
ZOPSTORE WEB APP BUILT USING

THREE LAYERED ARCHITECTURE

Project report submitted in partial fulfillment of the

requirement for the degree of Bachelor of Technology

in

Computer Science and Engineering

By

Rishabh Bharota (191237)

Under the supervision of

Dr. Diksha Hooda

to

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology

Waknaghat, Solan-173234, Himachal Pradesh

i

Certificate

I hereby declare that the work presented in this report entitled “Zopstore Web

App” in partial fulfillment of the requirements for the award of the degree of

Bachelor of Technology in Computer Science and Engineering/Information

Technology submitted in the department of Computer Science & Engineering and

Information Technology, Jaypee University of Information Technology

Waknaghat is an authentic record of my own work carried out over a period from

January 2023 to May 2023 under the supervision of Dr. Diksha Hooda (Assistant

Professor (SG), Department of CSE, Jaypee University of Information

Technology, Waknaghat).

Rishabh Bharota

191237

This is to certify that the above statement made by the candidate is true to the best

of my knowledge.

Dr. Diksha Hooda

Assistant Professor (SG)

Computer Science & Engineering

Mithali R. Shetty

Senior Lead Engineer

Zopsmart Technology

Dated: 11-05-2023

ii

iii

Acknowledgement

Firstly, I express my heartiest thanks and gratefulness to almighty God for His

divine blessing in making us possible to complete the project work successfully.

I am really grateful and wish my profound indebtedness to Supervisor Dr. Diksha

Hooda, Assistant Professor (SG), Department of CSE Jaypee University of

Information Technology, Wakhnaghat. It is their sincerity that prompted me

throughout the project to do hard work using industry-adopted technologies. Her

endless patience, scholarly guidance, continual encouragement, constant and

energetic supervision, constructive criticism, valuable advice, reading many

inferior drafts, and correcting them at all stages have made it possible to complete

this project.

I would like to express my heartiest gratitude to Dr. Diksha Hooda, Assistant

Professor (SG), Department of CSE, for her kind help to finish my project.

I would also generously welcome each one of those individuals who have helped

me straightforwardly or in a roundabout way in making this project a win. In this

unique situation, I might want to thank the various staff individuals, both

educating and non-instructing, which have developed their convenient help and

facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and patients of

my parents.

Rishabh Bharota

191237

iv

Table of Contents

Certificate i

Plagiarism Certificate ii

Acknowledgement iii

List Of Abbreviation vii

List Of Figures viii

List Of Tables ix

Abstract x

Chapter 1 Introduction 1

 1.1 Company Profile 1

 1.2 Introduction 1

 1.3 Problem Statement 1

 1.4 Objectives 1

 1.5 Motivation 2

 1.6 Methodology 3

 1.6.1 Software Requirements 4

 1.6.2 Proposed Approach 13

 1.6.3 Database 16

 1.7 Organization Of Report 16

Chapter 2 Literature Survey 18

 2.1 Git and Github 18

 2.2 REST 21

 2.2.1 Introduction 21

 2.2.2 Architecture Of REST 21

 2.2.3 Advantages of REST 22

v

 2.2.4 REST Implementation 22

 2.3 Event Driven Architecture 23

 2.3.1 Important Event Driven Architecture Concepts 24

 2.3.2 Event Driven Architecture Advantages 25

 2.4 Monitoring 26

 2.4.1 Monitoring a Web Endpoint or Service Is Important 26

 2.4.2 Monitoring a Web Endpoint or Service: Best Practises 27

 2.4.3 Conclusion 28

 2.5 Testing 28

 2.6 Continuous Integration / Continuous Development 31

 2.7 Database Migration 33

Chapter 3 System Development 36

 3.1 Web Project Development 36

 3.2 Designing the API 37

 3.3 Creating a Web Server Using Golang 39

 3.4 Database Design 41

 3.5 Testing the Server 43

 3.6 Deploying the Web Application using Kubernetes and Docker 44

 3.6.1 Dockerize the application 44

 3.6.2 Push the image to a registry 46

 3.6.3 Deploy the application to Kubernetes 46

Chapter 4 Performance Analysis 48

 4.1 Project Testing Strategy 48

 4.1.1 Unit Testing 48

 4.1.2 Integration Testing 49

 4.1.3 End to End Testing 50

vi

 4.2 Unit Testing Results 50

 4.3 End to End Testing Results 51

 4.4 Checking Linters 55

Chapter 5 Conclusions 57

 5.1 Conclusion 57

 5.2 Future Scope 57

References 58

vii

List of Abbreviations

Abbr. Full Form

IoT Internet of Things

CRUD Create Read Update Delete

API Application Programming Interface

SQL Structured Query Language

OAS OpenAPI Specification

HTTP Hypertext Transfer Protocol

RDBMS Relational Database Management System

REST Representational State Transfer

JSON JavaScript Object Notation

SOAP Simple Object Access Protocol

XML eXtensible Markup Language

RPC Remote Procedure Call

FaaS Function as a Service

DVCS Distributed Version Control System

EDA Event Driven Architecture

CI/CD Continuous Integration/Continuous Deployment

AWS Amazon Web Services

GCP Google Cloud Platform

HBS Handler Business Store

CDN Content Delivery Networks

viii

List of Figures

S.No. Description Page Number

Fig 1.1 Ubuntu Icon 5

Fig 1.2 Golang Icon 5

Fig 1.3 Prometheus Architecture 9

Fig 1.4 Docker Architecture 11

Fig 1.5 Kubernetes Architecture 12

Fig 2.1 Git Workflow 19

Fig 2.2 Event Driven Architecture 23

Fig 2.3 CI/CD Pipeline 31

Fig 3.1 Swagger - API Documentation 38

Fig 3.2 Database Structure 43

Fig 3.3 Dockerfile 45

Fig 3.4 Docker Containers 46

Fig 3.5 Command to push image to the Registry 46

Fig 3.6 Deployment File 47

Fig 4.1 Testing Coverage 50

Fig 4.2 Status code 200 response 51

Fig 4.3 Status code 00 response 51

Fig 4.4 Status code 401, 403 and 404 responses 52

Fig 4.5 Postman response for get all products 53

Fig 4.6 Postman response for adding a product 54

Fig 4.7 Postman error response 55

ix

List of Tables

S.No Description Of Table Page Number

Table 3.1 Product table 41

Table 3.2 Brand table 42

Table 3.3 Admin table 42

x

Abstract

A web application may be made rather easily, but testing, structuring, cleaning,

and maintaining the code is a barrier. To address this, we use the Go language and

adhere to the Three Layered Architecture.

The three layers—handler, service, and datastore—are separate from one another.

After receiving the request body, the handler layer parses it for any necessary

information. The response is then written to the response writer after the service

layer, where the program's entire logic is defined, has been called. Additionally,

this layer converses with the datastore layer. It invokes the datastore layer after

taking what it requires from the handler layer. All of the data is kept in the

datastore layer. Any data storage device can be used. The only layer that interacts

with the datastore is the use case layer. This is how we test each layer separately

to make sure they don't affect one another.

1

CHAPTER 1

INTRODUCTION

1.1 Company Profile

Zopsmart is a software solution firm that offers you all the resources you need to

launch an online store. With the support of its product line, ZopSmart can help

you create and manage the ideal company. It offers a variety of goods, including

Smart Store Eazy and Smart Payment Gateway, among others. Customers of

Zopsmart, which develops cutting-edge technology for the retail industry, range

from independent furniture stores to large multinational chains. The company's

solutions include an e-commerce platform, digital marketing, mobile commerce,

automated logistics systems, management platforms, order management

platforms, and internet of things (IoT) devices. It has its own framework to work

on and offers software solutions to some of the best companies.

1.2 Introduction
It is a straightforward web application that uses the three-layered design to

execute CRUD functions. Every layer of a programme has its own unit test.

Additionally, there is a middleware implementation that verifies the http request

before passing it to the server.

