
Yadey : A Social Media Web App

Project report submitted in partial fulfilment of the requirement for
the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Kaushik Deka

Under the supervision of

Mr. Arvind Kumar
to

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology Waknaghat,
Solan-173234, Himachal Pradesh

CERTIFICATE

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Yadey: A Social Media

App” in partial fulfilment of the requirements for the award of the degree of Bachelor

of Technology in Computer Science and Engineering/Information Technology

submitted in the department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology Waknaghat is an authentic

record of my own work carried out over a period from February 2023 to May 2023 under

the supervision ofMr. Arvind Kumar, Assistant Professor, CSE/IT.

I also authenticate that I have carried out the above mentioned project work under the

proficiency stream Cloud Computing.

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

Kaushik Deka(191378)

This is to certify that the above statement made by the candidate is true to the best of my
knowledge.

Mr. Arvind Kumar

Assistant Professor

Computer Science & Engineering and Information Technology

Dated: 10.05.23

I

II

Acknowledgement

We are thankful to all the people who joined as part of making this journey of fulfilling

this project into a working model. We are grateful to Jaypee University of Information

Technology for giving us a wonderful platform for exploring our software developing

skills during the making of this project.

Additionally, we would like to extend our sincere appreciation to Dr. Vivek Sehgal, Head

of the Department, for providing all the assistance and support necessary for the project's

conception, execution, and presentation.

We are also thankful to our mentorMr Arvind Kumar as well as other staff members of

the Computer Science and Engineering department, Jaypee University of Information

Technology for their constructive and helpful inputs.

III

Table of Contents

1. INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 1

1.3 Objectives 1

1.4 Methodology 2

1.5 Organisation 3

2. LITERATURE SURVEY 4

3. SYSTEM DEVELOPMENT 8

3.1 Architecture Design 8

3.2 System design Implementation 9

3.3 Website design 15

3.4 Front-end Implementation 18

3.5 State Management using React-redux 26

3.6 Routing 28

3.7 APIs 29

3.8 React Formik 30

3.9 React Dropzone 31

3.10 The Back-end implementation 32

3.11 MongoDB and Mongoose 34

3.12 Controllers 39

3.13 Overall flow of Data 47

3.14 Three-tier architecture 47

IV

4. RESULT 49

4.1 Login and Registration 49

4.2 Home Page 51

4.3 Creating and Searching a post 53

4.4 Performance analysis 55

4.5 Final list of dependencies 55

4.6 Mobile view 56

5. CONCLUSION 57

5.1 Conclusion 57

5.2 Future Work 58

6. REFERENCES 59

V

Abbreviations

API Application Programming Interface

NPM Node Package Module

MVC Model-View-Controller

HTTP Hypertext Transfer Protocol

NoSQL Non- Structured Query Language

JSON JavaScript Object Notation

BSON Binary JSON

RDBMS Relational Database Management System

HTML Hypertext Markup Language

MVVM Model-View-ViewModel

JSX JavaScript XML

SPA Single Page Application

URL Uniform Resource Locator

UI User Interface

VI

List of Figures

Figures Name Page No

1.1 MERN Stack Architecture 2

2.1 The Evolution of Web 4

3.1 A 3-tier MERN architecture 8

3.2 Client side work environment 9

3.3 Server side work environment 9

3.4 NodeJS Request Flow 12

3.5 Express Js Request Flow 13

3.6 ER relationship of the MongoDB Database 14

3.7 Registration page 16

3.8 Login Page 16

3.9 Home screen in Dark Mode 17

3.10 Home Screen in light mode 17

3.11 React Workspace and folder hierarchy 18

3.12 Working of useState hook 22

3.13 Working of useContext hook 23

3.14 React hooks lifecycle 24

3.15 The flow control of redux 26

3.16 Redux state management 27

3.17 Working of react router 29

3.18 Location of API file 30

3.19 Form creation using react formik 31

3.20 React dropzone using hooks 32

3.21 Server running on port 3001 33

3.22 Client running on port 3000 34

VII

3.23 Module import/require workflow 36

3.24 User Schema 37

3.25 Post schemas 38

3.26 Middleware code for authentication 39

3.27 Controllers 40

3.28 Getting a post 40

3.29 Updating a Post 41

3.30 Creating a Post 42

3.31 Getting User and user friends 43

3.32 Updating and removing user friends 44

3.33 Registering User 45

3.34 Logging user 46

3.35 Data flow in a typical web application 47

3.36 The web dev architecture(three-tier) 47

4.1 Login page 49

4.2 Registration Page. 50

4.3 User info in the MongoDB database 50

4.4 Clean looking homepage in Light Mode 51

4.5 Button to change to Dark Mode. 51

4.6 Logout option 52

4.7 Homepage in dark mode 52

4.8 Post creation design 53

4.9 Post on homepage 53

4.10 Post logged in the MongoDb database 54

4.11 The post’s metadata on the console 54

4.12 The package.json file 55

4.13 The app mobile view 56

VIII

List of Tables

3.1 Hardware requirements 15

3.2 Software requirements 15

3.3 Props vs State in react 21

IX

Abstract

The summary provided describes a full-stack responsive social media application built

using the MERN stack (MongoDB, Express.js, React, and Node.js). The application

follows a three-layered architecture and includes unit tests for each layer.

The application offers user registration with comprehensive validation, including the

ability to upload a user image for their profile. Users can register, sign in using their email

and password, and access a clean and user-friendly home page with various widgets. The

user profile details are displayed, and the current user can create, edit, and delete posts, as

well as add images to their posts. Users can view a news feed of all posts, like and dislike

posts, and view comments. Friend functionality is provided, allowing users to add and

remove friends, view their friends' profiles, and write posts for other users.

The application supports a light and dark mode, and it is fully responsive, ensuring

optimal user experience on different screen sizes. The frontend utilises React as the

framework, React Router for navigation, Formik and Yup for form and validation, Redux

Toolkit for state management with Redux Persist for local storage, and React Dropzone

for image uploads.

On the backend, Node.js serves as the runtime environment, while Express.js acts as the

backend framework. MongoDB is used as the database, and Mongoose is employed for

managing database operations. Authentication is handled using JSON Web Tokens (JWT),

and Multer is used for file uploading.

Middleware is implemented to authenticate HTTP requests before sending them to the

server. The frontend is built using HTML, CSS, and JavaScript, with extensive use of

Bootstrap templates. On the backend, Node.js and its packages, such as Express.js and

JWT, are employed, and Mongoose is used to write more readable code.

X

CHAPTER 1 : INTRODUCTION

1.1 Introduction

It is a full stack responsive social media application using MERN stack that implements

CRUD operations based on the three layered architecture. Programs at each layer have

their own unit test. The social media application consists of a register page with complete

validation along with functionality to upload a user image for their profile. Any user can

register and can then use the registered email address and password to sign in. The home

page has a very clean UI with a number of different widgets. There is also a box that

shows the complete user profile details. The current user that's signed in will be able to

make posts as well as add an image for the post. They can edit, delete and actually make

the post. They can also see the users news feed of all the posts that have been created. The

users can also actually like and dislike any posts that they want. They can view the

comments as well. They can add a friend if they would like and the friend list will be

updated over. The users can add any amount of friends and can remove them if we want to.

They can also view the profiles of other users and can see the other person’s friends. The

person also has the ability to write a post for another user and then can see their user post

as well. We can change from light mode to dark mode and vice versa and more importantly

everything is going to be completely fully responsive so the user can see the exact same

website on smaller screens with modified adjustments for everything most importantly.

Everything on the frontend, all the information comes from backend APIs which are

retrieving information from the databases(MongoDB). The project is done on the MERN

stack which includes Mongo database, Express.js, React and Node. Specifically for the

front end, React is used as a framework. React router for navigation. Formic and YUP for

form and form validation. Redux toolkit for state management with Redux Persist to store

in local storage and React Dropzone for image uploads.

