have shown signs of

improvement thanks to deep learning techniques. Our project aims to develop a deep

learning-based convolutional neural network (CNN)-based automatic system for

detecting and classifying brain tumours.

4

1. Dataset Collection and Preprocessing:

Collecting and preprocessing a dataset of MRI images of brain tumours is the

project's first goal. The dataset is crucial for the CNN model's accuracy and

dependability, and it needs to be meticulously preprocessed to remove noise

and unimportant data that might impair the model's performance. The

following steps are included in this goal:

• The first step is to gather the dataset of MRI scans of brain tumors

• The next step is to ensure that the images in the dataset is properly

labelled or not.

2. CNN Model Design

The second objective of our project is to develop a CNN architecture that can

accurately recognise and categorise various types of brain tumours. The CNN

model will search MR images for distinctive features and patterns connected

with brain tumours using a variety of convolutional, pooling, and fully

connected layers. The following activities are part of this goal:

• Creating a CNN architecture that can accurately classify and identify

various types of brain tumours.

• The next step is o train the CNN model.

• Third step is basically to enhance the CNN model's architecture and

hyperparameters to attain high levels of specificity, sensitivity, and

precision.

3. Performance Evaluation

Evaluating the CNN model's performance is the study's main goal. The

evaluation will show how effective and reliable the model is at detecting

brain tumours. In order to evaluate the performance of the model, a number

of evaluation criteria will be used, including accuracy, sensitivity, specificity,

and precision.

5

1.5 Methodology

The suggested study methodologies for a more thorough classification of brain

tumours are described in this section. We provide a detailed analysis of the

architecture of the proposed CNN-based approach as well as the various pre-trained

CNN models that were used to identify and categorise meningiomas, pituitary

tumours, and gliomas in brain MRI images.

We will examine deep learning methods for segmenting brain tumours in this section.

We will go over the MR image pre-processing procedures, the software and dataset

we used for our study, the various segmentation networks, and their designs. The

methodology for conducting experiments, which will test various networks and

regularisation methods to see how well they segment brain tumours, will be the main

topic of the final section of this chapter.

1. Import each required module and load the data.

2. Data visualization

3. Read the images and save them along with the labels that go with them.

4. Data preprocessing.

5. Data Augmentation

6. Feature Extraction.

7. Define the CNN model & set the number of output classes.

8. Train & observe the model

1.6 Organization

Chapter 1: Introduction The goal of the introductory chapter is to give a general

overview of the deep learning-based algorithm designed to reliably detect and

categorise brain tumours from MRI scans. It emphasises the value of early brain

tumour classification and detection for better patient outcomes.

Chapter 2: Literature Review This chapter aims to present various literature

reviews of recent studies on the classification of brain tumours using deep learning

methods. It goes over the various neural network architectures and accuracy

6

assessment methods that have been employed by scientists to address the

classification problem for brain tumours.

Chapter 3: Background The background of brain tumour classification, including

the various types of brain tumours, imaging methods used for diagnosis, potential

causes of brain tumours, and available treatments, will be covered in this chapter.

Chapter 4: System Design & Development The pre-processing, neural network

techniques, and accuracy evaluation used in a brain tumour classification research

project are all described in detail in this chapter. It gives readers a thorough

understanding of the project's methodology.

Chapter 5: Experiments & Results Analysis The test results from the previous

chapter are thoroughly examined in this chapter, along with the model's advantages

and disadvantages. It offers a thorough assessment of the model's potential for use in

clinical settings, highlighting its high level of classification accuracy for various

kinds of brain tumours.

Chapter 6: Conclusions The project's results and limitations are summarised in the

final chapter, along with suggestions for future research topics and possible

enhancements. The model's potential to increase tumour diagnosis reliability and

accuracy using deep learning techniques is highlighted.

1.7 Summary

The thesis' structure and the report's organisational structure are also briefly

described in this chapter. The reader will have a clear understanding of the project's

scope, the difficulties it seeks to solve, and the significance of automated brain

tumour detection and classification after reading this chapter, which lays the

groundwork for the subsequent chapters.

7

CHAPTER 2

 LITERATURE SURVEY

2.1 Overview

In medical image analysis, precise algorithms are essential because they have a direct

impact on clinical trials and patient treatment outcomes. Several studies have been

published in recent years with the goal of improving the methods for classifying brain

tumours. These papers' authors come from a variety of backgrounds, including deep

learning, object recognition, and image processing. The purpose of this chapter is to

discuss these papers' methodologies. It will give a summary of the most recent

advancements in medical image processing and act as a manual for academics and

professionals in the industry.

2.2 A summary of the relevant papers

Zhang et al. [1], proposed a CNN model was developed for classifying brain tumors,

achieving a 95.7% accuracy rate on the BraTS dataset. The model utilized various

steps such as image preprocessing, data augmentation, and labeling. The MRI images

were first normalized and resized to 224x224 pixels. Data augmentation process

were then employed. The ResNet-50 model was and fine-tuned on the preprocessed

and augmented dataset. Then the model was and evaluated on a validation set to

determine its accuracy. The study shows the effectiveness of their approach in

classifying brain tumors using CNNs.

Anas E. H. Salim et al. [2], proposed a method for classifying brain tumours without

skull stripping using the EfficientNet-B0 architecture. The BraTS dataset was

enhanced and preprocessed by the authors, who then used it to fine-tune the pre-

trained EfficientNet-B0 model. The authors' 93.4% accuracy rate demonstrates the

EfficientNet-B0 architecture's potential for brain tumour classification tasks. Their

method demonstrates how transfer learning can help decrease the volume of training

data and training time needed, making it more useful for use in actual clinical

settings.

8

Qaiser et al. [3], proposed CNN model for classification of the brain tumors. The

approach involves various image preprocessing steps, such as image cropping and

normalization. The authors also utilized data augmentation techniques, including

image rotation, flipping, and scaling, to enhance the size of the training samples.

They labeled the preprocessed and augmented images by the tumor type and used

the EfficientNet-B0 architecture to build the CNN model. They trained the model on

training dataset and able to achieved an accuracy of 95.2% on the BraTS dataset.

Khan et al. [4], proposed an EfficientNet-B0 architecture-based transfer learning for

classifying brain tumors. The MRI scans first pre-processed, and skull stripping was

used to remove the skull and other non-brain tissues. Data augmentation process

were then employed, they enhanced the data using rotation, flipping, and zooming

operations. On the preprocessed and enhanced data, they improved the EfficientNet-

B0 model and used binary cross-entropy loss during training. Finally, they used

metrics like accuracy, sensitivity, and specificity to assess how well their model

performed.

Al-antari et al. [5], used the ResNet50 deep learning network to create an automated

system for detecting and classifying brain tumors. The MRI images were

preprocessed, data augmentation techniques were used, and the pre-trained

ResNet50 model was adjusted using the preprocessed and augmented data. The

model's overall accuracy in identifying and categorizing brain tumors was 96.67%,

demonstrating the efficiency of their method.

2.3 Summary

Based on the literature study of brain tumor classification, it can be concluded that

transfer learning outperforms traditional deep learning classifiers. Transfer learning

utilizes pre-trained models and learns from previous tasks, thus making use of

network memory, which helps in achieving better results compared to traditional

approaches.

9

CHAPTER 3

BACKGROUND

3.1 Brain Tumor

Brain tumors are abnormal cell masses that can be malignant or benign and can arise

in various areas of the brain such as the cerebellum, cerebral hemispheres, or brain

stem. Although the precise cause of brain tumors remains unclear, risk factors

include genetic syndromes, family history, and radiation exposure. The symptoms of

brain tumors can differ depending on their size and location and may consist of

headaches, vision changes, seizures, and difficulties with movement and speech. In

order to recognise and classify brain tumours, clinicians and researchers need to have

a basic understanding of the human brain, which is provided by Figure 3.1. With this

information, Deep Learning algorithms can be created to efficiently and accurately

categorise brain tumours, improving patient outcomes.

Figure 3.1: Basic Structure of Human Brain [12]

3.1.1 Causes

The precise cause of brain tumours is still unknown despite numerous research

initiatives. Even though some factors, such as exposure to ionising radiation or vinyl

chloride, have been linked to the development of brain tumours, they do not account

for every case. Viral infections, carcinogen exposure, genetic predisposition, and

embryonic remains are additional potential causes, but each theory can only explain

a subset of tumour types. Although smoking has been suggested as a risk factor, the

10

exact mechanisms are still unclear. Collaborative research efforts are necessary to

better understand the cause of brain tumors, develop effective treatments, and

improve patient outcomes.

3.1.2 Classification of Brain Tumor

Brain tumors can be categorized according to various factors such as their location,

behaviour, or the type of cells from which they originate. One method of

classification involves grouping brain tumors based on the specific type of cells from

which they develop.

1. Gliomas Tumor: Gliomas refer to tumors that originate from the glial cells

in human brain which may be malignant or benign. Most frequent types of

gliomas include oligodendrogliomas, astrocytoma’s, and glioblastomas.

2. Pituitary Tumor: Pituitary tumors are tumors that arise in the pituitary gland

and can cause hormonal imbalances. These tumors can be either functional

or non-functional, meaning they may or may not secrete hormones.

3. Meningiomas Tumor: Meningiomas are noncancerous tumors that develop

from the tissues covering the brain and spinal cord called meninges.

Accurate classification of brain tumors is vital as it impacts the selection of the most

effective treatment and prognosis. Treatment options for brain tumors includes

chemotherapy, surgery, or a combination of these approaches. The patient's overall

health, tumor type, size, and location play a crucial role in determining the optimal

treatment method.

