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ABSTRACT 



In Alzheimer's disease (AD), amyloid-beta(Aβ)-induced neuronal damage is characterised by 

mitochondrial dysfunction. Researchers are now considering the potential which are related to 

mitochondria and intramitochondrial.  Given the new emphasis on the intracellular biology of 

Amyloid beta and its precursor protein (APP), Amyloid beta could trigger which cause 

neurotoxicity. In order to promote new perspectives on the development of AD, we study the 

crucial part that mitochondrial dysfunction plays in AD with Codon usage analysis and with 

SNPs detection (CUB) is the term describing the phenomena of inconsistent use of similar 

codons, where a particular codon is preferred over another. Two key evolutionary factors, 

namely mutation pressure and selection, are known to influence CUB. Since there has not been 

any research published yet, we employed a range of methods to comprehend the style in codon 

utilisation in MT-ND genes, PTGS1, and TAMM41 (nuclear-related MT-genes), which are 

involved in complex I of the respiratory chain (RC). Protein structure and function are altered 

by single nucleotide polymorphisms (SNPs) associated with illness. The SNPs of human 

mitochondrial ND GENES linked with illness were thoroughly analysed in the current study. 

Four extremely harmful nsSNPs (L285P, L71P, D393H, and Y59C) were found by SNP 

screening using a range of both sequence and structure-based methods. Both a conservation 

study and malignant evaluation shows most of the disease condition nsSNPs are found at 

exceptionally stable residues. 

 

 

 

 

 

 

 

 

 

 

CHAPTER-1 



INTRODUCTION 

 

1.1 Aloysius "Alöis" Alzheimer carefully outlined the signs and symptoms of his 51-year-old 

patient Auguste Deter at the public facility in the German city of Frankfurt, which included 

troubles with memory and other cognitive disabilities [1]. Auguste Deter's brain was 

histologically analysed using silver's properties staining, and AD detected the development of 

NFTs, neuritic plaques, and amyloid beta after her demise. Such outcomes constituted the 

distinguishing feature of the illness, later named Alzheimer`s Disease. AD is the most prevalent 

form of dementia globally. One person is diagnosis with dementia every three seconds. In 2018, 

there were approximately 50 million dementia sufferers worldwide, of whom two-thirds had 

AD. The necessity for a more thorough investigation to enhance patient care and potential 

treatments is highlighted by the rising cases and high mortality of AD. It has been seen that 

mitochondrial dysfunction is an apparent feature that needs to be studied. Through oxidative 

phosphorylation, the mitochondria produce the majority of cellular ATP (OXPHOS). Most of 

the nuclear DNA-encoded genes are required to form each of the five OXPHOS complexes 

(nDNA). On the other hand, only a small subset of OXPHOS-related genes is encoded by 

mtDNA. Numerous neurodegenerative diseases and typical aging have both been linked to 

damaged mtDNA. Furthermore, neurological abnormalities are common in people with 

legitimate mitochondrial illnesses.[1] Numerous pathogenic insults can harm mtDNA, but 

oxidative damage caused by mitochondrial reactive oxygen species has received considerable 

attention. The physiologic roles of (ROS) in cellular viability and overall well-being are still 

unresolved even though ROS may trigger cell destruction and that there is a connection 

between high ROS and damage from oxidation in neurodegenerative diseases.  

Although some studies observed no differences in the overall load of brain mtDNA point 

mutations between AD and control, other studies reported contradictory findings. More 

sensitive studies have revealed that the lack of cell-specific mtDNA differentiation may also 

be a factor in the variability.[2] 

Higher oxidative damage in the AD brain was thought to be the cause of increased mtDNA 

mutations. In fact, mtDNA suffered an average of three times more oxidative damage in the 

brains of AD patients compared to age-matched controls, and mtDNA contained almost ten 

times more oxidised bases than nuclear DNA. As a matter of fact, individuals with preclinical 