1.3 Problem Statement

To create testable, structured, clean and maintainable web applications by using

industrial best

practices.

1.4 Objectives

An application or system can benefit from using a web API in an n-tier design in a

number of ways. The following are some purposes or aims of using web APIs in

an n-tier architecture:

2

● Modularity: Web APIs provide a modular approach to application

development by separating the presentation layer from the business logic

and data access layers. Greater flexibility, scalability, and maintainability

of the application are made possible by this separation of concerns.

● Decoupling: By enabling various application layers to function

independently of one another, Web APIs offer a decoupled approach to

application development. As a result, layer dependencies are diminished,

making maintenance, upgrades, and modifications simpler.

● Reusability: Web APIs can be utilized in a variety of applications and

systems, increasing code reuse and cutting down on development costs

and time.

● Scalability: Web APIs can be made to be more performant and better able

to handle growing user demand and traffic. This is especially crucial for

systems with heavy traffic or intricate data requirements.

● Security: Web APIs can be secured with various authentication and

authorization procedures, enabling secure access to data and ensuring data

privacy and integrity.

● Web APIs can offer compatibility between many platforms, languages,

and systems, enabling the seamless integration of applications and

systems.

● Standardization: Web APIs can follow established protocols and

standards, fostering interoperability and simplifying system integration.

1.5 Motivation

To apply industrial best practices and create a fast, scalable and secure web

application.

3

1.6 Methodology

There are various phases involved in developing a web API using a 3-tier

architecture, a MySQL database, Swagger documentation, Postman collection,

and monitoring using Grafana and Prometheus. The steps in the procedure are as

follows:

● Design the API: Define the API by specifying the HTTP methods, input

and output formats, API endpoints, and authentication procedures. The

OpenAPI Specification (OAS), a specification for creating APIs, is often

used for this.

● Create the backend: Build the backend utilizing a web framework like

Node.js or ASP.NET Core, create the backend application. Three layers

will make up the backend application: a presentation layer, a business

logic layer, and a data access layer. The business logic layer will handle

the business logic, the data access layer will communicate with the

MySQL database, and the presentation layer will display the API

endpoints.

● Construct a MySQL database: Design the tables and relationships needed

for the application, then create the MySQL database.

● Implement Swagger documentation: Use Swagger UI to automatically

produce the API documentation from the OAS specification as you

implement Swagger documentation. Each API endpoint's description,

input criteria, and output format will be included in the documentation.

● Create Postman collection: Develop a Postman collection that can be used

for testing and debugging the API. Each API endpoint, HTTP method,

input parameter, and anticipated outcome should be included in the

collection.

● Activate Grafana and Prometheus monitoring: Configure Grafana and

Prometheus to track the usage, performance, and error rates of the API.

4

The metrics gathered by Prometheus can be shown on a dashboard using

Grafana.

● Test the API: Use the Postman collection to test the API and make sure

that all of the endpoints are functioning as they should.

In conclusion, there are a number of processes involved in developing a web API

utilizing a 3-tier architecture and a MySQL database, as well as creating Swagger

documentation, a Postman collection, and monitoring with Grafana and

Prometheus. These actions include designing the API, building the backend,

putting MySQL in place, putting Swagger documentation in place, making a

Postman collection, putting Grafana and Prometheus monitoring in place, testing

the API, and putting it in a live environment.

1.6.1 Software Requirements

To build the web API that should be extensible, robust we require a fast server

side language, an API platform for testing the API, an API monitoring tool, a

database and a tool for the API deployment. For this project we will be using:

Ubuntu

Based on the Debian distribution, the popular open-source Linux operating

system Ubuntu was created. Here are some of Ubuntu's main attributes and

features:

1. User-friendly: With a graphical user interface that is accessible to both

novice and experienced users, Ubuntu is made to be simple to use and

user-friendly.

2. Customizable: With a large selection of themes, icons, and other

customization choices available, Ubuntu may be tailored and configured to

meet individual preferences and needs.

5

3. Secure: Security features like firewalls, encryption, and secure booting are

all integrated into Ubuntu, which is renowned for its robust security

measures.

Fig. 1.1 Ubuntu Icon

Overall, Ubuntu is a flexible and configurable operating system that may be used

for a variety of applications, including personal computers, servers, and cloud

computing.

Golang(Server Side Language)

Google created the open-source programming language Go, sometimes referred to

as Golang, in 2007. It was developed to fill the demand for an effective, simple-

to-write programming language that can manage big software projects.

Fig. 1.2 Golang Icon

Golang's essential characteristics include:

6

1. Strongly typed: Golang is a strongly typed language, which necessitates

the explicit declaration of variable types. As opposed to catching problems

at runtime, this aids with compilation.

2. Quick performance: Golang is a compiled language that is speed-

optimized, making it the best choice for creating high-performance

applications.

3. Support for concurrency: Golang comes with built-in concurrency support,

enabling programmers to create effective concurrent code without the use

of additional libraries.

4. Garbage collection: The garbage collector in Golang makes it simpler for

programmers to build memory-safe code by automatically managing

memory allocation and deallocation.

5. Cross-platform support: Golang is perfect for creating cross-platform

applications because it supports a wide range of platforms, including

Windows, macOS, Linux, and numerous mobile operating systems.

Golang is used for a variety of purposes, such as:

1. Web development: Golang is well suited for creating web apps and APIs

because it comes with built-in HTTP support.

2. Distributed systems: Golang is a great choice for creating distributed

systems and microservices since it supports concurrency and low-level

networking.

3. Network programming: Golang is a great option for creating network

applications like servers and proxies since it supports networking.

4. System programming: Golang's low-level features make it ideal for

creating system-level programmes like file systems, operating systems,

and device drivers.

7

5. Data processing: Golang is a great option for developing data processing

applications, such as big data and machine learning, because it supports

concurrency and has effective memory management.

Golang is a strong programming language that can be used to create a variety of

applications, from system programming to web development. It is becoming a

more and more common option for contemporary software development because

of its performance, concurrency support, and cross-platform features.

Postman

Developers frequently use Postman as an API development tool to create, test,

and document APIs. Since its initial release in 2012, it has grown to be a popular

tool for API development.

Among Postman's most important attributes are:

1. Postman enables API testing by letting developers send queries and

receive answers. The GET, POST, PUT, DELETE, and other request types

are supported.

2. Automated testing: Postman enables programmers to use scripts to

automate API testing. This can reduce testing time and provide consistent

API testing.

3. Collaboration: Postman enables developers to collaborate with team

members and exchange APIs. It offers team management, documentation,

and version control capabilities.

4. Mock servers: Postman enables programmers to build mock servers that

mimic API responses. Without having to rely on outside services, this is

helpful for testing APIs.

5. API documentation can be created and published using Postman by

developers. This can aid with the usage of the API for other developers.

8

6. Collection runner: Postman makes it simpler to test and debug APIs by

enabling developers to launch a group of queries with a single click.

All things considered, Postman is a strong tool for API development that saves

developers time and raises the caliber of their APIs. It is a preferred option for

developers all over the world because of its features for testing, collaboration,

documentation, and automation.

Prometheus

In 2012, SoundCloud created Prometheus, an open-source monitoring and alerting

platform. In addition to offering robust query and alerting features, it is made to

gather and store time-series data. Prometheus has a number of important

elements, including:

1. Data Collection: Prometheus is made to gather time-series data from a

range of sources, such as HTTP endpoints, application metrics, and system

metrics.

2. Data storing: Prometheus saves time-series data in a tailored database that

is fast for writes and queries.

3. Querying: Users can run sophisticated queries and aggregations on time-

series data using Prometheus' robust query language, PromQL.

4. Alerting: Prometheus offers a versatile and strong alerting system that

enables users to create alerts based on unique criteria and thresholds.

5. Exporters: Prometheus includes a robust exporter ecosystem, which

consists of plugins that let users gather metrics from a range of sources,

including databases, web servers, and third-party services.