3.1.3 MRI Image and Treatments

3.1.3.1 MRI Image

Brain tumours can be categorised according to their location, size, and other features

using an MRI scan. Radiologists classify brain tumours according to their histologic

characteristics and cellular origin using the World Health Organisation classification

system. A thorough description of the imaging results, including how the tumour

11

appears on various MRI sequences, how it interacts with nearby structures, and its

potential classification, are included in the MRI report for classifying brain tumours.

The characteristics of a brain tumour, including its type, size, and location, as well

as the patient's general health and preferences, help the treating physician choose the

best course of action, which may combine surgery, radiation therapy, and

chemotherapy.

3.1.3.2 Treatments

Surgery is the most popular method of treating brain tumours because it allows

doctors to diagnose the condition and get rid of as much of the tumour as they can.

In cases where the tumors are more severe, radiation therapy may be necessary,

delivered either through radiosurgery or stereotactic radiosurgery. While

chemotherapy can be effective, it has drawbacks such as drug toxicity and varying

patient responses. Achieving the best possible outcomes for patients requires a

multidisciplinary team of neurosurgeons, radiation oncologists, and medical

oncologists.

3.2 Deep Learning

In the area of machine learning known as deep learning, relevant features are

automatically extracted from large datasets using artificial neural networks. When

applied to brain tumor classification, deep learning has demonstrated remarkable

potential for enhancing the accuracy and efficiency of tumor diagnosis. By training

NN’s on a vast array of MRI images, the model can learn to distinguish healthy brain

tissue from various brain tumor types. This leads to quicker and more precise tumor

classification, which can ultimately aid in patient outcomes and treatment planning.

One of the primary benefits of deep learning in brain tumor classification is its ability

to identify subtle patterns and characteristics that may be missed by human

observation. This can help detect tumors at earlier stages, ultimately improving

prognosis and treatment options. However, it is critical to meticulously design and

validate deep learning models to ensure their dependability and safety within clinical

settings. The diagram depicted in Figure 3.2 illustrates that machine learning is a

12

larger field encompassing deep learning as a subfield, and both fall under the

umbrella of artificial intelligence.

Figure 3.2: Picture of Deep Learning in the context of AI

3.2.1 Artificial Neural Network

3.2.1.1 Artificial neurons

Artificial neurons, also called perceptron’s, are the essential components of NN’s are

used in DL. They receive input signals, which can be from other neurons or external

sources, and use weights and activation functions to process them. Figure 3.3 shows

a biological neuron illustration, which can be useful in the context of brain tumor

classification. Understanding the structure and function of neurons can aid in

identifying abnormal growths in the brain, as tumors can disrupt normal neural

connections.

Figure 3.3: Biological Neuron Illustration [13]

3.2.1.2 Basic Operation of Neural Networks

A deep learning method with a focus on image processing is known as a neural

network (NN). The matrix analyses data, trains itself to spot patterns, and then

forecasts the result of fresh, related data. Layers of neurons make up the NN. First,

input is received by a layer that accepts it. The final outcome is forecasted by the

13

output layer. In first layer of a neural network, each neuron receives input from one

pixel. Channels connect neurons between layers, with a "weight" value assigned to

each connection. A mathematical neuron is shown in Figure 3.4, consisting of a

circular cell body connected to input and output branches through weighted

connections. The inputs are combined and passed through an activation function, and

the resulting output is transmitted to other neurons through the output branches.

Figure 3.4: Mathematical Neuron Illustration [14]

3.2.2 Convolutional neural network

CNNs are a type of deep learning NN which are excel in image recognition and

classification tasks. Their unique ability to assume certain properties about input

data, particularly images, minimizes pre-processing requirements, reduces number

of network parameters, and results in efficient implementations. Neurons in CNNs

contain learnable biases and weights and perform non-linear and dot product

operations on input data.

3.2.2.1 Convolutional Neural Network Architecture

A typical type of NN used for image identification and classification is the

convolutional neural network (CNN). A CNN's architecture is made up of various

layers, each serving a particular function. The most typical CNN layers are:

1. Convolutional Layers: The input image is subjected to a series of filters

(sometimes referred to as kernels) by these layers. Each filter consists of a

tiny matrix that is slid over the input image to compute the dot products of

the pixels it overlaps.

14

2. Pooling Layers: The convolutional layers' feature maps produced by these

layers have smaller spatial dimensions. The most typical pooling operation,

known as Max pooling, chooses the highest value possible from a group of

neighbouring feature map pixels.

3. Activation Layers: The activation functions in these layers introduce

nonlinearity to the output of the previous layer.

4. Fully Connected Layers: The CNN's convolutional layers establish

connections between neurons in the preceding and succeeding layers. After

the final convolutional layer produces its output, it undergoes a flattening

process and is transmitted to fully connected layers.

5. Dropout Layers: These layers randomly drop a certain percentage of

neurons during training, to prevent overfitting.

The proposed approach for brain tumor classification is depicted in Figure 3.5, which

provides a general outline. The CNN architecture can vary depending on the input

image's dimensions and intended use.

Figure 3.5: Overview of the proposed method for brain tumor classification [15]

15

CHAPTER 4

 SYSTEM DEVELOPMENT

4.1 Overview

The basic aim of this chapter is to describe the theoretical background needed to

comprehend the report's content and also provide the theoretical background for a

brain tumor classification project. The purpose of this chapter is to introduce the

basic components of a segmentation network and the segmentation task.

Additionally, it provides metrics for evaluating the networks and a review of

previous research in the field. This chapter aims to provide the reader with a clear

understanding of the underlying principles of brain tumor classification and the

various techniques used to achieve accurate results.

4.2 Overall Design

The classification of different types of brain tumours is an essential task in medical

imaging, and CNNs have demonstrated promising results in doing so. In this study,

we present three distinct classification models for brain tumours, each with unique

benefits. For smaller datasets, the traditional CNN model is straightforward and

efficient. EfficientNetB0 is suitable for larger datasets with complex features

because it uses scaling techniques to achieve high accuracy while maximising

efficiency. To avoid the vanishing gradient issue and achieve high accuracy on large

datasets with complex features, ResNet50 uses residual blocks and skip connections.

4.3 Software & Environment

The hardware and software for assessing CNN's performance in processing MRI

brain tumour image classification are introduced in Section 4.3 of the study. A

workstation with an NVIDIA GPU was used as part of the experiment's hardware,

and Python, TensorFlow, and Keras libraries were used as part of the software. The

dataset that was used to train and test the models is also described in this section.

16

4.3.1 Software Requirements

1. Python: Python is a programming language that has become more and more

popular in a variety of disciplines, including data science, machine learning,

and web development. It is a high-level, interpreted language that emphasises

readability and clarity in code.

2. Tensorflow: Open-source deep learning framework TensorFlow provides

scalability and flexibility for building and developing machine learning

models. It has various APIs that help with various machine learning tasks and

supports distributed computing, which enables the training of larger and more

complex models.

3. Keras: The development and training of deep learning models is accelerated

by the use of the high-level neural network API Keras. Developers can focus

on the task at hand thanks to its uniform interface, high level of abstraction,

pre-trained models, and ability to integrate with other machine learning

libraries like TensorFlow, which also saves time and resources.

4. Google Colab: Running Python code for machine learning projects,

especially for deep learning applications, is made easier by using Google

Colab, a cloud-based notebook environment.

5. Matplotlib: The Python data visualisation library Matplotlib is adaptable and

user-friendly and provides many customization options. It functions well in

conjunction with other Python libraries, such as NumPy and Pandas.

6. OpenCV: A variety of tools for image and video processing applications are

provided by OpenCV, a well-known and potent computer vision library that

is open source. For developers working on various computer vision projects,

it is the best option due to its adaptability, simplicity, and excellent

performance.

17

4.4 Dataset Description

A collection of medical imaging data, including MRI scans of patients with various

types of brain tumours, makes up the Brain Tumour Classification MRI dataset. 3264

high-resolution MRI scans of brain tumours with corresponding tumour type labels

make up the dataset. The information is meant to help scientists create deep learning

models for the precise and effective classification of brain tumours. The dataset is

divided into the "training_set" and "testing_set" subfolders. 2,870 MRI scans are in

the "training" subfolder, and 394 MRI scans are in the "testing" subfolder.

Meningioma, glioma, and pituitary tumour subfolders are present in every subfolder,

one for each type of tumour. There were 937 images in the Meningioma class. There

were 926 images in the Glioma class. There were 901 images in the Pituitary class.

There were 500 images in the No Tumour class. The summary of the image dataset

used, with a count of the number of images in each tumour class, is shown in Table

4.1.

Table 4.1: Summary of Used Image Dataset

Class No. of Images

Meningioma Tumor Class 937

Glioma Tumor Class 926

Pituitary Tumor Class 901

No Tumor Class 500

Total Images 3264

Brain Tumor Classification MRI dataset is a valuable resource for researchers

working in the field of medical image analysis and machine learning.

Figure 4.1: “glioma_tumor”

18

Figure 4.2: “meningioma_tumor”

Figure 4.3: “no_tumor”

Figure 4.4: “pituitary_tumor”

4.5 Data visualization

For analysing and interpreting complex data, data visualisation is a crucial tool.

When classifying brain tumours with deep learning, visualisation techniques can aid

in spotting a variety of patterns and features in the data that might not be apparent

through conventional analysis. Researchers can increase the precision and efficacy

of their deep learning model by segmenting the dataset into folders based on the types

of tumours and employing static and dynamic visualisation methods. As a result,

anomalies or outliers in the data can be found and eliminated, increasing the model's

accuracy. Figure 4.5 displays sample images from each class of brain tumors,

including glioma, no tumor, meningioma, and pituitary tumors. Each sub-image

provides a distinct visual reference for the unique features of each tumor type, such

as well-defined borders or cystic appearance.