For the back end, Node.js is used as the runtime environment. Express.js as the backend

framework. Mongoose for managing the database. JSON Web Token (JWT) for

authentication and Multer for file uploading.

There is also an implementation of middleware that authenticates the http request before

sending it to the server. Front-end of the website is made using html, css, javascript.

1

Bootstrap templates are used extensively. For the back-end we are using nodejs and its

packages such as Express js, JWT(for authentication and security). Its library Mongoose is

used to write more readable code.

1.2 Problem Statement

To apply industrial best practices and create a fast, scalable and secure web application. To

learn and apply the knowledge of front-end development in real life projects and to

understand the in-depth working of MERN Stack applications.

1.3 Objectives

To create testable, structured, clean and maintainable web applications by using industrial

best practices. To apply the knowledge about the technologies thought to us thus far and

gain practical experience.

1.4 Methodology

Fig 1.1 MERN Stack Architecture

2

The front-end of this website is developed exclusively using Reactjs. Material-ui is used

for styling instead of plain CSS. This combination allows faster development and

scalability. Each component can be developed simultaneously and error in one component

won’t affect other components. The project is done on the MERN stack which includes

Mongo database, Express.js, React and Node. Specifically for the front end, React is used

as a framework. React router for navigation. Formic and YUP for form and form

validation. Redux toolkit for state management with Redux Persist to store in local storage

and React Dropzone for image uploads.

For the back end, Node.js is used as the runtime environment. Express.js as the backend

framework. Mongoose for managing the database. JSON Web Token (JWT) for

authentication and Multer for file uploading. We have used Expressjs for making APIs and

MongoDB as a database. Mongoose is a framework for MongoDB and Express Js.

Executing HTTP requests is React's responsibility. They can set up dynamic data

downloads in this way without having to reload the website. This makes the website

significantly faster than usual.

1.5 Organisation

Five chapters make up the substance of this project report. Several research articles that are

related to this project activity are included in the literature review, which is detailed in

chapter 2 after this introduction chapter. The Second chapter provides an overview of the

various works on similar domains that was carried out previously by various authors. The

third chapter gives an overview of the proposed model about how the web application

architecture is specifically designed. It explains all the intricacies that are going on in the

backend and also the frontend of the application. The fourth chapter shows the final

outcome. The entire UI of the project along with its various functionalities as presented to

an user is shown. The final chapter provides a conclusion to the project. It gives an

overview of all the various things I have learned while working on the project. And what

improvements can be made to it in future.

3

CHAPTER 2 : LITERATURE SURVEY

Full-stack developers are in greater demand than ever before in the modern world. The

biggest demand is accompanied by an amazing average income of $110,770 in the US,

according to a poll conducted by Indeed. [1] A person who is technically capable of

working on the front-end and back-end development of a dynamic website or web-based

apps is referred to as a "full-stack developer."

Fig 2.1 The Evolution of Web

The foundations of the modern commercial internet were laid in 1990. Tim Berners-Lee

developed the fundamental ideas of the World Wide Web as well as other tools for

effective web usage at the end of 1990.

These include the HyperText Transfer Protocol (HTTP), the HyperText Markup Language

(HTML), the first web browser and code editor, the first web server, and the first web page

that introduced the concept of the world wide web as well as a technique for creating one's

own web page [8]. Since 1990, the internet has rapidly developed, and four generations of

4

development may be identified (Fig. 2.1)[11]. Users could only browse web material on

the first generation's static, infrequently updated web sites.

The basic tenet was to read just the web. All web sites were created using HTML, and

HTTP was the primary communication mechanism [11]. Beginning in 2004, the second

generation is characterised by phrases like diverse social networks, blogs, the ability for

users to create web page contents, and improvements to the user experience when

navigating web interfaces. Famous social networks like Facebook, Twitter, LinkedIn, and

others have emerged throughout that time. These social networks allowed user connection

on a worldwide scale.

New technologies that enable the presentation and delivery of web services without issues

with web distribution also emerged at that time, including JavaScript, Document Object

Model (DOM), Ajax, Cascading Style Sheets (CSS), eXtensible HTML (XHTML),

eXtensible Markup Language (XML), eXtensible Stylesheet Language (XSL), and Flash.

2010 marks the beginning of the third web generation, which is characterised by the

semantic web (which adds semantics to the web), content personalisation, intelligent

search, and computers' ability to create a variety of material. Ontologies are employed in

the representation and justification of meaning. In addition to ontologies, technologies like

Web Ontology Language (OWL), Resource Description Framework (RDF), and others are

employed in the third generation of the web.

People could be able to refer to Internet 4.0 as the active web for the fourth generation.

The usage of search engines is still essential in the present web 3.0, which provides us

with knowledge in its most comprehensive online applications that we may utilise as

needed. In contrast, Web 4.0 will be different. while completely developed, it won't require

many of the processes that are required while using web 3.0, making use of it simpler and

more undetectable.

The LAMP stack, which consists of Linux, Apache, MySQL, PHP or Perl, and Java (Java

EE, Spring), which includes a variety of programming languages, was the major

foundation for web development in the past. With the advent of the MERN stack,

JavaScript facilitates web development by having the ability to operate on both the client-

and server-side. There are four main technologies in the stack: MongoDB, Express.js,

5

React.js, and Node.js. Studying the nature of each component in the stack and developing

a social platform that can link individuals were the main objectives of this project.The

outcome is a platform that has sufficient features to demonstrate the

connections of each of the components in the MERN stack.

The goal of the project is to implement the fundamental elements of the MERN Stack[4,6]

technology, including MongoDB, ExpressJS, ReactJS, and NodeJS platform. Using the

fundamental features of an e-commerce web application, such as sign-up and sign-in,

dashboard display, and product and shop category display, building a web application with

a payment gateway and product stores using MERN Stack technology. Implement website

administration tools including user management, store management, analytics, and

reporting.

The user interface of a web page is referred to as web design. Design is the global

language of the visual world. The design's primary objective is to focus on the content so

that consumers can access and use it with ease [15]. Web design has undergone significant

change as a result of various technological advancements and fashion trends. From the

first web generation, which displayed contents using a straightforward text page, to the

second generation, which used lots of graphics and vibrant colours to create memorable

web pages, and finally to the simple and user-friendly web design we see today. The

design and content of a website should always be current.

Node.js is a system application, a server environment, and it is open source. Using the

NodeJS platform, which was independently developed using JavaScript from Chrome, we

can create network apps rapidly and easily. To run the code, use the JavaScript engine on

Google. Additionally, a significant portion of necessary modules are written in JavaScript

6. Node.js includes a built-in framework that enables programmes to act as Web Servers

similar to Apache HTTP Server.

Express.js A framework developed over NodeJS is called Express.js. It offers a wide range

of cutting-edge features for web and mobile development. Because HTTP is supported by

Express.js, the API is incredibly robust, dependable, and simple to use. Without slowing

down NodeJS, Express adds more tools for developers that aid in creating a better

programming environment[6]. The most popular NoSQL[6] database today, MongoDB, is

6

free source and used by thousands of users. It was created using one of today's most

widely used programming languages. Additionally, MongoDB is a cross-platform data

store that utilises the notions of Documents and Collections, offering great performance

with high availability and flexibility in terms of extension. Since this database was created

using the JavaScript Framework and the JSON data type, it is a source database format

that does not utilise Transact-SQL to access data[7]. With its introduction, it has been able

to improve operating speed and functionality while overcoming the drawbacks of the

RDBMS relational database management system concept.