Alzheimer's disease (PCAD) and MCI had much greater quantities of oxidised nucleic acids in 



their mtDNA, showing that this was a symptom of the disease at an early stage. It is yet 

unknown how these discoveries relate to the aetiology of human AD. [1] 

1.2 Overall, these investigations indicate that mtDNA variabilities, mutations, and alteration 

are likely crucial in the pathophysiology of AD. The mitochondrial cascade theory states that 

inherited mtDNA variants define one's vulnerability, and that the phenotypic manifestations 

are determined by the accumulation of brain somatic mtDNA modifications and mutations 

through time that reflect the impact of the environment. 

1.3 There are conflicting results about the relationship between Alzheimer's disease (AD) and 

mitochondrial DNA (mtDNA) polymorphisms.[2] Therefore, there is a need to understand the 

role of mitochondria in the regulatory processed associated with the AD's initiation and 

progression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



OBJECTIVES 

This work has been majorly categorized into three objectives as: 

•  Analyzing the mitochondrial- NADH dehydrogenase (MT-ND) gene family through 

various bioinformatic approaches. 

• Genomic Investigations for its plausible Regulatory role in AD. 

• Functional and Evolutionary Analysis of involved genes, proteins, and its applications. 

                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER-2 

LITERATURE SURVEY 



 Genetic Variables 

AD can be classed as either sporadic or familial. Since the cause of onset is unclear in about 

99% of cases with AD. Aging continues to be the key factor. Symptoms typically start to appear 

between the ages of 60 and 65. late-onset AD or Sporadic AD are undoubtedly influenced by 

both genetics and environment. The three apolipoprotein E (APOE) gene variations e2, e3, and 

e4 are the primary genetic causes of SAD.[1] Cholesterol and other lipids are packaged and 

transported into the bloodstream by the APOE protein. Each person inherits one of the three 

APOE gene types, often the e3 version, from each of their parents. Compared to inheriting e3, 

having e4 greatly raises the likelihood of developing AD, whilst having e2 may lower the risk. 

The likelihood of developing AD is made higher by having a single copy of the e4 gene.  by 

three times compared to two copies of the e3 gene, whereas two copies of the e4 gene increase 

the risk by 8–12 times. The e4 version of the APOE gene does not, however, ensure that AD 

will develop. In the past ten years, studies using whole genome sequencing and genome-wide 

association data have discovered a few novel genetic factors that are linked to a high risk of 

LOAD, including CD33, ABCA7, complement C3b/C4b receptor 1, CR1, TREM2. 

Most of them are particularly or is predominantly found in brain, with TREM2. A vital 

component of microglial phagocytosis, chemotaxis, survival, and proliferation is the cell 

surface receptor known as TREM2. The risk of AD is increased two to four times by R47H, a 

mutation causing TREM2 to lose function, which is comparable to the risk brought on by 

inheriting a single copy of the APOE e4 variation. All three APOE isoforms as well as other 

lipoprotein particles are bound by TREM2.[3] When TREM2 is mutated due to a disease, less 

TREM2-APOE binding occurs, which is thought to have an impact on AD pathogenesis. The 

loss of microglia's ability to maintain homeostasis and subsequent neurodegeneration are 

caused by APOE-TREM2 crosstalk, which causes a transcriptomic modification in AD 

microglia. The signs of familial AD (FAD) appear before the age of 60, or perhaps before 55. 