19

Figure 4.5: Sample Images from each class of the dataset.

4.6 Data pre-processing

For Deep Learning projects, including brain tumor classification, data pre-processing

is a crucial stage. It entails transforming raw data, such as brain MRI images, into a

form suitable for use by machine learning models. The quality and format of the data

can significantly impact model performance, making data pre-processing critical for

accurate outcomes. Various techniques can accomplish this, such as data

augmentation, which produces new images by modifying current ones through

techniques like scaling, flipping, or rotation.

4.6.1 Data Augmentation

Data augmentation is a technique that basically creating additional data samples by

modifying the existing dataset. The goal is to artificially increase the size of the

dataset. Modifying the data can involve making minor changes to the existing data,

or using machine learning algorithms to generate new data points in the latent space

of the original dataset. Figure 4.6 demonstrates an example of data augmentation in

brain tumor classification. The figure displays a grid of brain MRI images that have

undergone augmentation using several techniques, including flipping, scaling,

rotation, and noise addition.

Figure 4.6: Data Augmentation

20

4.7 Feature Extraction

Feature extraction is a critical step in medical image analysis, particularly in the deep

learning-based classification of brain tumours. It involves identifying and extracting

significant and distinguishing features from raw image data. CNNs are a suitable tool

for this task as they can automatically learn hierarchical representations of image

data. Feature extraction can be classified into two types: handcrafted features, which

are designed by experts, and learned features, which are automatically learned by

deep learning algorithms.

4.8 Train and Test set

Splitting the available data into training and testing sets is an essential step in

developing a deep learning model for categorizing brain tumors. The training set,

which comprises the majority of the data, is used to train the model on the input

features and target labels. The performance of the model is evaluated using the

testing set, which contains data that the model has never seen before. Insuring that

the model can correctly categorise brand-new data that it has never seen before helps

to improve the model's accuracy and generalizability.

4.8.1 Training Data

A balanced and representative training dataset with high quality is necessary to build

a CNN model that performs well in classifying brain tumours. Data augmentation,

normalization, and feature engineering are examples of preprocessing methods that

can improve dataset quality and diversity. To avoid overfitting, the CNN model is

trained using backpropagation and its accuracy is assessed on a different testing

dataset. The accuracy and robustness of the model are significantly influenced by the

CNN architecture design and dataset quality.

4.8.2 Test Data

The test dataset plays significant role in evaluating the performance of a deep

learning CNN model used to classify brain tumors. It comprises data that has not

been previously seen by the model and provides an unbiased assessment of its ability

to handle new data. Model validation or testing involves comparing the actual and

21

expected output. Table 4.2 outlines the train-test split strategy adopted for the brain

tumor classification model. The table indicates that 90% of the data was allocated to

training the model, while the remaining 10% was utilized for evaluating the model's

performance.

Table 4.2: Create a Train and Test set.

A portion of Data Explanation Split Chosen

Training Data A portion of the information was used to

train the model.

90%

Testing Data A part of the information utilized to

evaluate how well the model worked

during excitable adjustment and training.

10%

4.9 Define CNN model & set the number of output classes

Building the software for our project's "brain tumor categorization" is now the

project's next and most crucial stage. We have employed 2 ways in order to complete

this work. Applying CNN algorithms, we first create our own model, and then we

employ a pre-trained model. After that, we assess the two models and discover that

the pre-trained model outperforms the CNN Model.

4.10 Train & observe the model

To develop a high-performing deep learning CNN model for brain tumor

classification, various hyperparameters such as kernel sizes, learning rate, epochs,

and batch size must be defined. The CNN architecture is also essential and should be

adjusted based on the dataset's characteristics. By training the CNN model its

performance on the test dataset, the model's accuracy can be determined. Fine-tuning

the model's hyperparameters can help improve its accuracy, and after selecting

optimal hyperparameters, the model can be retrained on the complete dataset and

tested again. This method ensures optimal performance and reduces the risk of

overfitting.

22

4.11 Predict & save our model

Predicting and saving the model is the last step in the creation of a deep learning

CNN model for classifying brain tumors. Making accurate predictions requires

preprocessing fresh images using the same methods as in the training phase, running

them through the trained CNN model, and then comparing the results to the actual

tumor type. To verify that the model can be applied to new and untested data,

accuracy testing is essential. It is crucial to save the model in a suitable format for

use in upcoming applications. Data augmentation, preprocessing, model

construction, training, testing, and classification are all included in the suggested

strategy for classifying brain tumors. The trained and validated model is retained for

later use, and the model's hyperparameters are adjusted.

4.12 Proposed System

The design and use of artificial neural networks, including convolutional neural

networks, are inspired by the structure and function of neural networks in the human

brain. They employ techniques such as statistical clustering, pattern recognition,

optimization algorithms, vector quantization, approximation, and classification

methods. Three types of artificial neural networks, based on their connectivity,

include feedforward, recurrent, and convolutional neural networks. In the context of

CNNs, there are two approaches that can be utilized to improve their effectiveness.

1. The standard CNN approach

2. Transfer learning.

The typical CNN method entails creating a CNN from scratch for a particular

purpose, such as classifying brain tumors. This method can be time-consuming and

computationally costly, and it needs a lot of training data. Although it offers complete

control over both, the CNN's architecture and hyperparameters can be modified for

best performance.

The use of pre-trained models in transfer learning can be advantageous because it

saves time, is computationally effective, and needs less training data. The pre-trained

CNN already has some general features that it can use for the new task. Transfer

23

learning can be particularly beneficial when there is insufficient training data for the

new task, or when the pre-trained CNN was trained on a similar task.

4.12.1 Traditional CNN Approach

Neural networks are models that are based on how the human brain functions and

may be applied to a number of tasks, including the classification of images. CNNs,

or convolutional neural networks, are extremely good at classifying images. They

are capable of scaling images by converting a three-dimensional input set into a

three-dimensional output set (length, width, and depth). CNNs typically include

input, convolutional, ReLU, pooling, and fully connected layers. The convolutional

layer divides the input image into a number of discrete areas, while the ReLU layer

completes the functions of element-dependent activation. The pooling layer is used

for downsampling, and the fully connected layer generates a class score or label score

price based on the probability between 0 and 1. Figure 4.7 shows that the basic

architecture of a Convolutional Neural Network (CNN) model consists of input

image(s) that pass through several convolutional and pooling layers. These layers

extract features from the image(s) and reduce their dimensions. The extracted

features are then passed through fully connected layers for classification or

prediction.

Figure 4.7: Basic Architecture of CNN Model [15]

(i) The Convolution Operation: Convolutional Neural Networks (CNNs) utilize the

convolution operation to perform feature extraction. The mathematical operation of

convolution belongs to the class of integral transforms. In CNNs, it is used to extract

features from the input data by applying filters to the input data. The output of this

24

operation serves as input for further processing by the neural network. The

convolution process in CNNs requires determining the product of the two functions

which are integral. f(τ) and g(t-τ), where g is flipped and shifted over a range of

values. This produces a third function, (f*g)(t), which describes the degree of overlap

between f and g at each point in time t. The formula for convolution is:

 (𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏) 𝑑𝜏
∞

−∞
 (4.1)

where the integral is taken over the entire range of τ from negative infinity to positive

infinity.

The convolution operation takes into account three factors:

1. Input Image: The image that is provided to the convolutional neural network

as an input is known as an input image. It is typically a 2D array of pixel

values representing the intensity or color of each pixel.

2. Feature Detector (Kernel/Filter): A simple matrix of weights called the

feature detector, sometimes referred to the filter or kernel which is basically

used to extract specific features from the input image.

3. Feature Map (Activation Map): Feature map, which is often referred to as

an activation map, is a 2D array that exhibits the level of detector activation

at every pixel of the input brain tumor image. It shows where a specific type

of feature can be located in the image, hence the term "feature map". The

feature map serves as input to further processing by the neural network.

The process of convolution is shown in Figure 4.8.

Figure 4.8: Process of convolution [16]

25

(ii) CNN Model Built Using Layers: CNNs are frequently employed for the

classification of images, including identifying different types of brain tumors. The

steps of the conventional CNN model for classifying brain tumors are as follows:

Convolutional Layer: The CNN model's primary foundational element is the

convolutional layer. From input images to extract, it comprises a set of learnable

filters. Small area of input image is subjected to each filter, and the resulting feature

map is created. A stack of feature maps is produced after repeating this procedure

for each filter. Figure 4.9 demonstrates a convolutional example in CNN's

convolutional layer. Convolutional layer also has certain fundamental

characteristics, including:

 (1 ∗ 1 + 0 ∗ 2 + 3 ∗ 1 + 0 ∗ 4 + 1 ∗ 5.) (4.2)

 Figure 4.9: Convolution Operation of CNN [16]

Two crucial hyperparameters in convolutional layers regulate the size of the output

volume:

Stride: Stride refers to the step size with which the convolutional filter is moved

over the input volume. A larger stride value results in a smaller output volume size,

while a smaller stride value leads to a larger output volume size. Stride can be set to

any positive integer value, but commonly used values are 1, 2, and 3. When the stride

is set to 1, filters move at a rate of 1wach movement. When the stride is set to two,

the filters move at a rate of two pixels each movement.

26

Figure 4.10: Applying a filter while moving source image stride set to 1

Figure 4.10 demonstrates how 2*2 filters pass over width and height when the

stride is set to 1.

Zero padding: Zero padding is the basic technique of enclosing the input volume in

additional rows and columns of zeros before applying convolutional filters. This

method can keep the input volume's spatial dimensions while preventing an

excessively small output volume. The amount of padding can be set to any non-

negative integer number, and zero padding can be applied either symmetrically or

asymmetrically. The scenario of zero-padding of an input is shown in Figure 4.11.