6. Visualization: Prometheus may be connected with well-liked visualization

programmes like Grafana to deliver detailed time-series data

visualizations.

9

Fig. 1.3 Prometheus Architecture

Organizations of all sizes use Prometheus to keep an eye on their systems and

programmes. It works particularly well in situations that are cloud native and may

be used to keep an eye on containerized applications that are operating in

Kubernetes clusters. Prometheus is a crucial tool for preserving the dependability

and availability of contemporary systems thanks to its strong querying and

alerting capabilities.

MySQL

MySQL is a relational database management system (RDBMS) that is open-

source and was originally made available in 1995. As the backbone of numerous

web applications, content management systems, and other software programmes,

it is one of the most widely used databases in use today.

Some of MySQL's important characteristics include:

10

1. Relational database: MySQL is a relational database, which implies that

relationships can be made between tables and that data is kept in tables

with columns and rows.

2. Scalability: MySQL is made to be extremely scalable, enabling it to

handle significant data loads and traffic volumes.

3. Cross-platform compatibility: MySQL is a flexible option for developers

because it is available for a variety of operating systems, including

Windows, Linux, and macOS.

4. High availability: MySQL offers capabilities like replication and

clustering, which can increase database availability and decrease

downtime.

5. Security: MySQL has several security features, such as support for

encryption, encrypted connections, and user authentication.

6. Support for different programming languages: MySQL is a well-liked

option for online applications because it can be accessed from several

languages, including PHP, Java, and Python.

In conclusion, MySQL is a strong and adaptable database management system

that is suitable for a variety of applications. It is a well-liked option among

developers worldwide due to its scalability, cross-platform compatibility, high

availability, security features, and support for numerous programming languages.

Docker

Developers can put their apps and dependencies into containers using the open-

source Docker framework. It is simple to deploy apps across many environments,

including development, testing, and production, thanks to containers' portability

and minimal weight.

Among Docker's most important attributes are:

11

1. Containerization: Using Docker, developers may put their applications and

dependencies inside of portable, self-contained environments called

containers.

2. Portability: Docker containers are portable and lightweight, enabling the

deployment of programmes across many settings.

3. Consistency: Docker offers a straightforward and reliable method to

package and deploy apps, ensuring that they function identically in various

contexts.

4. Scalability: By running several containers on the same host or across

multiple hosts, Docker makes it simple to scale applications up or down.

5. Security: A number of security measures are offered by Docker, including

support for encryption, secure connections, and user authentication.

Fig. 1.4 Docker Architecture

Overall, Docker is a strong tool that is frequently utilized in the deployment and

development of contemporary software. It is a well-liked option among

developers worldwide because of its containerization, portability, consistency,

scalability, and security capabilities.

Kubernetes

12

An open-source platform called Kubernetes, commonly referred to as K8s,

automates the deployment, scaling, and management of containerized

applications. The Cloud Native Computing Foundation (CNCF) now maintains it

after Google initially built it.

By offering features like these, Kubernetes offers a mechanism to manage and

coordinate containerized workloads at scale.

1. Automatic scaling: Depending on the workload, Kubernetes can

automatically increase or decrease the number of container replicas.

2. Self-healing: Kubernetes can automatically identify and swap out broken

containers, maintaining the application's high availability.

3. Service discovery and load balancing: Kubernetes gives containers a

mechanism to find and connect to one another and can distribute traffic

among a number of containers.

4. Rolling updates and rollbacks: Kubernetes has the ability to do rolling

updates and rollbacks of containerized applications, guaranteeing zero

downtime and lowering the risk of failure.

5. Configuration management: Kubernetes offers a method for controlling

how application configurations and secrets are updated and stored

securely.

Fig. 1.5 Kubernetes Architecture

Overall, Kubernetes is a potent platform that is frequently employed in the

deployment and development of contemporary applications. It is a well-liked

13

option for administering containerized applications at scale due to its automation,

scaling, self-healing, service discovery, load balancing, rolling updates, rollbacks,

and configuration management features.

1.6.2 Proposed Approach

I am using the handler/business/store (HBS) architecture also referred to as the

three-layered architecture. It is a variant of the three-layered architecture pattern

that divides an application into three distinct layers or tiers, each of which has a

particular duty.

Here is a quick breakdown of each layer:

1. The handler layer: Also known as the presentation layer, is in charge of

processing user input and output. It collects user requests and then

typically uses a user interface to give answers to the user. Such elements

as web pages, forms, and UI controls are part of this layer.

2. Business layer (application layer): The business layer is in charge of

carrying out the application's business logic. In order to retrieve or alter

data, it coordinates with the store layer and handles user requests that are

sent from the handler layer. Business objects, application services, and

process components are included in this layer.

3. The store layer: Also known as the data layer, is in charge of storing and

retrieving data from the underlying data storage system, such as a database

or file system. It offers a uniform interface through which the business

layer can access and modify data. Data access items, data transfer objects,

and database connectors are included in this layer.

14

The best method to employ when creating an API (Application Programming

Interface) relies on the needs of the application, the programming language being

used, and the resources at hand. Some of the most popular methods for creating an

API are listed below:

1. REST API: Based on the HTTP protocol, REST (Representational State

Transfer) is a popular architectural paradigm for creating APIs. When

manipulating resources, REST APIs use HTTP methods (GET, POST,

PUT, DELETE, etc.) and return data in JSON (JavaScript Object

Notation) format.

2. SOAP API: SOAP (Simple Object Access Protocol) is an internet protocol

for transferring structured data. The message format is described by XML

(eXtensible Markup Language) in SOAP APIs, and the service interface is

described by WSDL (Web Services Description Language). Since they are

dependable and enable cutting-edge features like transactions and security,

SOAP APIs are frequently used in enterprise applications.

3. GraphQL API: Developed by Facebook, GraphQL is a query language for

APIs. Clients can describe the precise data they require in their queries

using GraphQL APIs, which employ a single endpoint to receive requests.

Because of its adaptability, effectiveness, and capacity to minimize both

over- and under-fetching of data, GraphQL APIs are growing in

popularity.

4. Remote Procedure Call (RPC) API: RPC is a protocol for invoking

functions or processes on distant servers. RPC APIs employ a client-server

architecture in which the client requests something from the server, which

then responds. Distributed systems frequently employ RPC APIs due to

their effectiveness and support for remote procedure calls.

15

In this project I am following the REST architecture style because it is easy to

use, scalable, and flexible. REST will be best suited for a small scale application.

The method chosen for developing a microservice relies on the needs of the

application, the programming language being used, and the resources available.

The following are some of the most popular methods for developing a

microservice:

1. RESTful microservice: Based on the HTTP protocol, REST

(Representational State Transfer) is a popular architectural paradigm for

creating microservices. In order to modify resources, RESTful

microservices use HTTP methods (GET, POST, PUT, DELETE, etc.) and

return data in JSON (JavaScript Object Notation) format. Because of their

ease of use, scalability, and flexibility, RESTful microservices are

popular.

2. Messaging-based microservices: To communicate with one another,

messaging-based microservices employ message brokers. Each service has

the ability to post messages to particular subjects and subscribe to certain

topics. Due to their fault tolerance and decoupling features, messaging-

based microservices are widely employed.

3. Function-as-a-Service (FaaS) microservices use serverless infrastructure

provided by cloud service providers to operate small, stateless processes.

Each function runs for a brief amount of time and is activated by a

particular event, such as an HTTP request. FaaS microservices are popular

because of their scalability, efficiency, and simplicity of implementation.

16

4. A sidecar proxy is used by Service Mesh microservices to control

communication between services. The sidecar proxy provides capabilities

like traffic management, service discovery, and security while intercepting

all service-to-service communication. Because of their advantages for

visibility, robustness, and scalability, Service Mesh microservices are

frequently employed.

As this project is a small scale project then it will be best to use RESTful

microservices, as I will not be extending it into a big scale application and using

these other methods will just add additional overhead.