In comparison to people with no family history of AD, those in the following sibling or even 

the next generation are more prone to have the condition if one or more family members have 

been diagnosed with AD (Alzheimer's Association, 2018). Presenilin 1 (PSEN1), presenilin 2 

(PSEN2), and the amyloid precursor protein (APP) all contain mutations that are related to 

FAD. Each of the above genetic elements linked to SAD and FAD and the mismatch between 

amyloid-(Aβ) plaque formation and elimination are important. [1] 

 Pathology 



Amyloid Beta plaque aggregation and build-up, along with NFTs are the primary cause of AD, 

according to compelling, though not conclusive, evidence from research conducted in the last 

20 years, The "amyloid hypothesis" or "amyloid cascade hypothesis" refers to this idea. NFTs 

develop inside neurons, whereas A plaques amass outside of cells. A plaque and NFT build-up 

cause neurodegeneration, which results in the death of synaptic and neurotransmitters.[1] A-

beta is formed through the progressive degradation of amyloid precursor protein with the 

BACE1, a secretase, a protein complex including presellin1, presellin2 as its enzymatic 

component 37–43 amino acid A–peptides are produced as a result of processing APP, with A–

42 being the most hazardous. Due to the A peptides' resistance to proteolytic breakdown and 

an imbalance between their synthesis and elimination, A builds up and causes A -beta plaques 

to form. A-beta is capable of spontaneous self-assembly and coexistence with many physical 

forms. One of the variants has intermediate assemblies made up of oligomers of 2–6 peptides. 

A can also form fibrils, which come together to form sheets with pleats and become insoluble 

fibres that form advance amyloid plaques. The most damaging forms of A are thought to be 

intermediate amyloids and soluble oligomers.[2] In the brain, neurolysin and insulin degrading 

enzyme (IDE) break down A peptides. Ageing and AD both result in decreased expression of 

IDE and neurolysin, which upsets the homeostasis of A-beta. NFT production and 

accumulation, which are primarily composed of tau protein that has been hyperphosphorylated, 

is another defining feature of AD. The soluble protein tau, which is found in neurons, is crucial 

for preserving the stability of microtubules. In addition to facilitating healthy axonal transport 

and neuronal growth, microtubules give neurons structural support Tau becomes insoluble, 

loses its affinity for microtubules, and forms paired helical filamentous formations when it is 

hyperphosphorylated.[3] Tau's turnover is further decreased in comparison to normal tau due 

to hyperphosphorylation, which also makes tau resistant to being degraded by calcium 

triggered neutral proteases. Like A-beta plaques, hyperphosphorylated tau intermediate 

aggregation is hazardous and causes cognitive impairment Changes in tau protein are typically 

thought to be downstream of A in the pathology of AD, however in certain cases, since memory 

loss caused by tau gene mutations lacks amyloid plaques, it's possible that tau and A-beta 

plaques work independently or perhaps even together to increase each other's toxicity. Recent 

research investigations indicate both A-beta and tau plaques have an immediate impact in the 

pathophysiology of AD. research has highlighted the critical role that inflammation plays in 

the pathophysiology of AD. Microglia, known as the brain's native immune system cells, are 

important in AD-related activation. Microglia gather in close proximity to amyloid and phago 

cytoses it to get rid of them. If the plaques become complexed with apoE, clustering, and lipo-



proteins with a low density, the process succeeds better.[4] Via CD 36 and the toll-type receptor 

4 and 6 heterodimer, A-beta engages with microglia. Inflammasome NLRP3 appears to be 

activated by this interaction, leading to the release of IL-1. Long-term production of these 

cytokines promotes disease pathophysiology and is cytotoxic. 

 Function and structure of mitochondrial DNA 

The super-coiled, elliptical dual-stranded human mtDNA, it measures 16,569 base pairs and 

encodes 37-genes required for oxidative phosphorylation and MT-protein synthesis, was first 

discovered in 1963.  The inner mitochondrial membrane is home to five multi-subunit enzyme 

complexes that make up the OXPHOS system. The mtDNA codes for 13protein subunits, In 

additional to these 13 parts, the mtDNA also encodes for 22 tRNAs and 2 rRNAs, one or more 

of the necessary subunits for the Complex I, Complex III, and cytochrome operator. The 

heavier strand and lighter strand of mtDNA are differentiated as such because the first one is 

guanine rich and the one that follows is cytosine rich. 9-genes are encoded on the L strand after 

the initial 28 genes, which are all on the H-strand.[5] 