Figure 4.11: An input with zero padding (padding amount = 1)

Pooling Layer: The feature maps' size is decreased by the pooling layer, which also

increases the model's resistance to changes in the input image. The most well-liked

pooling method, referred to as max pooling, selects the greatest value inside a certain

region of the feature map.

Different Kinds of Pooling Functions:

1. Max Pooling: From each rectangular, non-overlapping area of the feature

map, max pooling selects the greatest value. The most noticeable aspects of

the image or feature map are preserved. The feature maps' dimensionality is

27

decreased through max pooling, which also lowers the number of training

parameters and computations needed. Max-pooling is displayed in Figure

4.12 with a shape of 2*2. Initial output element and input tensor elements

used in the output computation are represented by the darkened portions:

𝑚𝑎𝑥(0, 1, 3, 4)

Figure 4.12: Max Pooling [17]

2. Average Pooling: Average pooling takes the average value from each non-

overlapping rectangular region of the feature map. When the average

intensity of features in a region serves as a reliable predictor of a feature's

presence, it can be helpful. Average-pooling is displayed in Figure 4.13 with

a shape of 2*2. The initial output element and the input tensor elements used

in the output computation are represented by the darkened portions:

𝑎𝑣𝑔(0, 1, 3, 4)

Figure 4.13: Average Pooling [17]

In brain tumor detection using CNNs, max pooling is often preferred over

average pooling because it helps to preserve important features while

reducing spatial dimensions. Max pooling works by taking the maximum

value within each pooling window, whereas average pooling takes the

average value. Max pooling is known to be more effective in preserving sharp

features such as edges and corners, as it selects the strongest activation within

each pooling window. This can be particularly important in brain tumor

28

detection, where the location and boundaries of the tumor can be critical in

making an accurate diagnosis.

Fully Connected Layer: Output from the pooling and convolutional layers is given

into a neural network by the fully connected layer. The link between the extracted

characteristics and their respective labels is learned by this layer. According to Figure

4.14, the image depicts a CNN layer with 5 neurons that is fully connected. Every

neuron in the layer above it is connected to every other neuron, creating a complex

web of connections.

Figure 4.14: Fully Connected Layer [17]

Activation Layer: The activation layer adds nonlinearity to the model. Activation

functions are necessary for neural network models to operate properly. In order to

allow neural networks to simulate complex interactions between input and output,

they modify a neuron's output to make it nonlinear.

Activation functions that are frequently used: Activation functions are crucial in

neural networks because they add non-linearity to each neuron's output. Because it

enables the neural network to recognise and learn complex patterns and relationships

in data, non-linearity is crucial to neural networks. Here are a few frequently used

activation mechanisms:

1. Sigmoid: Any input value is converted by the sigmoid function to a value

between 0 and 1. Due to the fact that it can be regarded as a probability, it is

helpful in binary classification tasks. However, the main drawbacks of the

sigmoid function are vanishing gradients, saturation of the output, and output

values that are not zero-centered. It becomes challenging to update the

weights when the gradient becomes very tiny, which is known as the

29

vanishing gradient issue. The sigmoid function is mathematically represented

as follows:

 𝛷(𝑧) =
1

1+𝑒−𝑧 (4.3)

Figure 4.15 represents the sigmoid function's curve:

 Figure 4.15: Sigmoid Function Curve [18]

2. Tanh (Hyperbolic Tangent): Any input value is converted by the tanh

function to a value between -1 and 1. It is similar to the sigmoid function, but

with a wider range of output values. Tanh can be useful in some cases where

the input values are centered around zero. However, tanh can also suffer from

vanishing gradients and saturation of the output.The mathematical

representation of the hyperbolic tangent function is:

 𝑡𝑎𝑛(𝑧) =
2

1+𝑒−2𝑧 (4.4)

Figure 4.16 represents hyperbolic tangent function curve:

 Figure 4.16: tanh Function Curve [18]

30

3. ReLU: All negative values are turned to zero by the ReLU function, while

all positive values are left unaltered. The vanishing gradient problem is a

common issue in deep learning where the gradients become very small,

making it difficult to update the weights. Moreover, ReLU outputs are always

positive, which is useful for image classification tasks where pixel intensities

are always positive. The formula of ReLu is as following:

 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑚𝑎𝑥) (4.5)

Figure 4.17 depicts the ReLu curve.

 Figure 4.17: ReLU Function curve [18]

Reasons for using ReLU in classification of Brain Tumors

ReLU effectively addresses the vanishing gradient problem and introduces

non-linearity into the output of neurons, making it easier for the neural

network to learn complex relationships and making it a suitable activation

function for the classification of brain tumours. ReLU is useful for processing

large amounts of medical imaging data in image classification tasks like brain

tumour classification because it is computationally efficient and produces

positive values.

Dropout Layer: In neural networks, the overfitting problem is solved by a

regularisation technique known as dropout. A predetermined number of neurons

randomly drop out (are temporarily removed) during the forward pass. The network

is compelled to develop more dependable features as a result, which interact

favourably with a variety of random subsets of the other neurons. The dropped-out

31

neurons won't receive any weight updates during the backward pass. Dropout has

been shown to be an effective way to improve generalisation and reduce overfitting

in deep neural networks. The dropout in the NN results are shown in Figure 4.18.

The inactive neurons in this network are known as cross neurons.

 Figure 4.18: Before and after Dropout Network [18]

Loss Function: The loss function in a CNN quantifies the discrepancy between the

predicted output and the target output, and the choice of loss function depends on the

problem being solved. The CNN adjusts its parameters to minimize this loss

function.

Commonly Used Loss functions: Here are some of the loss functions in deep

learning:

1. Mean Squared Error (MSE) Loss: IN problems like Regression, this loss

function is commonly used where the main goal of this loss function is to

predict continuous values. The formula for MSE loss is:

 𝐿 =
1

𝑛
∑(𝑦 − 𝑦ℎ𝑎𝑡)2 (4.6)

Where in the above formula: L is the term which is MSE loss,the other term

y is the ground truth target value, y_hat term is the predicted target value and

lastly n is the number of training examples.

2. Binary Cross-Entropy Loss: In binary classification types problems this

loss function is commonly used where its main goal is to predict one of the 2

possible classes. The formula for binary cross-entropy loss is:

32

 𝐿 = −[𝑦 𝑙𝑜𝑔(𝑦ℎ𝑎𝑡) + (1 − 𝑦) 𝑙𝑜𝑔(1 − 𝑦ℎ𝑎𝑡)] (4.7)

Where: y is the ground truth label which can be either 0 or 1, L is the binary

cross-entropy loss, and y_hat is the projected probability of the positive class

(between 0 and 1).

3. Categorical Cross Entropy Loss: In multi-class classification problems,

where the objective is to predict one of several potential classes, this loss

function is frequently used. Categorical cross-entropy loss is calculated as

follows:

𝐿 = − ∑ 𝑦𝑗 𝑙𝑜𝑔(𝑦ℎ𝑎𝑡𝑗
)𝑐

𝑗=1 (4.8)

Where L stands for categorical cross-entropy loss, y_i is the i-th class's

ground truth label (encoded as a one-hot vector), and y_hat_i is the i-th class'

predicted probability.

In the case of brain tumor classification, the problem involves predicting one

of several possible classes (normal tissue, benign tumor, malignant tumor),

making categorical cross-entropy a suitable choice for the loss function. By

minimizing the categorical cross-entropy loss, the CNN learns to predict the

correct class for each input image, which can be useful for accurate diagnosis

and treatment planning.

Optimization: During the training of deep learning models, optimizers alter the

weights of the neural network to lower the loss function. The weights are updated

using the gradients of the loss function, which depict how the loss function changes

in relation to each weight in the model. Which optimizer should be used depends on

the size of the dataset and the type of problem being addressed. Different optimizers

have different advantages and disadvantages, and some work better with shallow or

deep neural networks while others work better with small or large datasets. Examples

of frequently used optimizers include Gradient Descent, Stochastic Gradient

Descent, Adam, Adagrad, and RMSProp.

33

Frequently Used Optimisers

Optimizers are algorithms that change the weights and biases of neural networks

throughout the training process in order to minimize the loss function. Several

frequently used deep learning optimizers are listed below:

1. Gradient Descent Deep Learning Optimizer: To reduce a cost function,

the common optimization approach gradient descent is employed in machine

learning.It works by gradually altering the model's parameters in the direction

of the greatest decline in the cost function. This information is provided by

the gradient, which is a vector of partial derivatives of the cost function with

respect to each parameter. According to the Gradient Descent update rule:

The formula of gradient is as following:

 𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 −
𝜕(𝐿𝑜𝑠𝑠)

𝜕(𝑊𝑜𝑙𝑑)
 (4.9)

In this formula, W_old refers to the current value of the weight parameters,

and W_new refers to the updated value of the weight parameters. The update

rule involves subtracting the gradient of the loss function with respect to the

weight parameters (∂((Loss)/∂(W_old)) from the current value of the weight

parameters.

The direction of steepest ascent is represented by the gradient of the loss

function, so moving in the opposite direction (i.e., minus the gradient) causes

the loss function to decrease.

By iteratively applying this update rule, the weight parameters move in the

direction of decreasing loss until a local minimum is reached. The gradient

descent curve is depicted in Figure 4.19 below:

34

Figure 4.19: Gradient Descent [19]

 It has the advantage of being a well-understood and widely used algorithm.

Additionally, if the cost function is convex, it can converge to a global

minimum. However, Gradient Descent can be slow to converge for high-

dimensional models or large datasets, which can lead to computational costs.

Additionally, every iteration requires the gradient calculation, which can also

be computationally expensive for large datasets.