1.6.3 Database

I am using MySQL as my database as it is easily scalable, secure and a relational

database. As the tables in my database will be related to one another and MySQL

handles these cases very well.

1.7 Organization of Report:

Chapter 1: This chapter gives a brief introduction to the Zopstore Web App, the

objective of the system, and its motivation. In this chapter, we also discuss the

problem statement of our project around which our project aim revolves. We also

discuss the methodology or solution that has been used to create the API.

Chapter 2: This chapter contains literature surveys that provide a summary of

different blogs and documentation which helped me with how the code will be

structured and how to make it extensible and robust.

Chapter 3: In this chapter, my main aim was to explain the step-by-step method

to build the project.

17

Chapter 4: In this chapter, I will provide the test result for different layers i.e

Store layer, Business Layer and Handler Layer.

Chapter 5: This chapter contains a summary and conclusion of the report and

resultant API that we got from the final project.

18

CHAPTER 2

 LITERATURE SURVEY

2.1 Git and Github

GitHub and Git have evolved into indispensable tools for software development

teams all over the world. Developers can follow changes to their code over time

using the distributed version control system (DVCS) known as Git. A platform for

Git repositories is provided by GitHub, a web-based hosting service, allowing

developers to collaborate on projects, exchange code, and support open-source

initiatives.

Git is a DVCS that enables programmers to set up local repositories on their

computers, edit the code there, and then merge their modifications back into the

main repository. Git's distributed architecture enables programmers to

independently work on various areas of the codebase and merge their changes

when they are complete. Git enables developers to work offline as well, making it

a great option for those who don't always have dependable internet access.

Git's capability to track changes to the code over time is one of its most important

advantages. Git keeps track of every modification made to the code, including

who made it, when it was modified, and what was changed. With the help of this

functionality, developers can undo changes, monitor the progress of the codebase,

and find the root of any defects or other problems. By offering a cloud-based

infrastructure for hosting, managing, and working together on Git repositories,

GitHub elevates Git to a new level. Pull requests, code reviews, issue tracking,

project management tools, and connections with other development tools are just

a few of the many capabilities that GitHub offers to make developers' jobs easier.

Developers can automate their software activities using GitHub Actions, an

automation tool offered by GitHub. It enables the development of unique

19

workflows that can be sparked by various occasions, such as code modifications

or pull requests, and carry out a variety of operations, such executing tests,

constructing packages, or deploying software. Workflows can be modified to

meet particular project requirements and are specified using YAML files. It is

simple to interface with well-known tools and services thanks to GitHub Actions,

which also offers a marketplace where developers can discover and use pre-built

actions. In general, GitHub Actions speeds up the development process by

automating repetitive operations, cutting down on errors, and fostering better

teamwork.

Fig. 2.1 Git Workflow

The social coding tools on GitHub are among its most important advantages.

Developers can collaborate on open-source projects, share their code with the

world, and support other people's efforts. Developers can promote their work on

GitHub and establish their reputations among the developer community.Powerful

developers can suggest modifications to a codebase and submit them for

evaluation by other team members using GitHub's pull request tool.

20

Members of the team can review the suggested modifications, make suggestions

for enhancements, and confirm that the changes don't introduce any bugs or

problems thanks to this approach. A robust issue tracking system is also available

on GitHub, enabling developers to keep track of bugs, feature requests, and other

problems that come up during the development process. The issue tracking system

enables team members to delegate responsibilities to one another, monitor

development, and guarantee that issues are treated quickly and effectively.

The robust project management tools offered by GitHub give developers access to

a number of capabilities for organizing tasks, deadlines, and milestones. Team

members can maintain focus and make sure the project is moving forward

according to schedule thanks to the project management tools. Another key

advantage of GitHub is the way it integrates with other development tools.

Popular development platforms like JIRA, Trello, and Slack are all easily

integrated with GitHub, enabling developers to communicate and work together

more efficiently.

Git and GitHub have been widely adopted by developers and organizations

around the world as a result of their popularity. As their main version control and

collaboration technologies, Git and GitHub have been adopted by several large

organizations, including Microsoft, Google, and IBM. Additionally, GitHub hosts

a large number of open-source projects, including well-known libraries and

frameworks like React, Angular, and Node.js.

Finally, Git and GitHub have revolutionized the software development process by

allowing programmers to communicate more successfully, work more

productively, and produce higher-quality code. Developers can follow changes to

the code over time thanks to Git's distributed version control mechanism, and

GitHub offers a robust infrastructure for hosting, managing, and working together

on Git repositories. Git and GitHub are vital tools for developers and businesses

21

of all sizes because they together offer a strong platform for version control,

collaboration, and project management in the software development industry.

2.2 REST

2.2.1 Introduction

Roy Fielding first developed the architectural design known as REST, or

Representational State Transfer, in his doctoral thesis from 2000. A set of rules

called REST is applied when creating and designing web services. Different

systems can communicate with one another via the internet using RESTful web

services because they are lightweight, quick, and scalable. The de facto industry

standard for creating and implementing web APIs is REST.

2.2.2 Architecture of REST

Client-server architecture based on a set of restrictions or principles is known as

REST. These guidelines, sometimes known as the "REST constraints," consist of

the following:

1. Client-server architecture: In this setup, the client and server are kept apart

and communicate with one another over a standardized interface.

2. Stateless: RESTful web services are stateless, meaning that between

requests, the server does not retain any client context. The server does not

save any session data or client state, and each request from the client is

handled as a separate request.

3. Cacheable: RESTful web services can be cached, allowing clients to speed

up performance by caching server answers.

4. Standard HTTP methods like GET, POST, PUT, DELETE, and PATCH

constitute the basis of the unified interface that RESTful web services

offer. It is simple for various systems to connect with one another because

of this uniform interface.

22

5. Layered system: RESTful web services are constructed using a layered

architecture, which implies that each layer has a distinct function and only

communicates with other levels that are immediately above it.

2.2.3 Advantages of REST

Several advantages of RESTful web services include:

1. Scalability: Scalable RESTful web services are capable of handling high

throughputs of requests and responses.

2. Versatility: RESTful web services are versatile and may be utilised with a

variety of operating systems, devices, and programming languages.

3. Ease of use: RESTful web services are straightforward and simple to

comprehend and use, making them the perfect choice for those who are

new to web development.

4. Reliability: RESTful web services provide a high degree of availability

and dependability.

5. Performance: RESTful web services can deliver high levels of

performance since they are small, quick, and lightweight.

6. Reusability: RESTful web services can be employed in a variety of

systems and applications since they are reusable.

2.2.4 REST Implementation

RESTful web services are implemented using conventional HTTP methods

including GET, POST, PUT, DELETE, and PATCH. These techniques are used

to carry out various actions on resources that the web service has made available.

Each resource is identified by a special code known as a URI (Uniform Resource

Identifier).

The procedures for putting into practise RESTful web services are as follows:

1. List the resources that the web service needs to expose.

2. Give each resource a special URI.

23

3. Specify the HTTP techniques that will be used to manipulate the

resources.

4. Use your preferred programming language to put the techniques into

practice.

5. Use a RESTful client, such as Postman, to test the web service.

2.3 Event Driven Architecture

The architectural design pattern known as event-driven architecture (EDA) makes

it easier for various software components to communicate with one another by

using events. When something interesting occurs in the system, like a new order

being placed, a user logging in, or a file being uploaded, events are generated in

EDA. Other components then take in these events and use them to change their

own states or to start new actions.

Fig. 2.2 Event Driven Architecture

Due to its capability to manage intricate and dynamic systems including several

services and data sources, EDA has experienced a substantial increase in

popularity in recent years.

24

2.3.1 Important Event Driven Architecture Concepts:

1. Sources and Consumers of the Event:Event sources and event consumers

are the two basic categories of components in an event-driven architecture.

Any element that produces events, like an application or a sensor, is

referred to as an event source. Any component that monitors events and

responds to them, such as updating a database or sending a notice, is

referred to as an event consumer.