Additionally, MongoDB is a cross-platform database that uses a collection- and

document-based strategy to create sharp output, enormous availability, and simple

scalability[11]. A scripting, object-oriented, and cross-platform programming language is

JavaScript. Host environment objects can be linked to JavaScript and set up in a way that

makes it operable. JavaScript includes common libraries like Array, Date, Math, and the

core elements of programming languages including managers, control framework, and

statements objects.

React is built around components. A component can be created by creating a Class

function of the React object, the starting point of accessing this library. ReactJS creates

HTML tags unlike we normally write but uses Component to wrap HTML tags into

objects to render. Among React Components, render function is the most important.[9] It

is a function that 104 International Journal for Modern Trends in Science and Technology

handles the generation of HTML tags as well as a demonstration of the ability to process

via Virtual-DOM. The web application will develop and function more effectively with

more research and understanding of new technologies, frameworks, and testing tools. Web

development employing various technologies would be beneficial to many businesses in

India and throughout the world in the future since it fosters a digital ecosystem and makes

doing business easier for everyone.

7

CHAPTER 3 : SYSTEM DEVELOPMENT

3.1 Architecture Design

Fig 3.1 : A 3-tier MERN architecture

MERN, or MongoDB, Express, React, and Node.js, are acronyms. With MongoDB as the

database, React.js is a web client library, Express.js is a web server framework, and

Node.js is a server-side platform. It enables programmers to create Web applications that

only use full-stack JavaScript.

Since MERN combines four cutting-edge technologies, including Facebook's strong

support, it eliminates the need for developers to learn other platforms like.NET, PHP, or

Java. Learning new technologies for application development saves developers time and

effort. The stack is supported by a large number of open-source packages and a committed

community of programmers to boost scalability and maintain software due to the same

JavaScript platform.

The foundation of the MERN stack is Node.js, which is a server-side technology with

8

extremely high performance and quick response to all tasks, including massive and

complex data, as shown in Fig 3.2. TypeScript is not required for MERN; all that is

required is the adaptable React framework, which is now the most well-liked and

influential front-end technology.

3.2 System design implementation

Separation of concerns : A react web application usually has two sub-folders for

client-side and server-side applications. Each sub-folder is then divided into separate

folders and files based on hierarchy.

The client side is mainly responsible for the user interface and experience while the

creation, deletion, updation and retrieval of the data is managed in the server side folder.

Fig 3.2 Client side work environment Fig 3.3 Server side work environment

3.2.1 Identification of features

The features of web application includes :

- Dark mode and Light Mode in UI

- Creation of a post with images.

- Deletion of post

9

- Add Friends and view their profile

- Like and dislike a post

- Updation of a post only by a user who is logged-in.

- Deletion of an existing entry only by the user who created it.

- Upload Profile photo

- Creating a user (signup).

- Letting the user Login and Logout

3.2.2 Libraries and frameworks used

Javascript :

An easy-to-use, interpreted, cross-platform scripting language is called JavaScript. In the

past, JavaScript was solely used on websites and was executed by browsers to enhance the

user experience. However, JavaScript can also be utilised to execute on the server, just as

Node.js has been around since 2009 and uses the V8 engine.

• Client-side JavaScript: An addition to the fundamental JavaScript language that allows

for browser and DOM management. Without regularly refreshing the page, it can also

conduct some calculations, alter UI components, and validate input.

• Server-side JavaScript: An extension of the basic JavaScript language that may be

viewed as regular C#, C, Python, or any other server-side programming language code and

is designed to execute on a server. The second significant update to JavaScript was

ECMAScript 6, commonly referred to as ES6 or ECMAScript 2015, which was published

in 2016. [5] When implementing the React.js framework in any of the MERN-based

projects, comprehension of ES6 is crucial. Developers will write standard JavaScript in

React.js combined with capabilities from ES6.

Reactjs :

React is an open-source, free front-end library based on javascript used for creating

component-based user interfaces. It is kept up-to-date by Meta and a group of independent

programmers and businesses. With frameworks like Next.js, React may be used to create

single-page, mobile, or server-rendered applications. Routing and other client-side

functionality are frequently provided by libraries in React applications because React is

10

solely concerned with the user interface and rendering components to the DOM. React.JS

is used to create single-page applications because it can render dynamically changing data

quickly, and was used to design our web application's user interface. Developers can

construct User Interface components using React and JS coding. We researched Reactjs

virtual DOM objects before using them in our project. Any modifications we made to our

web application for online shopping made the entire user interface render the virtual DOM

again. The potential differences between the DOM Object and Virtual DOM can then be

compared thanks to this. We used JSX, which made writing our code for the React

application simpler and easier.[4]

Components are used by React.JS. The foundation of User-Interface is made up of

components, each of which contributes to the overall User-Interface of our web application

and has logic connected to our social media application. Reusing components made our

web application code simpler for other developers to understand and improved the

efficiency of the web application as a whole.

Installing create react-app using npm or yarn was the first step in starting our React

application. npm install yarn global adds OR create-react-app global The two commands

for using npm or yarn are create-react-app.

Nodejs :

Node.js is a JS operating system that was created in the C++ programming language. A JS

runtime environment is Node.js. For fast performance, Node.js makes advantage of the

Google Chrome V8 engine. Node.js design uses the event-driven as the fundamental core

concept for its environment, which gave us the various number of APIs that are

event-based and asynchronous in nature which has helped us in building the website using

node.js for our back-end development.[2] As we used Node.js, it used the corresponding

callback function according to our web application’s business logic. These callback

functions are executed asynchronously, which means that although these functions appear

to be registered sequentially in the logic, they do not depend on the code written in which

they appear, but rather wait for the execution of the corresponding event to fire. The main

advantage of Event-driven and asynchronous programming is that it uses single-threaded

11

architecture[1]. The restricted resources were used for other tasks that needed to be

completed as part of the business logic for our web apps while the call back function code

was still being executed. This layout suited our back-end development, which was another

objective of our system. In server development, responding to synchronous requests was a

challenging operation, and blocking played a big role in underutilizing or squandering

resources. We enhanced the resource use and optimised the performance of our website

using single thread architecture and asynchronous callback mechanisms, which also

provided us with the necessary testing outcomes.

We can see that many of the functions, including file operations, are done asynchronously,

which is different from other languages, in the supported module that Node.js provides.

Node.js uses particularly big network modules, such as HTTP, DNS, NET, UDP, HTTPS,

TLS, and others, to make server development easier. Developers can set up a Web server

using these network modules.

Fig 3.4 NodeJS Request Flow

ExpressJS:

Express is a Node.js framework, thus we used it. While developing the application, we

discovered that Express made it simpler and easier to create the back-end code and

implement it in an organised style rather than creating a tonne of node modules and writing

the code with NodeJS.[3] We used Express to develop the web applications and APIs

needed for our project because it supports a variety of middlewares that make coding

12

quicker and simpler. The two main benefits of adopting Express in our application are

asynchronous programming and single-threaded architecture. comprehensive API for our

application We had to add a command to the command prompt to initialise the package

after creating a new folder to begin our express project.json file. After that, we had to

accept the default settings and continue. npm init is the command to start.

Fig 3.5 Express Js Request Flow

Mongoose :

Mongoose is a mongodb library for writing concise and readable code. It handles data

associations, offers validation, and translates between objects created in code and how

MongoDB represents those same items. This indicates that Mongoose enables the

definition of objects with strongly-typed schemas that map to MongoDB documents.

Mongoose offers a staggering amount of capabilities for developing and interacting with

schemas. CRUD activities that are challenging to carry out with raw MongoDB can be

carried out quickly and effectively using Mongoose.