 Multiple copies in mitochondria are found in cells 

The bulk of cells contain 1,000 mitochondrial genomes. The nuclear genome, in contrast, is 

only present in two copies per cell. The requirement for energy by a cell often affects the 

numbers of mtDNA molecules. The process of replicating mtDNA is unrelated to Just a handful 

of recognised enzymes play a part as well as the cell phase. Two of these actors are the mtDNA 

helicase Twinkle and the mitochondrial polymerase POLG; Both mtDNA deficiencies and 

infections of the mitochondria have been attributed to polymorphisms in either of these genes. 

A single cell frequently contains both mutant and the normal form strands of mtDNA as in 

result of this high copy number (mtDNA heteroplasmy). Because of the independence of 

mtDNA replication from the cell cycle and the possibility of mtDNA segregation Heteroplasmy 

levels change dynamically during replication and can fluctuate over the course of an organism's 

both post-mitotic and mitotic cells and tissues throughout their existence. The percentage of 

heteroplasmy is a significant determinant in determining the clinical severity of mitochondrial 

disorders, along with the type of mutation.[5] For reduced mitochondrial function and 

phenotypic development, The fraction of mutated mtDNA must pass a biological threshold. 

Although the mutation affects this threshold, the cell heteroplasmy threshold values can range 

between - and tissue-type. A discernible phenotype must be present between 70% and 90%. 

The central nervous system is impacted by mitochondrial DNA disorders. Studies conducted 

over the past few decades have shown that Increased ROS and mtDNA damage don't seem to 



be related in any way. There are several mitochondrial disorders that also include CNS 

impairment, however heteroplasmy levels can differ. 

Additionally, several neurodegenerative illnesses, many of which have altered or damaged 

mtDNA and some of which have generalised oxidative damage, are defined by mitochondrial 

malfunction. The pathogenesis of many neurodegenerative diseases and disorders that include 

mtDNA will be covered in the sections that follow, along with how mtDNA mutations may 

impact ROS levels. In the past 30 years, more than 330 harmful point mutations in human 

mtDNA have been discovered. The mtDNA molecule contains these mutations all over it. 

Mitochondrial encephalopathies are caused by several of these point mutations. Investigations 

into the causes and effects of these mutations are ongoing.[5] 

 Age-related neurodegeneration, mitochondrial DNA abnormalities, reactive 

oxygen species 

oxidative damage, and mitochondrial malfunction are associated with age-related 

neurodegenerative disorders. Correlations between disease progression and higher ROS in 

various age-related neurodegenerative disorders suggest mitochondrial malfunction. There is, 

however, no solid proof that mtDNA damage or mutation, particularly the widespread deletion, 

contributes to illness development.[2] 

The most common late-onset progressive neurodegenerative condition AD, bears a connection 

to defects in cytochrome c oxidase. The cortex and hippocampus are the two areas where 

amyloid beta fragments most frequently form cytotoxic plaques. A-beta fragments have a 

deleterious impact on mitochondrial function, indicating that A poisoning is the cause of 

mitochondrial malfunction. Cytotoxic plaques made of amyloid beta fragments are more 

frequently found in the cortex and hippocampus. Amyloid beta fragments impair mitochondrial 

function, indicating that the dysfunction of the mitochondria is a result of the toxicity of 

amyloid beta. According to the "mitochondrial cascade hypothesis for AD", a person’s genes 

control the intrinsic synthesis of ROS, which in turn regulates how severe oxidative damage 

takes place. The respiratory chain's protein-making genes are controlled by this. Furthermore, 

it was hypothesised that when oxidative mtDNA damage accumulated, this would eventually 

result in decreasing Amyloid beta toxicity, elevated oxidative stress, and ATP levels would all 

contribute to the neurodegenerative process.[3] 