2. Event Channels: The lines of communication used to convey events from

event sources to event consumers are known as event channels. Message

queues, event logs, and event hubs are just a few examples of the various

event channel kinds. The selection of an event channel is based on both

the system needs and the characteristics of the events.

3. Event Sourcing: An application's state is stored as a series of events using

the design pattern known as "event sourcing." Each event, such as a new

order being made or a payment being processed, reflects a change in the

application's state. It is possible to rebuild the state of the application at

any time by saving the state as events. This is very helpful for event

auditing, debugging, and replay.

4. CQRS: A design pattern called CQRS (Command Query Responsibility

Segregation) divides an application's read and write actions into

independent components. CQRS is frequently used in event-driven

architectures to distinguish between event producers and event consumers.

This lessens the dependency between components and gives the

programme more flexibility while scaling.

5. Microservices driven by events: One common way to build event-driven

architecture is through event-driven microservices. Each microservice in

this method is in charge of handling a certain kind of event. When an

event is formed, it is sent to the relevant microservice, which receives it,

modifies its state, and, if necessary, generates new events. Because each

25

microservice can be separately deployed and scaled, this enables an

architecture that is both extremely scalable and adaptable.

2.3.2 Event Driven Architecture Advantages

1. Scalability: Because it is decoupled, event-driven architecture has a great

capacity for scaling. The system can handle high numbers of events

without being overloaded, and components can be added or deleted

without having an impact on the rest of the system. Because of this, it is

the perfect architecture for systems with heavy traffic or erratic workloads.

2. Adaptability: High levels of flexibility are offered by event-driven

architecture since new or removed components can be added or removed

without affecting other system components. Because of this, it is simple to

change the system over time to new requirements.

3. Fault Tolerance:Event-driven architecture is fault-tolerant because

individual components can keep working even while others fail. The

system can continue to function even if a component fails since the events

it was in charge of can be forwarded to another component or tried again.

4. Loose Coupling: Because events are the only means through which

components can communicate, event-driven design encourages loose

coupling between them. This lessens the dependence between components

and facilitates system development and maintenance.

5. Processing in Real Time: Due to the fact that events are broadcast as soon

as they are generated, event-driven architecture enables real-time

processing of events. For applications that need real-time updates, like

financial trading or gaming, this enables almost immediate processing and

reaction times.

There are various ways in which event-driven architecture is different from other

architectural patterns, including 3-tier architecture or microservices architecture.

The display layer, the application layer, and the data layer are the three layers that

26

make up a three-tier architecture. The presentation layer manages user interaction,

the application layer manages business logic, and the data layer manages data

storage and retrieval. Each layer is in charge of a certain task.

The system is divided into a number of autonomous services in a microservices

design, each of which is in charge of a certain task. Through the use of APIs,

these services talk to one another, giving the system a great degree of adaptability.

The generation, detection, and response to events are the primary concerns of

event-driven architecture, in contrast to 3 tier architecture and microservices

design. The focus is on event processing and response, while it may integrate

features of a 3-tier design or a microservices architecture.

2.4 Monitoring

To guarantee a web endpoint's availability, performance, and dependability,

monitoring is crucial. It entails keeping track of and measuring a variety of

parameters, including availability, error rates, and response times. The use of

monitoring enables the early detection of possible issues, allowing for the quick

mitigation or prevention of them. The significance of monitoring a web endpoint

or service and some recommended practices for doing so will be covered in this

article.

2.4.1 Monitoring a Web Endpoint or Service Is Important

Making sure a web endpoint or service is available and performing well is the

main goal of monitoring it. The user experience, business operations, and income

can all be negatively impacted by unavailability or performance difficulties on a

web endpoint or service, which can be anything from a website, API, or database

server. Early issue detection and prompt response are made possible via

monitoring, which is essential for guaranteeing a fluid user experience and

minimizing the impact on the business. Monitoring can assist with capacity

27

planning, security, and compliance in addition to availability and performance.

Organizations can expand their infrastructure appropriately by tracking indicators

like resource utilization, traffic patterns, and security events. Additionally,

companies may make sure that they are abiding by compliance standards and

identify any security holes or vulnerabilities before they cause serious problems.

2.4.2 Monitoring a Web Endpoint or Service: Best Practises

There are various best practices that organizations can adhere to in order to

monitor a web endpoint or service successfully. These consist of:

1. Establish Monitoring Objectives: Establishing monitoring objectives is the

first step in keeping track of a web endpoint or service. This entails

figuring out the measurements that are essential to the organization's

objectives as well as the frequency and alarm threshold. To be effective,

objectives must be SMART (specific, measurable, achievable, relevant,

and time-bound).

2. Employ a Variety of Monitoring Tools: No one monitoring tool is capable

of offering total visibility into a web endpoint or service. Application

performance monitoring (APM), network monitoring, and log analysis

technologies should all be used by organizations.These tools can offer

several viewpoints and allow for thorough service monitoring.

3. Monitor from Various Locations: Monitoring from various locations is

essential for ensuring that the service is accessible and operating at its best

for users in various geographic locations. Businesses should employ

monitoring tools that let them mimic user queries from various locations

and gauge the availability and response time.

4. Configure Alerts and Notifications: When a problem is found, alerts and

notifications should be configured to notify the proper parties. To enable

prompt response, these warnings must be timely, pertinent, and actionable.

28

In order to make sure that alerts are functioning properly, they should also

be examined frequently.

5. Examine and Act on the Data: Regular analysis of monitoring data is

necessary to spot trends, patterns, and potential problems. To address any

issues proactively, organizations should have a mechanism in place for

analyzing the data and taking appropriate action. This entails figuring out

what caused the problem in the first place and taking action to stop it from

happening again.

6. Continuously Improve Monitoring: Monitoring is a process that never

ends, so organizations should constantly work to make their monitoring

procedures more efficient. This entails taking into account stakeholder

comments, selecting fresh metrics to track, and assessing brand-new

technologies and methods for monitoring.

2.4.3 Conclusion

For a web endpoint or service to be reliable, fast, and available, monitoring is

essential. It lets businesses identify possible problems before they arise and act

quickly to prevent or minimize them, delivering a flawless user experience and

lessening the impact on the bottom line. Organizations can make sure that their

web endpoints and services are operating at peak efficiency and fulfilling their

objectives by adhering to best practices, such as defining monitoring objectives,

using multiple monitoring tools, monitoring from various locations, setting up

alerts and notifications, analyzing and acting on the data, and continuously

improving monitoring.

2.5 Testing

To make sure that the programme satisfies the requirements and performs as

intended, testing is a critical component of software development. A software

architectural pattern called HBS (Handler-Business-Store) divides an application

into three discrete layers: the handler layer, the business layer, and the store layer.

29

Each layer has unique duties, and testing each layer is crucial to ensuring the

software's quality. Incoming client requests are handled by the handler layer,

which is also in charge of validating input data and converting requests into

business actions. The application's main functionality is implemented by the

business layer, which also handles requests from the handler layer and interacts

with the store layer to retrieve or persist data. Data storage, retrieval, and

manipulation fall under the purview of the store layer. To store or get data, it

interfaces with the business layer.

To assure the quality of the software in the HBS architecture, it is essential to test

each layer separately. Let's go over the testing for each layer in more depth. The

handler layer manages incoming requests and verifies input data. Validating the

input data, the request handling logic, and the expected result are all part of

testing this layer. The handler layer's most popular testing method is unit testing.

The main goal of unit tests is to test each isolated function or method in a piece of

code. Mocking frameworks can be used to segregate the test code and imitate

external dependencies. It is possible to construct unit tests for the handler layer to

evaluate the logic for handling requests, input verification, and output formatting.

For the handler layer, integration testing is also a critical testing method.