MongoDB:

For our project, we chose the document-oriented database MongoDB. Every record in the

MongoDB database is a document format. MongoDB transforms our JSON data into a

binary version in the background on the server, which can then be stored and queried more

quickly. MongoDB employs BSON for database queries. Although we can't think about

MongoDB as a JSON database because it saves BSON format both internally and across

13

the network, it is a database nonetheless. Any data that can be natively stored in MongoDB

and then simply accessed in JSON format can be represented in JSON.

We may state that MongoDB is flexible and enables users to design schema, databases,

tables, etc. after studying and implementing it. After installing MongoDB, we had the

choice to use Mongo shell because it provides a JavaScript interface via which users can

communicate and perform any query-related tasks. Since MongoDB is a

document-oriented database, indexing documents is simple. and for that reason it manages

answers more quickly. Scalability of MongoDB We managed massive amounts of data in

the MongoDB database by splitting it out into a nested described structure. A database

server called MongoDB enables us to run several databases on it. The ER relationship of

all the tables is shown in Fig 3.6.

Fig 3.6 ER relationship of the MongoDB Database

Nodemon : If we make changes in the file and save it, nodemon starts the server

automatically. Without nodemon one has to restart the server automatically after every

change. It saves a lot of time and effort. While testing, the website can be run on localhost

using the “nodemon app” command.

14

3.2.3 Technical Requirements

- VS Code(preferred IDE) / atom

- Postman api platform for building and testing APIs.

- MongoDB (Nosql) database.

3.2.4 Hardware Configuration

Device Description

Processor AMD Ryzen 7 3750h with integrated
RX Vega 10 CPU@ 2.4 GHz

RAM 16 GB

System Type 64-bit Windows 11 OS

Table 3.1: Hardware requirements

3.2.5 Software Configuration

Operating System Windows

Language Javascript/JSX

Package manager Node package manager (NPM)

Runtime environment Node.js

Table 3.2: Software requirements

3.3 Website Design

3.3.1 Registration Page

When the user first signs up, he will be directed to the registration page to create an

account. They can enter their Firstname and Lastname. Their location and occupation.

There is also a functionality to upload an image from the local file system. The user can

15

then enter their email and password which will be stored in the backend to confirm their

authentication and then login from the login page from then on. The registration page has

complete validation. Fig 3.7 shows a screenshot of the registration page.

Fig 3.7 Registration page

3.3.1 Login Page

The user can login using the registered email address and password. The login page is

shown in Fig 3.8

Fig 3.8 Login Page

16

3.3.2 Home Page

The Homepage consists of the option to change between dark mode and light mode. It

consists of all the posts by different users. The user can upload posts with pictures. Like

and unlike posts. All the user details are shown in the homepage along with ads and friend

list.

Fig 3.9 Home screen in Dark Mode

Fig 3.10 Home Screen in light mode

Fig 3.10 shows the UI in light mode and Fig 3.11 shows the UI in light mode.

17

3.4 Front-end implementation

3.4.1 Bootstrapping a basic react application

We need to run the command - npx create-react-app appname and it will automatically

make a folder with all the requirements for creating a react application. Bootstrapped react

app made using npm create-react-app command

3.4.2 React Workspace and folder hierarchy

Fig 3.11: React Workspace and folder hierarchy

Fig 3.11 shows how the folders and files are structured in the client directory. It is

important to keep everything organised to avoid any mistakes.

3.4.3 Installing packages and dependencies

In react, various packages and dependencies can be installed using the following

commands:

npm install packagename - for installing dependencies normally.

npm i - for installing all the dependencies in one go.

18

3.4.4 Importing and exporting components

In react we can export a particular component and then import it in a parent component to

reuse it multiple times.

Importing :

Importing a component - import Gallery from './Gallery.js';

Importing dependencies - import axios from ‘axios’;

Importing hooks - import {useState} from ‘react’;

Exporting :

We can export a component as follows :

export default function App() {

return (

<Gallery />

);

}

3.4.5 How react works (JSX and Babel) :

JSX stands for JavaScript XML. JSX allows you to write html inside javascript. It is this

feature that makes react so powerful and clean.

An expression in JSX : const myElement = <h1>Current version of React is {9+9}.</h1>;

A block of html in react can be written as :

const myElement = (

<div>

<p>First paragraph.</p>

<p>Second paragraph</p>

</div>

);

3.4.6 States in React

19

In react, any change made by the user is considered as a change in state. A state contains

information about the component in which it is present. Whenever we change the state of a

component, it renders again with a new state. The setState() constructor is used to change

the state of a component. For example, if we type something in the search bar, with each

letter the state is changing and the component has to re-render. Example :

Class MyClass extends React.Component {

constructor(props) {

super(props);

this.state = { attribute : "value" };

}

}

3.4.7 Props in react

Props is a shorthand notation for properties. It works similar to HTML attributes. A prop in

react may seem similar to state but the major difference between a state and a prop is that a

prop can be passed from a parent component to the child component. This process is

known as ‘prop drilling’.

Eg:-

Adding an attribute called ‘brand’ to ‘Vehicle’ component :

const Ele = <Vehicle brand="Tata" />;

Passing the prop to the component :

function Truck(data) {

return <h1>The price is : { data.price }</h1>;

}

20

Table 3.3 : Props vs State in react

3.4.8 React Hooks

React version 16.8 introduced hooks. It was done to replace the class components. Hooks

allow us to access the state of a component and other react features. States can be changed

via hooks. It also helps us to ‘hook’ into the lifecycle methods. The programmer needs to

import the hook before using it. Hooks can be imported by the following line of code :

- import {useState} from ‘react’;

Below is the list of the most frequently used react hooks :

1. useState hook : used to set and modify the state of a component.

Used to change / update the state of a component. Basically if anything changes in a

react application, its state is said to be changed. If we type anything in a search bar, its

state changes and everytime a state changes, the page reloads.

21

Fig 3.12 : Working of useState hook

2. useEffect hook : used to perform a specific task once an event is triggered.

useEffect hook takes 2 arguments: an anonymous function and an array. The code inside

the anonymous function will be executed once the argument in the array is triggered.

Here we are increasing the value of the count variable once a certain state changes.

Syntax of useEffect hook :

useEffect(() => {

}, [dependency_if_any]

)}

3. useContext hook : used to avoid prop drilling. A context has states which can be

accessed by any component no matter how many parent components are present above

it.

22

Fig 3.13 : Working of useContext hook

4. useRef hook : Introduces the concept of uncontrolled components. Uncontrolled

components are not controlled by react state but by the DOM itself. Refs are used to

interact directly with real DOM(document object model) not the virtual one. Refs don’t

cause re-renders. Suppose we want to use the ‘focus’ property which is present in

javascript but not in JSX. By using Refs, we can get hold of the original DOM node and

use the focus property on it. When a button is clicked and you want an input to become

the focus as a result, this is a very typical use case for useRef. In order to accomplish

this, we would first need to access the input DOM element and then call its focus()

function. To accomplish this with JavaScript, all that is required is to choose the input

using the querySelector or by id/class, after which the focus() function is called.

However, React does not come with a built-in method for accomplishing this.

5. useMemo hook : used to stop the unnecessary re-renders. When the state of a parent

component changes, the child component also has to re-render despite the fact that it’s

state hasn’t been changed. This causes unnecessary memory loss. This behaviour can be

prevented by useMemo hook. Consider a static Welcome Card that will be shown inside

an application. Other states, such a counter, are also included in the application. The

23

Welcome Card is a child of the primary parent App, therefore once the counter is raised,

the static card will be updated as a result of any changes to the app's internal state.

6. useCallback hook : Similar to useMemo. It returns the memoized function while

useMemo returns the memoized value. UseMemo doesn’t work when a prop is passed

from parent to child. In such cases useCallback hook is preferred.

Pass an array of dependencies along with an inline callback. A memoized version of the

callback that only changes if one of the dependencies has changed is what useCallback

returns. This is helpful for sending callbacks to optimised child components that don't

need to render everything because they rely on reference equality.