Even though the pathophysiology of the disease has not been linked to a causative mtDNA 

mutation in AD patients, it has been discovered that AD patients had a higher overall burden 



of rare point mutations than juvenile control systems, but not regulates of the same age. While 

evaluating for the presence of mtDNA damage in victims, the late phases of AD deterioration, 

where motor neurons with large amounts of mtDNA damage may have essentially gone, are of 

interest. In the hippocampus of early-stage of the AD patients, there was an increase in the 

frequency of mtDNA mutations; However, it was found that replication errors, not oxidative 

damage, were to blame for these mutations. The prevalence of the common mutation in AD 

patients as well as controls with comparable ages has been the subject to several investigations 

have produced negative results. Furthermore, there is controversy surrounding research 

examining different mtDNA haplo-groups as potential AD risk variables. [1] 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER-3 

MATERIALS AND METHODS 

 

3.1 RETRIEVING SEQUENCE DATA 

 The National Centre for Biotechnology Information (NCBI) Genome repository   



(http://www.ncbi.nlm.nih.gov/Genbank/) provided the CDS of all the MT ND, TAMM41, 

PTGS1 for this investigation and all these sequences were downloaded in FASTA format. 

Details are available in Table 1. 

 

 

Table:1. Representation of nucleotide and protein length obtained from NCBI. 

 

 

 

 

 

3.2 STRING database analysis of protein-coding genes  

A complex network of functional relationships between biomolecules is essential for cellular 

life. Due to their flexibility, specificity, and variety, protein-protein interactions among these 

connections are highly significant. With its STRING database, assemble all previously 

MITOCHONDRIAL AND OTHER 

PROTEIN-CODING GENES USED IN 

THIS STUDY 

NUCLEOTIDE 

(Length in bp) 

PROTEIN 

(Length in aa) 

MT-ND1 955bp 318aa 

MT-ND2 1,041bp 347aa 

MT-ND3 345bp 115aa 

MT-ND4 1,377bp 459aa 

MT-ND4L 296bp 98aa 

MT-ND5 1,811bp 603aa 

MT-ND6 524bp 172aa 

TAMM41 1,359bp 452aa 

PTGS1 1,614bp 537aa 



identified and projected protein relationships, encompassing both physical and functional 

exchanges. In order to do this, STRING gathers and grades data. from several sources, such as 

automatic text mining databases of interaction, scientific literature experiments and 

pathways/complexes with annotations, computational predictions of interactions based on co-

expression and consistent evidence of interactions, and preserved genomic context between 

different organisms.  With more than 14 000 creatures in the upcoming version 11.5 of the 

library, STRING promises to provide comprehensive coverage.[6] 

 

FIGURE:1.Diagrammatic representation of the processes involved in evolutionary analysis. 

 

 

 

 

 

3.3 CODON USAGE BIAS (CUB) ANALYSIS  

3.3.1 Compositional Analysis  



Using CAIcal Software, the compositional characteristics of the MT ND gene family, 

TAMM41, PTGS1 gene were examined. The overall nucleotide sequence composition (A, C, 

T, G, GC%), the third position's nucleotide makeup (A3, C3, T3, G3, GC3%), the content of 

GC The top three codon positions, respectively, and the overall GC content (AT, GC) were 

some of these features. [6] 

 

Table:2.  List of compositions of MT-ND family obtained from various tools and 

calculations. 

 

3.3.2 Effective number of codons (ENC) 

It can be applied to evaluate codon usage bias. A greater ENC value indicates less codon use 

bias, and vice versa. For Table 1, the ENC of a cds can be calculated as Nc = 2 + 7/F2 + 3/F3 

+ 6/F4 + 1/F6 + 1/F8 wherein Fk is the mean of Fk readings for k-folding deformed amino 

acids.   The COUSIN tool was used to determine the ENC values.[7] 

Table:3.  Effective number of codon data obtained from COUSIN tool. 