Integration testing guarantees proper communication between the handler layer

and external dependencies like databases or APIs. To verify the request

processing logic with real data from external dependencies, integration tests for

the handler layer can be built. The business layer is in charge of carrying out the

application's main logic. Verifying that the business logic is sound and the

outcome matches expectations includes testing this layer. The most popular

testing method for the business layer is unit testing. It is possible to write unit

tests to test distinct methods or functions. Mocking frameworks can be used to

segregate the test code and imitate external dependencies. The business layer's

basic logic, data processing, and data validation may all be tested using unit tests.

30

Another crucial testing method for the business layer is integration testing.

Integration testing guarantees proper communication between the business layer

and external dependencies like databases or APIs. It is possible to develop

integration tests for the business layer to test the central logic using real data from

external dependencies.

Store layer testing, Data storage, retrieval, and manipulation are the

responsibilities of the store layer. Making sure the logic for data storage, retrieval,

and manipulation is sound requires testing this layer. The most popular testing

method for the storage layer is unit testing. It is possible to write unit tests to test

distinct methods or functions. Mocking frameworks can be used to segregate the

test code and imitate external dependencies. To test the logic for data storage,

retrieval, and modification, unit tests for the store layer can be made. The store

layer's testing methodology must also include integration testing. Integrity checks

ensure that the store layer works properly with external dependencies like

databases or APIs. To test data storage, retrieval, and manipulation using actual

data from external dependencies, integration tests for the store layer can be

written.

The HBS architecture offers a distinct separation of concerns, which makes

testing each layer individually more doable. Testing is a crucial component of

software development. The two most frequently utilized testing methods in the

HBS architecture are unit testing and integration testing. Additionally, by

employing automated testing tools, developers may speed up the testing

procedure, lowering the risk of human mistake and enabling them to identify and

address problems rapidly.

31

2.6 Continuous Integration / Continuous Development

A software development strategy called CI/CD, which stands for Continuous

Integration/Continuous release or Continuous Deployment, tries to speed up the

release of new features and updates to an application. Continuously and

iteratively, the process entails automated testing, building, and deploying code

updates to production settings. With this strategy, development teams may

produce software more frequently and to a higher standard, which ultimately

speeds up time to market and improves customer satisfaction.

The pipeline of the CI/CD is composed of a stage called Continuous Integration

(CI). Every time a developer sends new code to a common repository, the process

of automatically constructing, testing, and confirming the changes is referred to as

continuous integration. In order to stop faults in the codebase from developing

into larger problems later on, CI aims to find and repair them as soon as feasible.

Development teams can quickly find and resolve errors, enhance code quality,

and guarantee that the application is always in a release-ready state by

continuously integrating code changes.

Fig. 2.3 CI/CD Pipeline

32

The second stage of the CI/CD process is Continuous Delivery (CD). It entails

automating the deployment of the application to a testing and verification

environment before it is made available to production. Making the deployment of

new features and updates to production as seamless and dependable as feasible is

CD's main objective. Development teams can lower the possibility of human

mistake and make sure that new modifications are always properly and

consistently deployed by automating the deployment process.

The last step in the CI/CD process is continuous deployment (CD). When new

modifications are automatically sent to production after passing all relevant tests

and inspections in the pipeline, it is referred to as this process. Using this strategy,

development teams can quickly deploy new features and upgrades to the

application, sometimes many times each day. The automated testing and

deployment methods, as well as the codebase's quality, must be highly trusted for

continuous deployment to be successful.

There are various advantages of CI/CD. First of all, it enables development teams

to roll out new functions and updates more often, reducing the time it takes for an

application to reach the market and responding to shifting consumer expectations.

Secondly, by identifying and correcting mistakes early in the development

process, it helps to raise the overall quality of the programme. Thirdly, by

automating the testing and deployment processes, it lowers the possibility of

human error and makes sure that fresh updates are constantly and dependably

rolled out. Fourthly, it makes it possible for developers to obtain feedback on their

code modifications more quickly and to make changes in real-time.

A combination of tools, procedures, and best practices are needed to implement

CI/CD. Jenkins, Travis CI, CircleCI, GitLab, and Azure are some of the most

popular CI/CD tools. The CI/CD pipeline's different stages, such as building,

testing, and deploying code changes, can be automated using these tools.

33

Several crucial steps must be taken in order to implement CI/CD. To make the

codebase dependable, testable, and manageable, development teams must first

define a set of coding standards and best practices. Second, they must develop an

automated testing method that examines both functional and non-functional

requirements, as well as all facets of the application. Thirdly, a continuous

integration process that automates the creation and testing of code changes on a

shared repository needs to be put into place. The deployment of fresh

modifications to staging environments must be automated, thus they must set up a

continuous delivery pipeline. Finally, they must make sure the pipeline is secure,

scalable, and reliable.

Finally, CI/CD is a crucial part of contemporary software development. It offers a

platform for automatically carrying out the various steps of the development

process, such as creating, testing, and deploying code modifications.

2.7 Database Migration

The process of moving data from one database to another, generally across

successive iterations of the same database or between totally unrelated database

management systems, is referred to as database migration. It is a crucial step in

the software development process because it lets developers make changes to

their database schemas and to their apps over time without impairing the user

experience.

It is crucial to have a successful database migration procedure in place in the

quick-paced software development environment of today, where new features and

bug patches are regularly deployed. Tools for database migration are useful in this

situation. By automating the data migration process from one database to another,

these technologies cut down on the time and effort needed to complete the

conversion. Database migration can be done using a variety of tools, each of

34

which has its own special features and advantages. The most well-liked database

migration tools are DbUp, Flyway, and Liquibase.

An open-source database migration programme called Flyway offers a

straightforward and adaptable method of managing database migrations. Database

migrations are handled by Flyway using a method akin to a version control

system, where each migration is given a version number. Flyway tracks the

current version of the database and automatically applies the appropriate

migrations to bring the database up to date. Developers can design new

migrations using SQL scripts or Java-based migrations.

Another free database migration tool is Liquibase, which enables programmers to

control database schema changes with a single XML or YAML configuration file.

Numerous databases are supported by Liquibase, which also offers a number of

capabilities, such as the ability to generate change logs, rollback changes, and test

migrations before implementing them.

A straightforward and dependable method of managing database migrations is

offered by the.NET-based database migration programme DbUp. DbUp offers a

number of capabilities, including the ability to apply changes in a transactional

manner and to perform database backups before migrations are performed. It

employs plain SQL scripts to express the database schema changes. There are a

few standard practices that developers should adhere to when doing database

migration, regardless of the tool they choose. Before beginning the transfer

procedure, a backup of the current database must be made. By doing this,

developers are guaranteed to have a backup plan in case the migration process

encounters a problem.

Before implementing the migration procedure on the production database,

developers should extensively test it. This entails applying the migration in a

35

staging or development environment and testing that the application functions as

intended afterward. Thirdly, developers should use a version control system like

Git to keep track of the modifications they make to database structure. The

database schema can be changed in the past thanks to this, and modifications can

be undone if necessary.

In conclusion, database migration is a critical step in the creation of software, and

developers should have a solid procedure in place. Database migrations can be

performed more quickly and with less work by using tools like Flyway,

Liquibase, or DbUp, which help automate the process. A seamless and successful

migration procedure can be ensured by adhering to best practices, which include

making backups, doing comprehensive testing, and keeping track of changes.

36

CHAPTER 3

 SYSTEM DEVELOPMENT

3.1 Web Project Development

A web project's development goes through several stages and procedures. Each

stage, from preparation to deployment, needs to be carefully thought out and

carried out. The following are the crucial processes required in creating a web

project in this article.

1. Planning: Making a plan is the first step in any web project. The project's

goals, objectives, and target audience must all be specified. Defining the

project's scope, schedule, and budget is equally crucial.

2. Research: After the project's scope has been established, research must be

carried out to comprehend the market, rival products, and user

requirements. Surveying, user testing, and competitive analysis are all part

of this.

3. Design: The next step is to develop a wireframe and prototype for the web

project based on the study results. Layout, user interface, and user

experience design are all included.