React hooks lifecycle :

Fig 3.14 : React hooks lifecycle

Mounting, updating, and unmounting are the three phases that make up a React

component's lifetime. Each phase has unique methods in charge of a certain stage in a

24

component's lifetime. Technically speaking, these methods are not intended for functional

components and are only applicable to class-based components.

However, because the Hooks concept was introduced in React, you can now use abstracted

variations of these lifecycle methods when working with functional component state.

Simply put, React Hooks are functions that enable "hooking into" React states and

lifecycle elements from within function components.

Phases of React component lifecycle :

A new component is produced and added to the DOM during the mounting step, which

also marks the start of a component's life. This is frequently referred to as the "initial

render" and can only occur once.

The component updates or re-renders during the updating process. When the state or the

props are updated, this reaction is triggered. Multiple occurrences of this phase are

possible, which is sort of React's purpose.

The unmounting step, in which the component is taken out of the DOM, is the final stage

of a component's lifetime.

For each phase of the life cycle, a class-based component can call a different method (more

on this below). These lifecycle methods, which can only be produced by or included in

classes, are obviously not used by functional components. On the other hand, when

employing React hooks, functional components can benefit from states.

3.4.9 Styling using Material-ui

It is one of the most popular React-ui component frameworks maintained by the react

community. Google's Material Design is implemented through a free and open-source

React component bundle called Material UI. It comes with a wide range of prebuilt

components that are employed right away in production.

Installation : npm install @material-ui/core

We use material-ui by making an object for styling a particular component in a separate

file usually named ‘styles.css’ and the using the styles inside the component as follows :

25

Initialising Class using useStyle hook : const classes = useStyles();

Providing style to a component : <Avatar className={classes.avatar}>

Here ‘avatar’ is an object present in the ‘styles.css’ page

3.5 State Management using React-redux

Redux is one of the most important tools present in react. It is an open-source javascript

library used for storing all the states at a centralised location. It is mainly used for state

management. When there are a large number of states, redux stores all of them at a

centralised location called Redux Store. From there, the ‘actions’ are dispatched to update

the data. Redux provides a simplified and sensible way to manage the states. It works on

the principle of ‘unidirectional data flow’. It helps to scale the application and manage it

more efficiently.

Fig 3.15 : The flow control of redux

The three main components of Redux are :

Redux Store : Stores the current states of all the components. Whenever the data is

needed, we need to access the Store. The reducers then update the data and an action is

dispatched. The updated data is then stored in the Redux Store.

26

Creating a Redux Store :

const store = createStore(reducers)

ReactDOM.render(

<Provider store={store}>

<App />

</Provider>,

document.getElementById('root')

);

Action : Actions are straightforward objects with the typical two properties of type and

payload. The payload property is an optional property that holds some data that is

necessary to complete any given task, whereas the type property is often a text that

specifies the action. Sending information from the application to the Redux store is the

primary purpose of an action.

Reducers : Reducers are pure functions that adjust the application's state in response to

user input. Reducers accept an action and a previous state as input and output a modified

state. Due to the immutability of the state, a reducer always produces a new state that

represents an updated version of the prior state. Basically it is used to perform some action

and update data/state present in the Redux Store.

Fig 3.16 Redux state management

case AUTH:

localStorage.setItem('profile', JSON.stringify({ ...action?.data }));

return { ...state, authData:action?.data };

27

case LOGOUT:

localStorage.clear();

return { ...state, authData: null, loading: false, errors: null };

Here the reducers are updating the state when a user tries to login and logout.

Data flow in a Redux application :

- The flow of data is triggered when a user interacts with a component. The

action creators dispatch an ‘action’ due to this interaction.

- Once an action is dispatched, it is received by the application's root reducer

and distributed to all other reducers. Therefore, based on the dispatched

action, it is the producer's responsibility to decide whether it needs to update

the state.

- This is verified by filtering out the necessary actions using a straightforward

switch statement. Each (smaller) reducer in the application accepts the

dispatched action and returns a newly updated state if the type of the

dispatched action matches.

- It is important to remember that with redux, the state never actually changes.

Instead, the reducer always creates a new state that is an exact duplicate of

the old state but has undergone some changes.

- The component is then notified by the store of the altered state, which causes

it to retrieve it and render the component again.

- The fact that data flow in a React-Redux application is unidirectional, or only

going in one direction, is another crucial finding in this context.

3.6 Routing

A frequently used tool for making custom routes in React is React Router. It allows

switching between multiple pages made by various React components, permits changing

the browser's URL and maintains UI synchronisation with the URL.

28

Installation : npm install react-router-dom

Importing :

import {

BrowserRouter as Router,

Routes,

Route,

Link

} from 'react-router-dom';

Usage : This application has five main routes. Home, Auth, Posts, Search, :id. The exact

paths are as follows :

Fig 3.17 : Working of react router

3.7 Connecting Front-end and Back-end through APIs

Workspace of a typical react application is divided in two folders : Client and Server. This

29

way of developing an application makes the development process clean, easy and the code

is more readable. This is called ‘separation of concerns’. Client side directory’s main

concern is user interface while the server side handles database, authentication and routing.

To connect these two directories, we use APIs. This file is present in the client side inside

the ‘src’ folder (shown in Fig 3.19):

Fig 3.18 : Location of API file

Types of requests :

Get request : To get the data from the database.

Post request : To send data from frontend to the database.

Patch request : To update an existing data / some part of an existing data. The request

body only needs the part which needs to be updated.

Put request : Same functionality as Patch request. The only difference is that the body of

put request needs to have the complete new data and not just the part which needs

updating.

3.8 React Formik

Formik is a third-party library for React forms. Basic form programming and validation

are offered. It is built on controlled components and drastically cuts down on form

30

programming time. Let's use the Formik library to replicate the expenditure form as shown

in Fig 3.20.

First, use the Create React App or Rollup bundler to create a new React application, such

as React-formik-app, and then follow the instructions in the chapter on Creating a React

application.

cd /go/to/workspace npm install formik --save

Fig 3.19 Form creation using react formik

3.9 React Dropzone

npm install --save react-dropzone

Simply enough, the useDropzone hook binds the required handlers to establish a

drag-and-drop zone. To obtain the props needed for drag and drop, use the getRootProps()

function on any element. Use the getInputProps() fn and the returned props on an input> to

get click and keydown behaviour.

31

Fig 3.20 React dropzone using hooks

3.10 The Back-end implementation

Frameworks required : Expressjs and Mongoose

External Packages : dotenv and CORS

- Dotenv is a npm package for loading environment variables without manual

programming.

- CORS or Cross-Origin Resource Sharing in Node. js is a mechanism by

which a front-end client can make requests for resources to an external

back-end server.

-

Backend setup

Initialising Express and setting up bodyparser :

32

const app = express();

dotenv.config();

app.use(bodyParser.json({limit: "30mb", extended: true}));

app.use(bodyParser.urlencoded({limit: "30mb", extended: true}));

Here we are initialising express and assigning it to a variable named ‘app’. Now this app

variable can be used for routing.

Connecting to mongodb atlas :

const PORT = process.env.PORT || 3001;

const app = express();

mongoose.connect(process.env.CONNECTION_URL,{useNewUrlParser:true,useUnified
Topology:true})

.then(()=> app.listen(PORT, ()=> console.log(`server running on ${PORT}`)))

.catch((error)=>console.log(error.message));

Here we are setting our port as port 3001. This means that our client runs on localhost:

3000 while the server runs on localhost: 3001. After these set-ups, we can start our app by

running ‘npm start’ command . The terminal is shown in Fig 3.22 and 3.23

Fig 3.21 : Server running on port 3001

33

Fig 3.22 : Client running on port 3000

3.11 MongoDB and Mongoose

Mongoose is an ODM library for MongoDB and Nodejs. It offers many different kinds of

validation and also manages relationships between data. Some features of MongoDB are :

- Schema-less NoSQL

- Data stored in the form of json objects.