Gene A% T% G% C% %GC %A(3) %T(3) %G(3) %C(3) %GC(3) 

ND1 28 26 11 35 47.649 36.991 11.285 5.329 46.395 51.724 

ND2 31 27 9 33 42.939 36.888 16.427 5.476 41.21 46.686 

ND3 29 32 10 29 40.58 42.609 14.783 4.348 38.261 42.609 

ND4 30 27 9 34 44.299 38.344 14.161 3.704 43.791 47.495 

ND4L 29 29 12 30 42.761 39.394 16.162 6.061 38.384 44.444 

ND5 30 26 10 34 44.868 35.43 15.232 3.642 45.695 49.338 

ND6 33 24 9 34 42.476 20 41.143 35.429 3.429 38.857 

TAMM41 26 28 22 24 46.799 21.192 33.775 17.881 27.152 45.033 

PTGS1 22 26 25 27 35.311 31.356 32.203 16.102 20.339 36.441 



GENE ENC 

ND1 34.281 

ND2 40.103 

ND3 31.587 

ND4 38.624 

ND4L 32.757 

ND5 41.596 

ND6 31.988 

TAMM41 47.152 

PTGS1 35.937 

 3.3.3 CAI Evaluation 

Based on the codon sequence of a gene uses the CAI as a quantitative technique to forecast the 

degree of gene expression.  The CAI value is between 0 and 1. The highest relative adaptiveness 

values are simply found in the most frequent codons, and greater CAI sequences are favoured 

over lower CAI sequences. The COUSIN tool was used to calculate the CAI values.  [8] 

Table:4.  Codon adaptive index data obtained from COUSIN/CaLcaI calculator. 

GENE CAI 

ND1 0.795 

ND2 0.721 

ND3 0.791 

ND4 0.774 

ND4L 0.751 

ND5 0.768 

ND6 0.598 

PTGS1 0.475 

TAMM41 0.499 

 

3.3.4 Correlation Analysis  



Correlation analysis was carried out between several aspects of the data to determine the 

connection between identical codon usage behaviours and sequence the material's composition. 

The Spearman's rank correlation analysis is used to do this analysis. All statistical operations 

were performed using the Windows version of SPSS 16.0.[9] 

 3.3.5 Neutrality plot Analysis  

A regression equation of GC12 on GC3 is taken to describe a relationship between the GC 

coding for proteins genes' components.  This technique is referred to as neutrality plot analysis. 

The scatter plot in this instance plots the GC12 values as the ordinate and the GC3 values as 

the X-axis. Alternatively put, the graph measures the influence of mutation pressure and 

natural0selection on the pattern of codon usage If it is determined that every gene has a narrow 

GC3 distribution, the plot may indicate minimal mutational bias or higher GC content 

conservation.[9],[10] 

 

Table:5.  Data for neutrality plot analysis where the average of GC12% (GC contents at the 

first and second codon positions) taken in account with the respect of GC1, GC2, GC3% 

GENE AVERAGE [GC12] %GC (1)      %GC (2) %GC (3) 

ND1 45.6115 49.53 41.693 51.724 

ND2 41.066 41.21 40.922 46.686 

ND3 39.565 46.087 33.043 42.609 

ND4 42.7015 45.752 39.651 47.495 

ND4L 41.919 51.515 32.323 44.444 

ND5 42.6325 45.199 40.066 49.338 

ND6 44.286 51.429 37.143 38.857 

TAMM41 47.682 48.344 47.02 45.033 

PTGS1 34.7455 35.593 33.898 36.441 

 



FIGURE:1s. Diagrammatic representation of the processes involved in genomic and 

functional analysis with the respect of tools used. 