4. Development: After the design is accepted, the web project's actual

development gets under way. The authoring of code, the integration of

APIs, and the building of databases are all part of the process.

5. Testing: Testing is a crucial step in the creation of a website. This entails

checking the website for mistakes, bugs, and security flaws. To make sure

the website is fully functional and meets user needs, the testing procedure

should be exhaustive.

6. Deployment: After the website has been completely tested, the server

should host it. In order to do this, the server must be configured, the

website must be launched, and the website's files must be moved to the

server.

37

7. Maintenance: To keep the website operating smoothly after it has been

released, maintenance is necessary. The software of the website has to be

updated, errors are fixed, and new features are added.

Every one of these procedures is essential for creating a web project. It is crucial

to remember that the process is not linear and that some of the steps may overlap.

For instance, during the development phase, design modifications could take

place, and testing might identify issues with the design that need to be fixed. As a

result, creating a web project is a challenging process that calls for careful

planning, investigation, design, programming, testing, deployment, and

maintenance. Following a planned approach and maintaining close

communication with stakeholders are crucial for the project's success.

3.2 Designing the API

RESTful APIs can be designed and documented by developers using the potent

tool Swagger. It offers developers a user-friendly interface for creating, editing,

and testing their APIs. Using Swagger, developers can quickly generate an

interactive documentation of their API that other developers can access and

understand. This aids in enhancing user and developer collaboration and

communication.

38

Fig. 3.1 Swagger - API Documentation

The steps for creating an API with Swagger are as follows:

1. Define the API: The API must be defined next. Endpoints, request and

response parameters, as well as data types, must all be specified. This

procedure is made simpler by the simple-to-use editor offered by Swagger.

2. Document the API: The API must first be defined before it can be

documented. Developers and users can better comprehend an API's

capabilities with the help of documentation. In order to describe the API,

including endpoints, request parameters, response types, and other

pertinent details, Swagger offers a user-friendly interface.

3. Test the API: After documenting the API, testing it is the next step.

Developers may test the functionality, request and response parameters,

39

and error handling of their APIs using Swagger's integrated testing

environment.

4. Export the API: The API must be exported when it has been designed and

tested. Developers can export their API using Swagger in a number of

different formats, including JSON, YAML, or HTML.

In conclusion, creating and testing RESTful APIs can be done quickly and easily

by designing an API using Swagger. The user-friendly interface offered by

Swagger makes it simple for developers to define, document, and test their APIs.

With Swagger, developers can quickly produce interactive documentation that is

simple for other developers to access and understand, which enhances cooperation

and communication between developers and users.

3.3 Creating a Web Server Using Golang

A web server is a computer programme that receives and processes requests from

client devices in order to deliver the desired content. It serves as the hub for

communication between web browsers and web pages, making it the foundation

of the World Wide Web. The web server responds with the requested material,

such as a web page, image, or video, when a user types the address of a website

into their web browser.

An operating system, web server software, database server, and programming

language are only a few of the parts that make up a web server. The operating

system controls the computer's resources, and the web server software handles

incoming requests and delivers the desired material. The programming language

is used to develop dynamic content, while the database server is used to store and

retrieve data.

Golang (commonly known as Go) is a popular programming language used for

creating web servers. Golang is a Google-developed open-source programming

40

language that is renowned for its effectiveness, speed, and simplicity. It is a

popular option for developing high-performance web servers since it is simple to

learn and has built-in concurrency features.

There are a number of important factors to take into account when developing a

web server in Golang. The API endpoints, or URLs that the web server will react

to, must first be defined. The structure of the application and the kinds of requests

it may process will be determined by these endpoints. The database schema and

the methods for storing and retrieving the data should also be taken into account.

Relational databases like MySQL or PostgreSQL are simple to work with thanks

to Golang's built-in support for SQL databases. The use of other database types,

such as NoSQL databases like MongoDB, is also an option.

The use of middleware is another factor to take into account while developing a

Golang web server. Software known as middleware, which resides in between the

web server and the application, adds extra features like rate restriction, logging,

and authentication. Golang supports a wide variety of middleware packages from

outside vendors, so adding this capability to your web server is simple.

The built-in concurrency characteristics of Golang are one of its main benefits

when developing web servers. Concurrency, or the capacity to carry out many

actions concurrently, is a special feature of the Go programming language known

as goroutines. Goroutines are thin threads that eliminate the overhead associated

with conventional threads and enable the execution of numerous tasks

simultaneously. Golang contains built-in support for channels, which are used for

inter-goroutine communication in addition to goroutines. Goroutines may

communicate and synchronize with one another via channels, which makes it

simple to create highly concurrent and effective web servers. There are numerous

deployment options available for Golang web servers. Use of Docker, which

makes it simple to package and deploy Golang apps in a containerized

41

environment, is one well-liked choice. Docker containers can be readily deployed

to a range of contexts, including cloud-based services like Amazon Web Services

(AWS) or Google Cloud Platform (GCP). They are small, portable, and

lightweight.

Utilizing Kubernetes, an open-source container orchestration platform that

automates the deployment, scaling, and management of containerized

applications, is an additional deployment option. Kubernetes is an effective

technology for managing Golang web servers at scale because it offers cutting-

edge features like automatic scaling, rolling upgrades, and service discovery.

Golang is a strong and effective programming language that is suitable for

creating web servers, to sum up. It is a popular option for web server development

due to its integrated concurrency features, support for SQL databases, and large

library of third-party packages. Considerations like API endpoints, database

schema, and middleware should be taken into account when creating a Golang

web server. When deploying, solutions like Docker and Kubernetes offer effective

tools for managing and scaling Golang web servers.

3.4 Database Design

Table 3.1 Product table

Field name Type Size NOT NULL Primary

Key

product_id integer - yes yes

name varchar 255 yes -

description varchar 255 - -

42

price integer - - -

quantity integer - - -

category varchar 255 - -

brand_id varchar 255 yes -

status enum - yes -

Table 3.2 Brand table

Field name Type Size NOT NULL Primary

Key

brand_id integer - yes yes

name varchar - no -

Table 3.3 Admin Table

Field name Type Size NOT NULL Primary

Key

id int yes yes

name varchar 255 yes -

email varchar 255 yes -

password varchar 16 yes -

43

Fig. 3.2 Database Structure

3.5 Testing the Server

A Golang web server must be tested to make sure all of its modules and

functionalities are operating as intended. Unit testing, integration testing, and end-

to-end testing are some of the methods used to test a Golang web server.

Unit testing isolates specific functions and modules from the rest of the codebase

to test them individually. This guarantees that every function performs as intended

and generates the right result for a particular input. The testing package included

with the standard library is used for unit testing in Golang. The testing package

offers a number of tools for creating and executing tests.

Integration testing examines the interactions between various server components

to make sure they function properly together. The httptest package in Golang can

be used for integration testing. A method for testing HTTP handlers and responses

is provided by the httptest package. In end-to-end testing, every component of the

web server is tested in a real-world setting. This kind of testing makes certain that

44

the server performs as anticipated from the user's point of view. Tools like

Selenium, Puppeteer, or Cypress can be used for end-to-end testing.

It is crucial to make sure the tests are automated, repeatable, and cover the most

portion of the codebase possible while testing a Golang web server. As a result,

the server is stable and dependable and faults are found earlier in the development

process.The server must undergo stress testing and performance testing in

addition to the aforementioned testing techniques. Stress testing entails putting the

server under a lot of traffic while observing how it responds. When performing

performance testing, the server's response times and resource usage are examined

under various circumstances.

In conclusion, testing a Golang web server combines stress testing, performance

testing, end-to-end testing, integration testing, and unit testing. To guarantee the

stability and dependability of the server, it is essential to make sure that the tests

are automated, repeatable, and cover the largest portion of the codebase.

3.6 Deploying the Web Application using Kubernetes and Docker

Tools like Docker and Kubernetes are now necessary for delivering web apps.

Developers can package apps and their dependencies into small, portable

containers using the containerization technology Docker. Contrarily, Kubernetes

is an open-source platform that streamlines the administration, scaling, and

deployment of containerized applications.