2. Stochastic Gradient Descent: SGD, an iterative optimisation technique, is

used to train machine learning models. It randomly selects a subset of data

points (a mini-batch) in order to calculate the gradient of the loss function

and update the model parameters in the direction of steepest descent.

Although the SGD update rule for the weight parameters is similar to the

classic gradient descent rule, it is based on the gradient computed from a

mini-batch of training data rather than the entire training data set.

The formula for updating the weight parameters in SGD can be written as:

 𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 − 𝛼 ∗
𝜕(𝐿𝑜𝑠𝑠𝑚𝑖𝑛𝑖−𝑏𝑎𝑡𝑐ℎ)

𝜕(𝑊𝑜𝑙𝑑)
 (4.10)

W_old denotes the weight parameters' current value, W_new denotes the

weight parameters' updated value, alpha denotes the learning rate (which

regulates the update step size), and ((Loss_mini-batch)/(W_old)) denotes the

gradient of the loss function with respect to the weight parameters, as

estimated using the mini-batch of training data. The benefits and drawbacks

of stochastic gradient descent are as follows:

35

SGD has some advantages above the standard gradient descent. It can

converge faster because it updates the weights more frequently based on

smaller batches of training data, and it uses less memory to store the mini-

batches. However, it requires careful tuning of the learning rate to prevent

oscillations around the optimal value and updates that are too large or too

small. Additionally, SGD updates are noisier, so it may require more

iterations to converge.

3. Mini-batch Stochastic Gradient Descent: Mini-batch With the help of a

compact, randomly chosen subset (mini-batch) of the training data, stochastic

gradient descent (MB-SGD) computes the gradient of the loss function. A

mini-batch of training samples rather than a single sample is used to compute

the gradient in MB-SGD, but the update procedure for the weight parameters

is identical to that of stochastic gradient descent. Formula:

 𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 − 𝛼 ∗
𝜕(𝐿𝑜𝑠𝑠𝑚𝑖𝑛𝑖−𝑏𝑎𝑡𝑐ℎ)

𝜕(𝑊𝑜𝑙𝑑)
 (4.11)

In this formula, W_old refers to the current value of the weight parameters,

W_new refers to the updated value of the weight parameters, alpha is the

learning rate (which controls the step size of the updates), and ∂((Loss_mini-

batch)/∂(W_old)) is the gradient of the loss function with respect to the

weight parameters, estimated using the mini-batch of training data. The

following Figure 4.20 represents the Mini Batch Gradient Descent:

Figure 4.20: Mini-Batch Gradient Descent [19]

36

Mini-Batch Gradient Descent (MB-GD) has some advantages over standard

gradient descent. It can converge faster because it updates the weights more

frequently based on smaller batches of training data, and it uses less memory

to store the mini-batches. However, MB-GD still requires careful tuning of

the learning rate to prevent oscillations around the optimal value and updates

that are too large or too small.

4. SGD with momentum: SGD with momentum is a variant of the popular

SGD algorithm used to optimise the parameters of a machine learning model.

The momentum term is added to the standard update rule to accelerate

convergence and reduce oscillations during the optimization process.The

update rule for SGD with momentum in terms of the model parameters w_old

and w_new is:

 𝑣 = 𝛽 ∗ 𝑣 + (1 − 𝛽) ∗ 𝜕(𝐿𝑜𝑠𝑠(𝑤𝑜𝑙𝑑)) (4.12)

 𝑤𝑛𝑒𝑤=𝑤𝑜𝑙𝑑 − 𝛼 ∗ 𝑣 (4.13)

where v is the momentum, β is the momentum parameter, α is learning rate,

and ∇(Loss(w_old)) is gradient of the loss function with respect to the model

parameters at w_old. The momentum term v is a weighted average of the

previous momentum and the current gradient, with the weight determined by

the momentum parameter β. The update to the model parameters w_new is

then calculated by subtracting the momentum term α * v from the current

model parameters w_old. The following Figure 4.21 represents the Mini

Batch Gradient Descent:

Figure 4.21: SGD with momentum [19]

37

Stochastic Gradient Descent (SGD) with momentum can have benefits such

as accelerated convergence due to consistent direction of movement towards

the minimum of the loss function, prevention of oscillations, and good

performance in practice. However, it can overshoot the minimum of the loss

function, which can slow down convergence. Additionally, it requires tuning

of the momentum parameter β and may require a larger number of iterations

compared to other optimization algorithms when the loss function is highly

non-convex.

5. Adagrad: Adagrad is another optimization algorithm that adapts learning

rate of each weight in a NN based on the historical gradients accumulated

over time. The update rule for Adagrad is as follows: At each iteration of the

optimization algorithm, we calculate the gradient of the loss function with

respect to the weights ∂(Loss)/∂(wold). We then accumulate the squared sum

of the gradients for each weight up to the current iteration as follows:

𝛼𝑛𝑒𝑤=∑ (
𝜕𝐿𝑜𝑠𝑠

𝜕𝑜𝑙𝑑
)2𝑛𝑒𝑤

𝑖=1 (4.14)

where 𝛼𝑛𝑒𝑤 is a diagonal matrix with each diagonal element corresponding

to a weight in NN. We then update weights based on the following formula:

 𝛥𝑤 = −
𝜂

√𝛼𝑛𝑒𝑤+𝜀
 (4.15)

where η is the learning rate, ε is a small constant added for numerical

stability, and 𝛼𝑛𝑒𝑤 is the diagonal matrix of accumulated squared gradients.

The first term in the update equation is the velocity term, which is multiplied

by a negative learning rate η to update the weights in the direction of

decreasing loss.

Adagrad's advantages include fast convergence due to its adaptive learning

rate, and ease of implementation. However, its disadvantages include high

memory usage due to the need to store historical gradient information for

38

each parameter, a tendency for the learning rate to decay rapidly over time

leading to slower convergence or suboptimal solutions, and sensitivity to the

initial learning rate, which can result in poor convergence or even divergence.

6. RMS-prop: RMSprop is an adaptive learning rate optimisation algorithm

that modifies the learning rate by using a moving average of the squared

gradient. To scale the update, the algorithm divides the learning rate by the

squared gradient's moving average. Here is a description of RMSprop along

with some of its advantages and disadvantages. The RMSprop update rule is

as follows:

Calculate the moving average of the squared gradient:

 𝑣𝑛𝑒𝑤 = 𝛽 ∗ 𝑣𝑜𝑙𝑑 + (1 − 𝛽) ∗
𝜕(𝐿𝑜𝑠𝑠)

𝜕(𝑤𝑜𝑙𝑑)

2
 (4.16)

Calculate the update for the weights:

𝛥𝑤 = −
𝜂

√𝑣𝑛𝑒𝑤+ 𝜀
∗

𝜕(𝐿𝑜𝑠𝑠)

𝜕(𝑤𝑜𝑙𝑑)
 (4.17)

where β is the momentum parameter, η is the learning rate, ε is a small

constant to prevent division by zero, g^2 is the element-wise squared

gradient, and v_old and v_new are the moving averages of the squared

gradient at the old and new time steps, respectively.

The advantages of RMSprop include its robustness to noisy gradients because

it accumulates gradients over a moving window of iterations and its good

convergence properties, which can occasionally be faster than Adagrad and

SGD with momentum.

It may also require large batch sizes, which can be computationally costly.

The momentum parameter and the constant are two additional

hyperparameters that must be tuned.

39

7. Adam (Adaptive Moment Estimation): An optimisation algorithm called

Adam (Adaptive Moment Estimation) combines the benefits of the

momentum and RMSprop algorithms. The learning rate is adaptively

adjusted for each parameter using a moving average of the gradient and its

squared value. Here is a description of the Adam optimizer's formula in terms

of w_old and w_new, as well as some of its advantages. The update rule for

Adam as follows: Update the moving average of the gradient:

 𝑚𝑛𝑒𝑤 = β1 * 𝑚𝑜𝑙𝑑 + (1 − 𝛽1) ∗
𝜕(𝐿𝑜𝑠𝑠)

𝜕(𝑤_𝑜𝑙𝑑)
 (4.18)

In optimisation algorithms like Adam, equation 4.18 calculates the first

moment of the gradients. It updates a moving average of the gradients using

exponential decay with parameter β1, which gives more weight to recent

gradients. The first moment estimate is used to adapt the learning rate of each

weight. The update equation helps in smoothing out noisy gradients and

stabilizes the learning process by reducing the effects of large gradients.

Update the moving average of the squared gradient:

 𝑣𝑛𝑒𝑤 = β2 * 𝑣𝑜𝑙𝑑 + (1 − 𝛽2) ∗ (
𝜕(𝐿𝑜𝑠𝑠)

𝜕(𝑤_𝑜𝑙𝑑)
)2 (4.19)

Equation 4.19 estimates the second moment of gradients in optimization

algorithms like Adam. It updates a moving average of the squared gradients

using exponential decay with parameter β2, which gives more weight to

recent squared gradients. The second moment estimate helps in adapting the

learning rate based on the gradient variance of each weight. This reduces the

effects of noisy gradients and stabilizes the learning process. Compute the

bias-corrected estimates of the moving averages:

𝑚ℎ𝑎𝑡 =
𝑚𝑛𝑒𝑤

(1−𝛽1𝑡)
 (4.20)

𝑣ℎ𝑎𝑡 =
𝑣𝑛𝑒𝑤

(1−𝛽2𝑡)
 (4.21)

40

where t is the current iteration. Now calculate the update for the weights.