- No fixed structure.

- Fast as it is written in C++.

- Reduces complexity of deployment.

Terminologies

1. Collections : Multiple json documents together are called a collection. Collections are

equivalent to tables in relational databases.

2. Documents : Documents can be compared to records / rows in a relational database.

There is no concept of referencing data like SQL does in MongoDB. Mongo

documents usually combine them in a document.

3. Fields : They are commonly known as properties or attributes. Fields are similar to

columns in a table.

4. Models : Models are higher-order constructors that take a schema and create an

instance of a document equivalent to records in a relational database.

5. Schema Types : SchemaTypes indicate the anticipated data type for specific fields,

whereas Mongoose schemas define the overall form or shape of a document. Example

: String, Number, Boolean.

34

https://mongoosejs.com/docs/models.html

MongoDB Atlas vs MongoDB Compass

Developers made MongoDB atlas so that people could scale and" deploy clusters with just

a few clicks. The MongoDB team also developed and manages MongoDB Atlas, a global

cloud database service. Enjoy the ease of use and automation of a fully managed service on

your favourite cloud along with the flexibility and scalability of a document database. On

the other hand, MongoDB Compass is described as "A GUI for MongoDB". Investigate

your data visually. Ad hoc queries can be run quickly. Utilise all of the CRUD

functionality to interact with your data. View and improve the performance of your

queries.

Example :

const Schema = new mongoose.Schema({

name: {

type: String,

required: true

},

age: Number

});

const Sname = mongoose.model('Sch’', Schema);

In the code above, Sch defines the shape of the document which has two fields, name, and

age. you can define the SchemaType for a field by using an object with a type property like

the one used with the name field.

‘Name’ has two fields. Type denotes the data type while setting ‘required’ field to true

makes it mandatory for the user to enter his name. This is not the same for the ‘age’ field.

The data type for the ‘age’ field is a number but the absence of the ‘required’ field means

that the user can continue without entering his age in the database / prompt.

35

Fig 3.23 : Module import/require workflow

This project has two models : The user model and the post model.

User model : Made for letting the users Register and login. It has four fields : name,

email, password and id. Name, email and password are the required fields while title is not

mandatory.

Name is required as a user might create a post which requires his/her username to be

displayed along with the post.

Email is required as the user may signin again after registering and we need to make sure

that his id is saved in the database.

Password is required for validation.

Title is not a required field as the user may not create a post in the session in which he

logged-in.

3.11.1 Schemas

1. The User Schema

Holding a user collection where a user profile is saved and updated will be a basic strategy.

36

Afterward, each contact document may include owner information. These specifics vary

depending on how the programme views the data and whether it needs to be provided or

filtered. The basic minimum appears to be maintaining a userId for each contact or, if

numerous users share the same contact information, perhaps an array of users. You can

index and provide this userId to the contact collection query after logging in and

identifying the user to retrieve only the necessary contacts as shown in Fig 3.25.

Fig 3.24 User Schema

37

2. The Post Schema

This schema is for the post a user might create. The fields present in this schema are title,

name, message, createdAt, likes, tags.

None of the fields are required but likes and createdAt are ‘default’ fields which means

they will always be present. The like field is an empty array by default while the date is set

to the current date as shown in Fig 3.26.

Fig 3.25 : Post schemas

38

3.11.2 Middleware

Fig 3.26 : Middleware code for authentication

In the request-response cycle of an application, the middleware function in node.js is a

function with complete access for making an object request, receiving an object response,

and moving on to the next middleware function(as shown in Fig 3.27.

3.12 Controllers

The logic for sending data from the backend to be displayed in the frontend is handled by

the controllers. The user requests to perform certain actions through API. The API sends

the request to the backend where the controllers handle the logic to send data to the

frontend. In this website we have two controller files. One to handle the requests related to

a particular post and the other to handle the requests regarding security.

39

The Post Controller

It handles all the requests related to a particular post. The requests include :

Fig 3.27 : Controllers

1. Getting a post :

This function is called when the website is loading and all the available posts have to be

displayed at once. The ‘LIMIT’ variable is set to 8 which means on a single page only 8

posts will be displayed. The remaining posts will be displayed on the next page. This is

achieved through pagination.

40

Fig 3.28 Getting a post

2. Updating a post

Fig 3.29 Updating a Post

This is an asynchronous function which means it will take some time to execute but wont

block other functions’ execution. We are receiving ‘_id’ from the database and storing it

in the ‘id’ variable. If the status is 404, we are sending an error message otherwise we are

updating the post by finding it by its id inside the database as shown in Fig 3.30.

41

3. Creating a post

Fig 3.30 Creating a Post

This code defines an asynchronous function createPost that handles the creation of a new

post. It expects a request (req) and a response (res) object as parameters.It extracts the

userId, description, and picturePath from the request body. It retrieves the user information

from the database using the User.findById(userId)method. It creates a new Post object

with the extracted and retrieved data, including the user's name, location, and profile

picture. The new post is saved to the database using newPost.save(). Finally, it fetches all

posts from the database using Post.find() and sends the resulting posts as a JSON response

with status 201 (Created). If any errors occur, it sends a JSON response with status 409

(Conflict) and an error message.

42

4. Deleting a post

export const deletePost = async (req, res) => {

const { id } = req.params;

if(!mongoose.Types.ObjectId.isValid(id)) return res.status(404).send('No post found');

await PostMessage.findByIdAndRemove(id);

res.json({ message: 'Post deleted successfully'});

}

The process is the same as updating the post. We are simply extracting the id from the

request and then finding it inside the database and deleting it. The method used is

‘findbyIdAndRemove’ which is a standard function provided by mongoose.

The User Controller

1. Getting User and user friends

43

Fig 3.31 Getting User and user friends

Fig 3.32 shows that This code snippet exports two controller functions: getUser and

getUserFriends. getUser retrieves a user's data by their id from the User model using

User.findById(id). It then sends the user data as a JSON response with a status code of 200

(success) or 404 (not found) if an error occurs. getUserFriends follows a similar pattern as

getUser. It retrieves the user's data and then fetches the data of their friends based on the

user.friends array. The code uses Promise.all to perform parallel database queries to fetch

each friend's data. The retrieved friend data is then formatted to include specific

properties. Finally, the formatted friend data is sent as a JSON response with a status code

of 200 or 404 if an error occurs. These controller functions assume the presence of a User

model, which is imported from the "../models/User.js" file. The code demonstrates how to

use the model's findById method to retrieve user data and manipulate the friend data

before sending the responses.

2. Updating and removing user friends

Fig 3.32 Updating and removing user friends

44

This code is an example of an addRemoveFriend controller in JavaScript. It handles

adding or removing friends for a given user based on the provided id and friendId

parameters. The code performs the following steps: Retrieves the user and friend objects

from the database using their respective IDs. Checks if the friend is already in the user's

friend list. If so, it removes the friend from both the user's and friend's friend list arrays.

Otherwise, it adds the friend to both arrays. Saves the updated user and friend objects back

to the database. Retrieves the updated friend list for the user, including only the necessary

fields. Sends a JSON response containing the formatted friend list or an error message if

an error occurs.

The Authentication Controller

First we are finding a specific user by his email address. If the user doesn't exist, we send

an error message along with 404 status. Then we check if the password entered by the user

matches with the password saved in the database. If the password matches, we send a

token for the user to remain signed in for some specific amount of time. If the credentials

are wrong, we send an error message with the 400 status code. This shows in Fig 3.34.