3.6.1 Dockerize the application

Containerizing a web application is the first step in utilizing Docker and

Kubernetes to deploy it. A lightweight, portable container that can operate on any

platform that supports Docker is created by containerizing the programme and all

of its dependencies.

45

Create a Dockerfile in the project's root directory to containerize the application.

A script called the Dockerfile instructs Docker on how to create the container

image.

Fig. 3.3 Dockerfile

In this Dockerfile, an official main.go runtime is used as the parent image. The

working directory is set to /src/build, the configs and the artifact are copied there,

the dependencies are installed, the remaining application code is copied there, the

environment variable PORT is set to 9000, the application's port is exposed, and

the application is started using the build file.

46

Fig. 3.4 Docker Containers

This command instructs Docker to use the Dockerfile located in the current

directory to create an image with the name my-web-app.

3.6.2 Push the image to a registry

Pushing the container image to a container registry is the next stage in the

deployment of a web application using Docker and Kubernetes. Container images

are kept and accessible by servers and other developers in a container registry.

Docker Hub is a well-liked container registry that enables developers to store and

distribute container images without charge. Use the next command to push the

container image to Docker Hub:

Fig. 3.5 Command to push image to the registry

The my-username parameter specifies your Docker Hub username, and the

command instructs Docker to submit the my-web-app image to Docker Hub with

the tag tag.

3.6.3 Deploy the application to Kubernetes

Delivering the containerized application to Kubernetes is the last step in

delivering a web application using Docker and Kubernetes.

47

Fig. 3.6 Deployment File

Make a YAML-formatted Kubernetes deployment file first. The container image,

the number of replicas, and any additional configuration options are all specified

in the deployment file along with the desired state of the application.

48

CHAPTER 4

PERFORMANCE ANALYSIS

4.1 Project Testing Strategy

A well-defined testing strategy must be in place to assure the quality of the

software being built, as testing is a critical component of software development.

In the Handler Business Store (HBS) design, testing is essential to verifying that

the various system levels are performing as expected and that the system as a

whole is operating as intended.

The handler layer, the business layer, and the store layer are the three levels that

make up the HBS architecture. Each layer in the system is in charge of particular

duties, and testing is required to make sure each layer is operating as planned.

4.1.1 Unit Testing

Individual units of code can be tested using a testing technique called unit testing.

Each layer of the HBS architecture is subjected to unit testing. Before the code is

included into the larger system, unit testing aids in finding any bugs.

Handler Layer: The client's requests and responses are handled by the handler

layer. The various API endpoints should be tested as part of the handler layer's

unit tests to make sure they are returning the right response for each request. Unit

tests for the handler layer should verify error handling, authentication, and

authorization in addition to the endpoints. When something goes wrong, it is

crucial to make sure that the API produces the proper error messages, is secure,

and only permits authorized people to access it.

Business Layer: Implementing business logic and handling data processing fall

under the purview of the business layer. The many functions that perform the

49

business logic should be the primary focus of unit tests for the business layer.

Unit tests for the business layer should test data validity and error handling in

addition to the functions. It is crucial to verify that the functions correctly handle

errors and that the data being processed is accurate.

Store Layer: Data storage and retrieval from the database are the responsibilities

of the store layer. In order to ensure that the data is being stored and retrieved

appropriately, unit tests for the store layer should concentrate on testing the

various database operations. Unit tests for the store layer should evaluate data

validity and error handling in addition to the database operations. It is crucial to

verify that the data being stored is accurate and that database operations handle

errors effectively.

4.1.2 Integration Testing

A testing method called integration testing is used to examine how various pieces

of code communicate with one another. Integration testing is carried out in the

HBS architecture to make sure that the various system layers interact properly.

Business Layer and Handler Layer: The main goal of integration testing between

the handler layer and the business layer should be to examine the interactions

between the two layers. It is crucial to confirm that the business logic is being

implemented appropriately and that the data being communicated across the

levels is valid.

Store Layer and Business Layer: The main goal of business-store integration

testing should be to examine the interactions between the two layers. It is crucial

to confirm that the data being transferred between the layers is accurate and that

the data is entering and leaving the database correctly.

50

4.1.3 End to End Testing

A testing method used to test the entire system is end-to-end testing. End-to-end

testing is carried out in the HBS architecture to ensure that the entire system is

operating as intended. The API endpoints should undergo end-to-end testing to

confirm that they are returning the appropriate response for each request. The

complete data flow through the system, from the client request to the data being

saved in the database, should be tested as part of end-to-end testing.

4.2 Unit Testing Results

Test Coverage of 100%:

Fig. 4.1 Testing Coverage

51

4.3 End to End Testing Results

Responses for a GET call to the products endpoint

Fig. 4.2 Status code 200 response

Fig. 4.3 Status code 400 response

52

Fig. 4.4 Status code 401, 403 and 404 responses

53

Testing the API with Postman (GET call to the products endpoint)

Fig. 4.5 Postman responses for ‘get all products’

54

POST call to the products endpoint

Fig. 4.6 Postman response for adding a product

55

Bad Request: Wrong request body format

Fig. 4.7 Postman error response

4.4 Checking Linters

Tools called golang linters examine Go code and give input on its quality,

potential flaws, and stylistic problems. They support developers in raising the

caliber of their code and guarantee that coding standards and best practices are

56

followed. Golang linter tools can be used to enforce coding standards, find

performance problems, and check for common programming errors. These tools

operate by scanning the source and notifying the user of any flaws they discover.

They can also be connected to Continuous Integration (CI) platforms to deliver

feedback on commits and pull requests.

Several well-known Golang linters are:

1. Golangci-lint is a quick and effective linter that can look for problems like

unnecessary code, empty block statements, and other things.

2. GoLint - This is a less complex linter that looks for formatting problems,

unneeded imports, and other typical coding errors.

3. GoVet is a tool that the Go compiler includes that scans code for

potentially dangerous structures including shadowed variables,

unreachable code, and more.

The use of linters is crucial for enhancing the quality of your Golang code.

Regular use of them will enable you to identify and address possible problems

early in the development cycle, producing codebases that are more resilient,

effective, and manageable.

57

CHAPTER 5

CONCLUSIONS

5.1 Conclusion

Working on this project was incredible since I learned so much. It gave me the

opportunity to participate at each stage of the project's development, which was a

truly eye-opening experience for me. The thrill of working and the satisfaction of

overcoming various challenges gave me a sense of the development industry. This

project taught me how to make professional software. In this project, we

developed a system to handle product and brand information that is dependable,

easy to use, economical, and useful.This makes it possible for owners to handle

their internet business's details quickly and efficiently. It provides significant time

and financial savings to the owner.

5.2 Future Scope

Future scope for my project:

1. Designing an effective user interface and user experience: Effective UI

and UX can increase users' overall engagement with a web application.

This can be done by making the online application's design, layout, color

scheme, typography, and usability better.

2. Increasing Performance: Quicker response and loading times can enhance

user experience and lower bounce rates. Optimisations on the client and

server sides as well as the use of content delivery networks (CDNs) can all

boost performance.

3. Including New Features: The functionality and user engagement of the

web application can be enhanced by including new features. Through user

feedback, industry trends, and competitor analysis, these features can be

found.

58

REFERENCES

1. https://docs.microsoft.com/en-us/azure/architecture/best-

practices/api design

2. https://github.com/DATA-DOG/go-sqlmock

3. https://github.com/golang/mock

4. https://go.dev/doc/tutorial/

5. https://medium.com/swlh/developing-a-web-application-in-go-using-

the layered-architecture-8fc13209c808

6. https://github.com/gorilla/mux

7. https://dev.mysql.com/doc/

8. https://www.linux.org/

9. https://docs.docker.com/

10. https://kubernetes.io/docs/home/

11. https://ngdocs.harness.io/

12. https://prometheus.io/docs/introduction/overview/