𝛥𝑤 = −(
𝜂

(√(𝑣ℎ𝑎𝑡)+𝜀)
) ∗ 𝑚ℎ𝑎𝑡 (4.22)

where β1 and β2 are the exponential decay rates for the moving averages, η

is the learning rate, ε is a small constant to prevent division by zero, g^2 is

the element-wise squared gradient, and m_old, v_old, m_hat, and v_hat are

the moving averages and bias-corrected estimates of the gradient and its

squared value.

Advantages of Adam:

1. Adaptive learning rate: Adam adjusts the learning rate for each

parameter, which eliminates the need for manual hyperparameter

tuning.

2. Works well on large datasets: Adam's adaptive learning rate and

memory-effective computation make it a good fit for large datasets

and high-dimensional parameter spaces.

We use the Adam optimizer in brain tumour classification because it has a

number of benefits that are especially helpful in this application. The Adam

optimizer can work with large datasets and high-dimensional parameter

spaces, which is important in medical imaging where the quantity of images

and model complexity can be very high. Adam also has the ability to handle

noisy gradients, which comes in handy when the data is noisy or lacking.

Finally, it has been demonstrated that Adam converges more quickly and

performs better than other optimisation algorithms, which is crucial for the

precise and prompt diagnosis of brain tumours.

Evaluation: A test set of images is used to assess the model's performance in

classifying images of brain tumours.

41

In conclusion, the conventional CNN model for classifying brain tumours entails

preprocessing the data, convolutional, activation, pooling, fully connected, dropout,

use of a loss function and optimisation algorithm to train the model, and evaluation

of the model's precision on a test set of images.

4.12.2 Transfer Learning Approach

To increase a model's accuracy and effectiveness on a new task, neural networks,

including CNNs, can be trained using the potent Deep Learning technique of transfer

learning. Transfer learning can be used to use pre-trained models that have learned

features from a large dataset to improve the accuracy of a model on a small dataset

of brain MRI images in the case of classifying brain tumours. EfficientNet and

ResNet are two well-liked pre-trained CNN architectures for image classification.

Both ResNet and EfficientNet are built to be computationally effective while

providing state-of-the-art performance on image classification tasks.

ResNet50: A deep neural network architecture called ResNet50 has 50 layers. In

order to learn high-level features from images, ResNet50 is a convolutional neural

network (CNN) that has been trained on significant datasets, such as ImageNet. To

help the network learn more effectively and prevent the issue of vanishing gradients,

it employs a residual learning approach that makes use of skip connections.

ResNet50 is frequently used in both research and commercial applications because

it has attained state-of-the-art performance on a variety of computer vision tasks,

such as image classification, object detection, and semantic segmentation. Figure

4.22 shows that the basic architecture of a ResNet50 model is a deep residual network

consisting of 50 layers.

Figure 4.22: Basic Architecture of ResNet50 Model [20]

42

Reason to choose ResNet50 Model: Compared to conventional CNN models,

ResNet has a number of benefits. Better feature learning is made possible by its

ability to create deeper networks without the issue of vanishing gradients.

Furthermore, ResNet's skip connections speed up convergence during training,

improving performance on a variety of computer vision tasks.

Skip Connection: Skip connections are a key component of the ResNet50 design.

They let data to travel across some layers of neural networks, which improves

learning and avoids the problem of disappearing gradients. In ResNet50, each

residual block contains a skip connection that combines the block's input and output.

Figure 4.23 demonstrates how ResNet50 uses skip connections, often referred to as

shortcut connections, to overcome the degradation issue in deep neural networks.

 Figure 4.23: Skip Connection [20]

Residual Block: Utilising residual blocks, ResNet50 runs input through

convolutional layers with batch normalisation and ReLU activation, combining the

results with the original input before running through another activation function to

obtain the output. The residual block, which serves as the basis of ResNet50, is seen

in Figure 4.24. The input is added to the output of the second convolutional layer via

a skip connection.

 Figure 4.24: Residual Block [20]

43

Identity Block: In the ResNet50 architecture, an identity block is a particular kind

of residual block. When a convolutional layer's input and output dimensions are the

same, it is employed. The identity block is made to keep the input and output

dimensions constant while also enabling the model to learn increasingly intricate

input representations. Three convolutional layers, a batch normalisation layer, and a

ReLU activation function make up an identity block. 64 filters, a stride of 1, and a

filter size of 1x1 are present in the first convolutional layer. A stride of 1 and 64

filters with a filter size of 3x3 make up the second convolutional layer. The third

convolutional layer has a filter size of 1x1, a stride of 1, and 256 filters. The skip

connection in an identity block simply adds the input directly to the output of the

third convolutional layer. This allows the input to bypass the convolutional layers

and be added directly to the output, which helps to address the problem of vanishing

gradients that can occur in very deep neural networks.

Convolutional Block: When the input and output dimensions of a convolutional

layer are different, the ResNet50 architecture uses a convolutional block as a type of

residual block. The convolutional block is made to enable the model to learn more

complex representations of the input while simultaneously learning a new

representation of the input that corresponds to the output dimensions. ResNet50

employs identity blocks and convolutional blocks as its two main types of residual

blocks, as shown in Figure 4.25. Identity blocks have a skip connection that, in the

absence of any convolutional layers, adds the input directly to the output. A skip

connection, two convolutional layers with batch normalisation and ReLU activation,

and a convolutional layer with stride 2 are the components of convolutional blocks.

These layers reduce the spatial dimensions.

Figure 4.25: Identity Block and Convolutional Block [20]

44

EfficientNetB0: Convolutional neural networks (CNNs) in the EfficientNet family

are intended to be accurate and computationally effective. The tiniest and lightest

member of the EfficientNet family is EfficientNetB0. It has fewer parameters than

bigger EfficientNet models, but it still competes favourably on image classification

tasks. EfficientNetB0 was introduced by Tan and Le in a paper titled "EfficientNet:

Rethinking Model Scaling for Convolutional Neural Networks" that was published

in 2019. Figure 4.26 shows the EfficientNetB0 model, a convolutional neural

network designed to be efficient in terms of computation and model size.

Figure 4.26: EfficientNetB0 Architecture [21]

Intuition Behind EfficientNet: The goal of EfficientNetB0 is to build an accurate

and resource-effective convolutional neural network (CNN) using a compound

scaling technique. This approach balances the depth, width, and quantity of filters in

the CNN to produce the optimal configuration.

A squeeze-and-excitation module and a mobile inverted bottleneck convolution are

also included in EfficientNetB0 to further improve performance and efficiency.

EfficientNetB0 combines these techniques to perform image classification tasks with

high accuracy while consuming less processing power and memory than other

models that reach a comparable level of accuracy.

Compound Scaling: EfficientNetB0 balances the depth, width, and number of filters

in the convolutional neural network (CNN) in order to get the optimal design. The

process includes scaling the network's depth, breadth, and resolution. The network's

layer count, which is scaled by a compound coefficient to get the network's layer

45

count, is referred to as the "depth" of the network. Each convolutional layer's

"width"—a phrase used to indicate the number of filters present there—is scaled by

a distinct compound coefficient, which determines the network's total width. To

improve accuracy, the resolution, which also describes the size of the input pictures,

is scaled.

In comparison to existing CNNs that only scale one or two dimensions,

EfficientNetB0 improves accuracy and efficiency by scaling these three dimensions

collectively. The network is optimised for the particular job while also being

computationally efficient using this compound scaling strategy.

Formula:

 𝑓 = 𝛼. 𝛽𝜃. 𝛾𝜃 (4.23)

The coefficients are derived through a grid search to find the optimal values for each

scaling factor. Alpha scales the depth, beta scales the breadth, and gamma scales the

resolution.

The network's overall size is determined by the compound scaling factor phi, which

for EfficientNetB0 is set at 1.0. EfficientNetB0 is a highly successful model for

image classification tasks because it finds a compromise between accuracy and

efficiency by modifying these three scaling parameters.

Grid Search: Grid search includes carefully analysing various hyperparameter

combinations to identify the best values for a certain model. Here is a general method

for conducting grid searches:

1. Define the hyperparameters: Determine which hyperparameters you want

to tune first. The scaling coefficients alpha, beta, and gamma would be the

hyperparameters in the case of EfficientNetB0.

2. Define the search space: For each hyperparameter, provide the range of

values. Try alpha values of 0.1, 0.2, 0.3, and so on, all the way up to 1.0, as

an illustration.

46

3. Define the performance metric: Select the performance indicator you want

to improve. This might refer to EfficientNetB0's accuracy on a validation

dataset.

4. Train and evaluate the model: With each combination of hyperparameters,

train a model, and then assess its performance using the specified

performance metric. The search can be slowed down by using parallel

computing because it might be a time-consuming procedure.

5. Select the best hyperparameters: Pick the hyperparameters that perform

the best based on the selected performance metric.

6. Test the model: In order to confirm that the performance is reliable and

adequate, test the chosen model on a different test dataset.

4.13 MODULE DIVISION

In recent years, CNN has developed into a powerful tool for picture categorization

and identification. CNNs are well suited for challenging image classification tasks

because they are built to learn and extract hierarchical features from the input data.

The CNN model for classifying brain tumours includes a number of crucial steps.

The first step is to obtain the input images from the dataset. In order to ensure that

the model is resilient to changes in the input data, the model is then preprocessed

with these images using a variety of techniques, including data augmentation and

image resizing.

The images are then fed to the CNN, which has a number of convolutional, pooling,

and fully connected layers. To assess how well an algorithm will be able to detect

brain tumours.

47

Algorithm: Proposed CNN model

1 Imageload();

2 Augmentation();

3 dataSplitting();

4 dataLoading();

5 for each epoch in epochNumber do

6 for each batch in batchSize do

7 ˆy = model(features);

8 Loss = categoricalcrossEntropy(y, ˆy);

9 Optimization(loss);

10 accuracy = (1 - Loss) * 100%;

11 end

12 end

4.13.1 Proposed Workflow

The proposed CNN model workflow for classifying brain tumours consists of several

steps. First, the model receives as input high-quality, preprocessed MRI scans of the

brain. To increase the dataset, data augmentation methods are used. After that,

several convolutional and pooling layers are applied to the images in order to extract

features. The features are then passed through fully connected layers to identify the

different types of tumours.