Fig 3.33 Registering User

45

This code(Fig 3.35) is an implementation of a login functionality in a JavaScript

controller. Here's an explanation in 5 lines The code receives a request (req) containing the

user's email and password from the frontend. It searches for a user in the database

(User.findOne({ email: email })) based on the provided email. If the user is not found, it

returns a 400 status with a JSON response indicating that the user does not exist. If the

user is found, it compares the provided password with the stored password using bcrypt's

compare method.

If the passwords match, a JSON Web Token (JWT) is generated (jwt.sign({ id: user._id },

process.env.JWT_SECRET)), and the token, along with the user object (with the password

field removed), is returned as a JSON response with a 200 status. Otherwise, it returns a

400 status indicating invalid credentials or a 500 status in case of any server error.

Fig 3.34 Logging user

46

3.13 Overall flow of data in the web application

Fig 3.35 : Data flow in a typical web application

The flow of a web application is characterised by the systematic organisation of web

pages, page data, page actions, and mappings to business logic and the interconnection of

these components. The web diagram tools provide you with a visual way to create and

manage the flow of your web application as shown in Fig 3.36.

3.14 Three-tier architecture

Fig 3.36 : The web dev architecture(three-tier)

47

Presentation tier : The user interface and communication layer of the application, or

presentation tier, is where end users engage with the software. Information display to and

data collection from the user are its primary goals. This top-level tier can function, for

instance, on a desktop application, a web browser, or a graphical user interface (GUI).

Tiers of web presentation are often created with HTML, CSS, and JavaScript. Depending

on the platform, a variety of languages can be used to create apps as shown in Fig 3.37.

Application tier : This layer is usually developed using languages such as PHP, Ruby,

Java or Pearl. The core of the application is the application tier, sometimes referred to as

the logic tier or middle tier. In this tier, data gathered in the presentation tier is processed

using business logic, or a particular set of business rules, sometimes in comparison to data

gathered in the data tier. Data in the data tier may also be added, removed, or modified by

the application tier.

Data tier : The application manages and stores the information it processes. This could be

a NoSQL database server like Cassandra, CouchDB, or MongoDB, or a relational database

management system like PostgreSQL, MySQL, MariaDB, Microsoft SQL Server.

Benefits of three-tier architecture :

1. Faster development as multiple developers can work on different tiers.

2. Improved Scalability for the same reasons mentioned above.

3. Improved Reliability

4. Improved Security.

48

CHAPTER 4 : RESULT AND ANALYSIS

4.1 Login and Registration

Fig 4.1 Log in page

If the user is not already registered in the server they can click on the “Don't have an

account? Sign Up here.” link and they will then be directed to the registration page. The

user can then enter their details there along with the functionality to upload the profile

picture.

49

Fig 4.2 Registration Page.

When the user has filled in all the information, they can click on the registration page

which will send the data in JSON format along with the JWT authentication to the

MongoDB running in the backend server. The user will then be redirected to the login

page where they can login using the registered email address and password.

Fig 4.3 User info in the MongoDB database

50

So the user info they just entered is now registered in the database. Every user gets a

unique hash id along with their password which is being encrypted by JWT.

4.2 Home Page

Fig 4.4 Clean looking homepage in Light Mode

The homepage contains all the information with all the widgets. The user can view the user

information on the left side. Ads can be seen on the right side along with the friend list

shown below. The user can write posts. They can see and like others' posts as well. They

can also add friends using the add friend button. It is a clean looking UI with the option to

change to dark mode as well using the button shown in Fig 4.5. The user can log out as

well by clicking on the drop down on the navbar as shown in Fig 4.6. The dark mode UI is

shown in Fig 4.7.

Fig 4.5 Button to change to Dark Mode.

51

Fig 4.6 Logout option

There is the logout option as shown in Fig 4.6. This will deauthorize the users log in id

from the backend server and change the value to null. logOut method takes no arguments

and clears the currentUser data stored locally automatically. Create this function in the

UserLogin component and call it in the onClick attribute of the logout button:

Fig 4.7 Homepage in Dark mode

The dark mode looks clean with contrasting colours to help viewers to distinguish the text

and everything.It is neat little featured added as most of the modern applications nowadays

has this feature

52

4.3 Creating and Searching a post

For creating a post, the user needs to enter many fields like title, tags, post message, image

in jpg format. Along with these fields, the email id of the user and time of creation of the

post is also entered in the database. The posts shown in Fig 4.8 and Fig 4.9 will be

registered in the mongoDb database as shown in Fig 4.10.

Fig 4.8 Post creation design

The Post button sends a request to the database to save the new post and the user

credentials through the API. The clear button will clear all the fields at once.

Fig 4.9 Post on homepage

53

Fig 4.10 Post logged in the MongoDb database

We can see posts in the form of an array of objects with different fields like ‘_id’,

description, firstname, last name, location, image etc.

Fig 4.11 The post’s metadata on the console

Above is the console view of the posts which will appear on the homepage once the

website loads. We can see posts in the form of an array of objects with different fields like

‘_id’, created at, description, picture path etc.

A particular post is a separate component called ‘Post’. Many of these components

54

combine to make a component for all the posts of a single page called ‘Posts’. A single

post has all the fields that the user enters manually like title, username, tags, message and

the image. Apart from the manually entered fields, it has some automatically generated

fields like the time of post creation and the email address of the user creating the post.

It also has a couple of buttons namely the like button and the delete button. The like button

is available to all the logged in users while the delete button is available only to the creator

of the post.

4.4 Performance analysis

Performed a linter check which makes sure that the program is properly formatted and

follows standard code guidelines. There were no linter errors found in this project.

4.5 Final list of dependencies

Fig 4.12 : The package.json file

55

The package.json file stores the list of all the dependencies along with their version in json

format which is a list of key-value pairs.

4.6 Mobile View

The entire social media application is completely responsive on any device. The view from

an Iphone device is shown in Fig 4.12

Fig 4.13 The app in mobile view

56

CHAPTER 4 : CONCLUSION

5.1 Conclusions

The main aim of the training was to be able to understand and implement the concepts of

Reactjs, MongoDB, ExpressJs and to be able to create a web application which could

perform CRUD operations and can be tested using postman using the three layered

architecture.

In this undergraduate project, the MERN stack and its features are examined and used to

create a complete social media web application. The history of JavaScript, the foundation

of the MERN stack, as well as the underlying theories, key ideas, and key methods of each

individual technology have all been thoroughly covered in this essay. With the aid of a

NoSQL database engine, the author has shown the benefits of those technologies and how

they powerfully integrate to create an application with a connected backend and frontend.

Following that, specific instructions for putting the social media application into practice

were provided, demonstrating the viability of putting the aforementioned theories to use in

solving a real-world issue. All things considered, the project's outcome can be deemed

successful because all goals have been met. Given the project's time constraints, the

application that was created satisfies all essential criteria for a social platform.

Through this project, I was able to achieve these goals. Doing this project has taught me

that a developer should not only care about code but also keep in mind the users can make

their experience better. The interface should be constant and smooth to allow the users to

navigate through the website easier. Apart from that, writing clean and readable code is

also important so that the other developers find it easier to understand and find bugs if

there are any. We should try to write code which can be reused in future. Scope of

enhancement is always there and we should try to learn from the feedback received.

57

5.2 Future Work

1. Through a graphical web user interface, users may interact with each other through

chats while taking use of a secure login and authorisation approach.

2. Users can share their own own stories which can stay active for 24 hours

3. Adding the option of commenting on a particular post.

4. Adding ‘related posts’ section. This section will have all the posts related to the

original post by location. To identify the location we will use either the title of the post

or the tags provided by the user. Location refers to the country / continent.