After the model has been trained with the appropriate loss functions, it is optimised

using backpropagation algorithms. Figure 4.27 illustrates the proposed CNN model's

classification workflow for brain tumours. Brain MRI images are used as input for

the model and are enhanced and preprocessed to increase the dataset. The images are

then passed through numerous convolutional and pooling layers, followed by fully

connected layers, for classification into different tumour types. The right metrics are

used to develop and evaluate the model.

48

 Figure 4.27: Existing workflow of brain tumor classification

4.14 Summary

This chapter describes the suggested methods for classifying and segmenting brain

tumours. Segmentation of the aberrant tissues and identification utilising two

separate techniques are presented clearly with the assistance of an appropriate

graphic and explanation.

49

CHAPTER 5

 PERFORMANCE ANALYSIS

5.1 Overview

The results of our methodology, which uses deep learning techniques to separate

tumours and classify objects using a convolutional neural network and transfer

learning, are discussed in this section. The results of our three models will be

compared after a thorough performance analysis has been completed. The

segmentation and classification of our model will be contrasted with those of other

models. For this problem, we investigated two approaches:

1. The Traditional CNN approach.

2. The Transfer learning approach.

5.2 Performance Measures

In this section, we'll go over the performance metrics we used to rate the accuracy of

our model. In performance evaluation, words like precision, recall, F1 score,

accuracy, and confusion matrix are frequently used. Precision measures the

percentage of true positives among all positive predictions, and recall evaluates the

percentage of true positives among all actual positives. The confusion matrix lists

the model's true and false predictions, while the F1 score, which is the harmonic

mean of precision and recall, assesses the overall accuracy of the predictions.

5.2.1 Confusion Matrix

The confusion matrix is a well-liked metric for evaluating the accuracy of

classification models. It is beneficial, especially when the output can be split into

two or more classes. The confusion matrix is composed of the True Positive (TP),

True Negative (TN), False Positive (FP), and False Negative (FN) parameters. The

percentages of correctly classified tumour images (TP), correctly classified non-

tumor images (TN), incorrectly classified non-tumor images (FP), and incorrectly

classified tumour images (FN) are shown.

50

5.2.2 Accuracy

The percentage of correctly predicted images by a classifier is measured by a

common performance metric called accuracy. The ratio of precise predictions to all

images can be used to represent it mathematically.

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠
 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5.1)

5.2.3 Precision

Precision is a performance metric used to assess how successfully a model retrieves

relevant data. It is determined by dividing all images that were correctly or

incorrectly classified as positive by the proportion of positive images that were

correctly predicted.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 (5.2)

5.2.4 Recall

Recall is a performance metric that measures how many relevant images a model

was able to successfully retrieve. It is calculated as the ratio of correctly predicted

positive outcomes to the total number of images that should have been classified

positively.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 (5.3)

5.2.5 F-Score

Recall and precision are combined into a single number by a performance metric

known as an F-score, also known as an F1 score. Its optimal value is 1, which it

achieves when both precision and recall are 100%. The F-score measures the overall

test accuracy and strikes a balance between recall and precision.

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗
𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (5.4)

51

5.3 Experimental Results

The experimental results of our proposed approach for classifying and segmenting

brain tumours using both transfer learning and convolutional neural networks (CNN)

methods will be presented and discussed in this section. We'll assess the potency of

the two approaches and contrast how well they work.

5.4 Traditional CNN Approach

Developing a Deep Learning Classifier for Brain Tumors. We go over our method

for developing the classifier in the following steps:

1. Conduct exploratory data analysis (EDA) on a dataset of brain tumors

2. Create a CNN model.

3. On the dataset, we trained and evaluated our model.

5.4.1 Visualization of different types of tumors

A group of brain MRI scans that are a part of a dataset for classifying brain tumours

are displayed in Figure 5.1. The scans show different types and orientations of brain

tumours, such as meningiomas, gliomas, and pituitary

Figure 5.1 Sample images from the dataset

5.4.2 Model Evaluation [CNN Model]

A multi-class classification model's performance is typically assessed using the

performance metrics, as shown in Figure 5.2. The classification model in question

was probably trained to identify the different types of brain tumours using medical

imaging data.This model classifies brain tumours into four categories, denoted as 0,

52

1, 2, and 3. For each class, the support, precision, recall, and f1-score metrics are

reported. These metrics' macro and weighted averages are also provided. The model

is performing well in predicting the various classes of brain tumours, as evidenced

by the overall accuracy achieved of 94%.

 Figure 5.2 Classification Report [CNN Model]

Figure 5.3 displays the precision, recall, and F1-score for each of the four classes (0,

1, 2, and 3). It is simple to compare the values across the various metrics because the

precision, recall, and F1-score bars are grouped together for each class. The score

values are displayed on the y-axis, and the class labels are displayed on the x-axis.

Which colour represents which metric is shown in the legend on the chart's right side.

Overall, the chart offers a clear visual representation of the performance metrics for

each class, facilitating comparisons between classes and metrics.

Figure 5.3: Accuracy Across Multiple Classes [CNN Model]

A model's performance on a dataset is shown by the output. The model classified

93.58% of the data points correctly, achieving an accuracy of 93.58% on the

53

provided dataset. The model's prediction error, 0.3028, is represented by the loss

value; a lower loss value indicates better performance. Ten data batches were

processed during each of the training's ten iterations, or epochs.

Figure 5.4: Accuracy [CNN Model]

5.4.3 Visualizing the Data [CNN Model]

The accuracy over epochs during a brain tumour classification model's training is

shown in figure 5.5. By comparing the predicted tumour class label with the ground

truth label in the validation dataset, the accuracy metric is determined. The accuracy

curve's increasing trend indicates that the model's accuracy increases as the epochs

go on. After the final epoch, the model's accuracy on the validation dataset is 93.58%.

The training and validation loss is displayed over several epochs in Figure 5.6, the

modal loss graph in brain tumour classification. The loss is represented by the y-axis,

and the epochs are represented by the x-axis. The orange line represents the

validation loss, while the blue line depicts the training loss. At the beginning of

training, both lines start with high values indicating that the model is not performing

well. As the number of epochs increases, the loss values start to decrease, indicating

that the model is learning and improving its performance.

 Fig 5.5: Model Accuracy[CNN Model] Fig 5.6: Model Loss[CNN Model]

54

5.4.4 Classification of Images

Brain scan images are uploaded into a deep learning model for the classification of

brain tumours from a dataset. The model then examines the image's characteristics

and makes a prediction about the type of tumour that is present, such as a

meningioma, glioma, or pituitary tumour. The classification is based on patterns that

the model discovered while learning from a set of labelled training images. Figure

5.7 displays the tumour type after first uploading data from the test dataset.

Output

Figure 5.7: Classification of Images [CNN Model]

5.5 Transfer Learning Approach

Developing a Deep Learning Classifier for Brain Tumors. We go over our method

for developing the classifier in the following steps:

● Conduct exploratory data analysis (EDA) on a dataset of brain tumors

● Create a CNN model.

● On the dataset, we trained and evaluated our model.

5.5.1 ResNet50 Model Evaluation

The performance metrics are displayed in Figure 5.8. The classification model in

question was probably trained to identify the different types of brain tumours using

55

medical imaging data.This model classifies brain tumours into four categories,

denoted as 0, 1, 2, and 3. The following are the metrics for each class's precision,

recall, and F1 score:

Four classes are taken into account in this classification report for a brain tumour

classification problem. For each class, the support, precision, recall, and f1-score

metrics are reported. These metrics' macro and weighted averages are also provided.

The overall accuracy achieved is 97%, indicating that the model is performing very

well in predicting the different classes of brain tumors.

Figure 5.8 Classification Report [ResNet50]

The model successfully classified images of brain tumours, as evidenced by its high

accuracy of 97.24% and low loss of 0.0943. This indicates that the model had a very

low error rate, with 97.24% of the images it predicted being correctly classified. The

low loss shows how closely the model's predicted output matched the actual output.

All things considered, these findings show that the model was effective in correctly

classifying images of brain tumours and could be applied to medical diagnosis to

help doctors spot tumours in brain scans.

Figure 5.9 Accuracy [ResNet50]

5.5.1.1 Visualizing the Data [ResNet50]

The accuracy graph of a brain tumour classification model is displayed in Figure

5.10. Over the epochs, the training accuracy gradually rises to a high value while the

56

validation accuracy rises more slowly and eventually reaches a plateau. The model

is performing well and is not overfitting, as the graph demonstrates because the

validation accuracy is similar to the training accuracy. The accuracy graph shows

that, on the whole, the model is successfully learning from the data and getting better

over time. Additionally, figure 5.11 depicts the modal loss experienced by a brain

tumour classification model during training. The loss value over time is trending

downward on the graph, showing that the model is becoming more effective with

each passing epoch. The initial loss value is relatively high, but after the first few

epochs, it starts to decline significantly and then slowly keeps going down. The

model may be successfully learning from the input data and modifying its parameters

to enhance performance, according to this. Overall, the modal loss graph's declining

trend is encouraging and shows that the brain tumour classification model is getting

better as it learns.