5. Providing a separate and better ‘compose’ page.

6. The ability for users to add videos in posts.

7. The integration of NLP to group posts with similar hashtags.

8. The ability to integrate graph algorithms for friend recommendation systems similar to

what Facebook has achieved.

9. The functionality of having an in app feature to take photos and videos with filters.

10. Providing third-party authentication.

58

References

1. Sourabh Mahadev Malewade, Archana Ekbote “Performance Optimization using

MERN Stack on Web applications”, publisher: IJRASET, vol. 10, doi : 6.06.2021, pp.

2278-0181.

2. Yogesh Baiskar, Priyas Paulzagade, Krutik Koradia, Pramod Ingole, Dhiraj Shirbhate

“MERN : A Full stack development”,publisher: IJRASET, vol. 1, doi :

https://doi.org/10.22214/ijraset.2022.39982

3. Aarti Singh, Ananya Anikesh “Web development and Computer Science and

Engineering”, publisher : IJRASET, Vol 1, doi : https://doi.org/10.53555/cse.v2i4.612

4. Prakarsh Kaushik, Shashikant Suman, Basu Dev Shivahare, Vimal Bibhu “Web

development and performance comparison of web development technologies in

Nodejs and python”, publisher : ICTAI, doi : 10.1109/ictai53825.2021.9673464

5. Pratiksha D Dutonde “Website development technologies : A review”, publisher:

IJRASET, vol. 10(1), doi : 10.22214/ijraset.2022.39839, pp. 359-366.

6. Stonebraker, Michael. "SQL databases v. NoSQL databases." Communications of the

ACM 53.4 (2010): 10-11.

7. Aboutorabiª, S.H., Rezapour, M., Moradi, M. and Ghadiri, N., 2015, August.

Performance evaluation of SQL and MongoDB databases for big e-commerce data. In

2015 International Symposium on Computer Science and Software Engineering

(CSSE) (pp. 1-7). IEEE.

8. Chodorow, C. "Introduction to mongoDB." Free and Open Source Software

Developers European Meeting (FOSDEM). 2010. [18] Tilkov, Stefan, and Steve

Vinoski. "Node. js: Using JavaScript to build high-performance network programs."

IEEE Internet Computing 14.6 (2010): 80-83.

9. Boicea, A., Radulescu, F., Agapin, L. I. (2012, September). MongoDB vs

Oracle--database comparison. In 2012 third international conference on emerging

intelligent data and web technologies (pp. 330-335). IEEE.

10. Office for National Statistics, Internet users in the UK: 2016. Retrieved September

26, 2017, from https:// www.ons.gov.uk/

businessindustryandtrade/itandinternetindustry/bulletins/internetus ers/ 2016.

11. Liang, L., Zhu, L., Shang, W., Feng, D., Xiao, Z. (2017). Express supervision system

59

https://doi.org/10.22214/ijraset.2022.39982
https://doi.org/10.53555/cse.v2i4.612
https://www.sciencegate.app/app/redirect#aHR0cHM6Ly9keC5kb2kub3JnLzEwLjExMDkvaWN0YWk1MzgyNS4yMDIxLjk2NzM0NjQ=
https://www.sciencegate.app/app/redirect#aHR0cHM6Ly9keC5kb2kub3JnLzEwLjIyMjE0L2lqcmFzZXQuMjAyMi4zOTgzOQ==

based on NodeJS and MongoDB.

12. M. R. Solanki, A. Dongaonkar, A Journey of human comfort: web1.0 to web 4.0,

International Journal of Research and Scientific Innovation (IJRSI), Volume III, Issue

IX, pp. 75-78, 2016

13. Javeed, A. (2019). Performance Optimization Techniques for ReactJS. 2019

14. J. M. Spool, Content and design are inseparable work partners, 2014. Retrieved

September 29, 2017, fromhttps://articles.uie.com/ content and design

15. Bozikovic, H., Stula, M. (2018). Web design Past, present and future. 2018 41st

International Convention on Information and Communication Technology,

Electronics and Microelectronics (MIPRO).

16. Carter, B. (2014). HTML Architecture, a Novel Development System (HANDS): An

Approach for Web Development. 2014

17. Sterling, A. (2019). NodeJS and Angular Tools for JSON-LD. 2019 IEEE 13th

18. Laksono, D. (2018). Testing Spatial Data Deliverance in SQL and NoSQL Database

Using NodeJS Full Stack Web App. 2018

19. Patil, M. M., Hanni, A., Tejeshwar, C. H., Patil, P. (2017). A qualitative analysis of

the performance of MongoDB vs MySQL database based on insertion and retrieval

operations using a web/android application to explore load balancing Sharding in

MongoDB and its advantage.

60

16%
SIMILARITY INDEX

15%
INTERNET SOURCES

3%
PUBLICATIONS

%
STUDENT PAPERS

1 5%

2 3%

3 1%

4 1%

5 1%

6 1%

7 <1%

8 <1%

191378
ORIGINALITY REPORT

PRIMARY SOURCES

www.ijert.org
Internet Source

www.theseus.fi
Internet Source

www.freecodecamp.org
Internet Source

www.researchgate.net
Internet Source

www.ibm.com
Internet Source

dev.to
Internet Source

stackoverflow.com
Internet Source

P. Hemalatha, M. Dhavavarshini, Dhivya. N.
"Development of Flexible, Sharing and Leasing
a Car Using MERN Stack", 2022 Second
International Conference on Advanced
Technologies in Intelligent Control,

9 <1%

10 <1%

11 <1%

12 <1%

13 <1%

14 <1%

15 <1%

16 <1%

17 <1%

Environment, Computing & Communication
Engineering (ICATIECE), 2022
Publication

www.geeksforgeeks.org
Internet Source

glisc.info
Internet Source

Kuldeep Vayadande, Rahebar Shaikh, Suraj
Rothe, Sangam Patil, Tanuj Baware, Sameer
Naik. "Blockchain-Based Land Record
System", ITM Web of Conferences, 2022
Publication

ten-tools.com
Internet Source

bestawards.marketing
Internet Source

trap.ncirl.ie
Internet Source

auth0.com
Internet Source

www.autoscripts.net
Internet Source

Basu Kumar Swamy, R Vanitha, Deepak
Kumar. "Attendance tracking using Wi-Fi",
2017 International Conference on

18 <1%

19 <1%

20 <1%

21 <1%

22 <1%

23 <1%

24 <1%

Computation of Power, Energy Information
and Commuincation (ICCPEIC), 2017
Publication

Nikit Periwal, Niranjan Mahesh, Namrita Kaur,
Nirgund Manavendra P Jayaram, Asha Rani K
P, Gowrishankar S. "News Curation, Abstract,
and Recommender App using Deep Learning
Attention Models", 2022 International
Conference on Edge Computing and
Applications (ICECAA), 2022
Publication

Elad Elrom. "React and Libraries", Springer
Science and Business Media LLC, 2021
Publication

Vasan Subramanian. "Pro MERN Stack",
Springer Science and Business Media LLC,
2017
Publication

itnext.io
Internet Source

smnafi.medium.com
Internet Source

sigarra.up.pt
Internet Source

docs.mipro-proceedings.com
Internet Source

25 <1%

26 <1%

27 <1%

28 <1%

29 <1%

30 <1%

31 <1%

32 <1%

33 <1%

Exclude quotes On Exclude matches Off

localdev.w3schools.com
Internet Source

www.digitalocean.com
Internet Source

Nabendu Biswas. "MERN Projects for
Beginners", Springer Science and Business
Media LLC, 2021
Publication

imanovn.files.wordpress.com
Internet Source

steamcommunity.com
Internet Source

02dev.com
Internet Source

Chris Minnick. "Beginning React JS
Foundations Building User Interfaces with
ReactJS", Wiley, 2022
Publication

agit.ai
Internet Source

pandorafms.com
Internet Source