 Figure 5.10: Model Accuracy[ResNet50] Figure 5.11: Model Loss[ResNet50]

5.5.2 EfficientNetB0 Model Evaluation

The evaluation of the model on a dataset that was split into four groups based on the

type of brain tumours present (0, 1, 2, and 3) is shown in Figure 5.12. This

classification report focuses on a model for categorising brain tumours. The model

had an accuracy of 0.96 across the four classes (0–3), a precision score of 0.94–1.00,

and a recall score of 0.95–0.99. The weighted average F1 score was 0.96. The model

did well overall, exhibiting high precision, recall, and F1-score, demonstrating its

accuracy in classifying various types of brain tumours.

57

Figure 5.12 Classification Report [EfficientNetB0]

A brain tumour classification model's precision, recall, and F1-score for each class

are displayed in Figure 5.13. The four different tumour types are represented on the

x-axis (0, 1, 2, and 3), while the performance metrics are shown on the y-axis. Each

bar within a group of bars represents a different type of tumour, and each group of

bars represents a different performance metric.

Figure 5.13: Accuracy Across Multiple Classes [EfficientNetB0]

The model successfully classified images of brain tumours, as evidenced by its high

accuracy of 96.330% and low loss of 0.1407 percent. This indicates that the model

made only a small number of mistakes because 96.33% of the images it predicted

were correctly classified.

Figure 5.14: Accuracy [EfficientNetB0]

58

5.5.2.1 Visualizing the Data [EfficientNetB0]

A brain tumour classification model's accuracy trend is shown in Figure 5.15 during

training, and its loss during training and validation is shown in Figure 5.16 over a

number of epochs. As the epochs progress, the model's accuracy rises until it reaches

a final accuracy on the validation dataset of 93.58%. As the number of epochs rises,

the training and validation loss values drop, demonstrating the model's progress in

learning the characteristics of the brain tumour classification dataset and its

increasing performance.

 Fig 5.15: Model Accuracy[EffiNetB0] Fig 5.16:Model Loss[EffitNetB0]

Figure 5.17 shows that ResNet50 has the highest accuracy of 97.24%, followed by

EfficientNetB0 with 96.33% accuracy and CNN with 93.5% accuracy. The x-axis

represents the model names, and the y-axis represents the accuracy percentage.

Figure 5.17: Accuracy Across Multiple Models

59

5.6 Performance Comparison

5.6.1 Comparison between Traditional CNN and Transfer Learning

The project report for brain tumor classification aimed to compare the performance

of a CNN model with two pre-trained models, EfficientNetB0 and ResNet50, for

classifying brain tumors as either malignant or benign based on MRI scans. The

models were trained for 32 epochs, and the accuracy of each model was evaluated.

The results showed that the CNN model achieved an accuracy of 93.5%, while

EfficientNetB0 and ResNet50 achieved 96.33% and 97.24% accuracy, respectively.

These results suggest that transfer learning with pre-trained models can significantly

improve the accuracy of brain tumor classification.

Table 5.1: Comparison table of CNN vs. Pretrained Model

epochs CNN EfficientNetB0

Pretrained Model

ResNet50

Pretrained Model

32 93.5% 96.33% 97.24%

5.7 Performance comparison Between existing model the proposed

CNN model

Comparing the proposed CNN model's performance to that of current models for

diagnosing brain tumours reveals that ResNet-50 and EfficientNetB0 have high

accuracy rates of 95.7% and 95.2%, respectively. The suggested CNN model did,

however, only achieve a 93.5% accuracy rate. The suggested EfficientNetB0 and

ResNet50 models, on the other hand, had accuracy rates that were higher, at 96.33%

and 97.24%, respectively. These findings imply that compared to creating a CNN

model from scratch, using pre-trained models like EfficientNetB0 and ResNet50 can

significantly increase the accuracy of brain tumour classification.

60

Table 5.2: Performance evaluation of the proposed CNN model and the currently

used models

No Paper Name Year Method Accuracy

1 A Hybrid Deep Learning

Approach for Brain Tumor

Detection and Classification

2020 ResNet-50

architecture

95.7%

2 A Novel EfficientNetB0 Neural

Network for Accurate Brain

Tumor Classification Using MR

Images

2020 EfficientNetB0

Architecture

95.2%

3 EfficientNet-Based Brain Tumor

Classification.

2021 EfficientNetB0

Architecture

97.23%

4 Proposed CNN Model 2023 CNN Model 93.5%

5 Proposed EfficientNetB0 Model 2023 EfficientNetB0

Architecture

96.33%

6 Proposed ResNet50 Model 2023 ResNet50

Architecture

97.24%

5.8 Summary

Using MRI scans, three deep learning models were created to classify brain tumours.

ResNet50 came in second with 96% accuracy, followed by CNN with 93% accuracy,

and EfficientNet with 97% accuracy. Overall, the models demonstrated positive

outcomes for the correct categorization of brain tumours using deep learning

methods.

61

CHAPTER 6

CONCLUSION

6.1 Conclusion

The classification of brain tumours using deep learning models has thus far yielded

promising results in research. Among the popular models employed for this task are

conventional CNN, ResNet50, and EfficientNetB0.

The ability of these models to distinguish between various types of brain tumours

with high accuracy can help with diagnosis and treatment formulation. However,

selecting the best model for a given task depends on a number of variables, including

the size and complexity of the dataset, the available computational resources, and the

particular application requirements.

To achieve the best performance, it is crucial to carefully assess various models and

fine-tune them. Overall, applying deep learning models to the classification of brain

tumours has the potential to increase diagnosis's precision and effectiveness, which

could ultimately result in better patient outcomes.

6.2 Future Scope

Deep learning models offer a variety of opportunities for improving brain tumour

classification, which researchers can investigate. The size of the dataset should be

increased in order to improve algorithm training and produce more accurate and

trustworthy results.

Additionally, to find the best classification model for the task, researchers can

examine various models and evaluate how well they perform.

Additionally, using 3D images, especially with more sophisticated imaging methods

like MRI, can give a more thorough understanding of the tumour structure, resulting

in a more precise classification.

62

The accuracy of brain tumour classification using deep learning models can be

significantly increased by taking advantage of these opportunities.

63

REFERENCES

[1] L. Zhang, "Brain tumor classification using deep learning based convolutional

neural network," in IEEE Access, vol. 8, pp. 117016-117026, 2020.

[2] A. E. H. Salim, A. W. B. Abdul Rahman, N. H. Ismail, N. H. A. Hamid and N.

H. Harun, "Brain tumor classification using EfficientNet-B0 without skull stripping,"

in Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 8, pp.

8713-8723, 2021, doi: 10.1007/s12652-021-03405-2.

[3] M. Qaiser, R. Irfan, M. Awais and N. Akram, "A hybrid CNN approach for

accurate brain tumor classification," in Cluster Computing, vol. 23, no. S2, pp. 2351-

2361, 2020, doi: 10.1007/s10586-020-03100-2.

[4] M. Khan, S. A. Kamboh, M. A. Shahzad, and S. H. Raza, "Automated Brain

Tumor Detection using Transfer Learning with EfficientNet-B0," in 2021 IEEE 8th

International Conference on Engineering Technologies and Applied Sciences

(ICETAS), Dec. 2021, pp. 1-6. doi: 10.1109/ICETAS54015.2021.9639063.

[5] M. A. Al-Antari, M. S. Al-kadi, F. I. Mohammad, and R. A. Al-masni,

"Automatic Brain Tumor Detection and Classification Using ResNet50 Deep

Learning Network," Sensors, vol. 20, no. 23, pp. 6934, 2020.

[6] S. Suresh, A. Vasuki, and J. Amudhavel, "A Hybrid Deep Learning Approach

for Brain Tumor Detection and Classification," Journal of Medical Systems, vol. 45,

no. 7, pp. 1-14, 2021.

[7] A. Alimoradi, A. Karimi, and M. Karami, "A Novel EfficientNetB0 Neural

Network for Accurate Brain Tumor Classification Using MR Images," Journal of

Medical Signals and Sensors, vol. 11, no. 3, pp. 195-203, 2021.

64

[8] Y. Fu, B. Zhang, Y. Zhang, and Y. Zhang, "A Robust Deep Learning-Based

Model for Brain Tumor Classification Using Small MRI Datasets," Computer

Methods and Programs in Biomedicine, vol. 203, pp. 106019, 2021.

[9] M. Kamal, M. U. Khan, S. Shabbir, and M. A. Bhatti, "Brain Tumor

Classification and Segmentation using EfficientNet with Transfer Learning,"

Computer Methods and Programs in Biomedicine, vol. 205, pp. 106111, 2021.

[10] S. S. Sabir, S. Shahzad, M. N. Iqbal, and A. M. Mirza, "Brain Tumor

Classification using 2D Convolutional Neural Network based on EfficientNetB0,"

Journal of Medical Systems, vol. 45, no. 6, pp. 1-11, 2021.

[11] National Centre for Disease Informatics and Research (NCDIR), "Report of

Consolidated Hospital-Based Cancer Registry: 2020," available at:

https://ncdirindia.org/All_Reports/Report_2020/default.aspx

[12] https://byjus.com/question-answer/draw-a-labeled-structure-of-the-human-brai

n-write-the-functions-of-three-parts-of/

[13] https://www.researchgate.net/figure/Structure-of-BiologicalNeuron_ fig1_265

036614

[14] https://www.researchgate.net/figure/The-simplest-mathematical-model-of-

a-neuron-called-the-Perceptron-30_fig2_266485234

[15] https://www.mdpi.com/2076-3417/12/11/5645

[16] https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn

-step-1-convolution-operation

[17] https://d2l.ai/chapter_convolutional-neural-networks/pooling.html

[18] https://towardsdatascience.com/activation-functions-neural-

65

networks-1cbd9f8d91d6

[19] analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-deep-Learning-

optimizers/

[20] https://blog.devgenius.io/resnet50-6b42934db431

[21] https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html