 

3.4 IDENTIFYING DELETERIOUS MISSESNSE nsSNPs  

3.4.1 DETECTION OF DELETERIOUS nsSNPs USING SEQUENCE 

BASED TOOLS 

 

3.4.1.1 PANTHER 

PANTHER (protein analysis through evolutionary relationship) categorization system in 

bioinformatics is a sizable biological database that has been carefully maintained and contains 

gene and protein categories and its functionally related sub-categories.[10] It is applied in 

classification and gene products and determine their functions. The GO Reference Genomic 

Project, which was started to coordinate proteins and their genes for enormous throughput 

research, includes PANTHER as its member [8] 176 pathways are included in PANTHER 

utilising the Cell Designer tool. The following file types are available for downloading 

PANTHER paths. 

 Systems Biology Graphical Notation (SBGN-ML)  

 Systems Biology Markup Language (SBML) 

 Bio PAX  



We used this tool from bio. Tools/panther http://www.pantherdb.org/tools/ Where 

VARIENT rs IDs are the input, selecting homo-sapiens as the needed organism and its 

functional classification is viewed in the gene list. 

 

3.4.1.2. SNAP-2 

In order to classify genetic variation as having an effect (+100, strongly anticipated) or being 

neutral (-100, strongly predicted), SNAP2, a bioinformatic tool based on neural networks, 

examines the solvent accessibility of native and mutant proteins.[11] uses neural networks to 

predict the impact of single amino acid changes (SNPs). demonstrates prediction results as a 

heatmap.[12]  

We used this tool from bio. Tools/snap2 https://github.com/Rostlab/SNAP2 where the 

protein sequence is in a FASTA format and we go for run prediction. 

 

3.4.1.3. PhD-SNP 

The PhD-SNP is web service provides an intuitive user interface for predicting effects of SNVs 

both in code and without coding domains.[14] PhD-SNP's standalone version is simple to 

install and use on typical laptop computers. It can predict the consequences of 1,000 SNVs in 

around two minutes. When the programme is running in web mode, this time rises based on 

the network speed.[15] Despite having basic input features, PhD-SNP performs on par with 

cutting-edge techniques that demand more data and resources. This makes PhD-SNP both a 

baseline benchmark tool for comparing predictors based on less complex input variables and a 

trustworthy and movable instrument for evaluating the effects of new variations.[16] 

We used this tool using https://snps.biofold.org/phd-snp/phd-snp.html where the nucleotide 

number of proteins in FASTA format is input and the query will be submitted after selecting 

normal residue, and mutated residue at the specific position of the Amino acid. 

 

3.4.1.4. META-SNP 

In human DNA, SNPs One of the most prevalent kind of variants in genes. A haplotype is the 

set of SNPs present in each of a diploid organism's two copies of a certain chromosome.[17] 

http://www.pantherdb.org/tools/
https://github.com/Rostlab/SNAP2
https://snps.biofold.org/phd-snp/phd-snp.html


Numerous uses for haplotype data include medication development and the diagnosis of 

genetic diseases.[18] These meta servers aggregate the outcomes predicted by several in silico 

technologies to create a consensus forecast for a specific SNV. Meta-SNP integrates the results 

of in silico technologies using a random forest technique. It is determined whether a mutation 

is "Disease" or "Neutral" [19]. 

 We used this tool using http://snps.biofold.org/meta-snp where amino acid sequence and the 

list of mutations are put as input and after submit the query the output will be send via email.  

 

3.4.1.5. SIFT 

To locate, describe, and match local features in images, David Lowe developed the scale-

invariant feature transform (SIFT) in 1999.[20] The SIFT feature descriptor can robustly 

distinguish objects even among clutter and when partially obscured since it is invariant to 

uniform scaling, orientation, light variations, and affine distortion.[20][21][22] The original 

SIFT method is briefly described in this section, along with a few competing approaches for 

object recognition in the presence of partial occlusion and clutter. In order to choose local scale 

invariant reference frames for the SIFT descriptor, receptive field measurements of pictures are 

used.[22]  

We used this tool using https://sift.bii.a-star.edu.sg/www/SIFT_seq_submit2.html Where 

Protein sequence and the substitutions of the interest are used as input file the output file will 

sort the INTOLERANT mutations from the tolerant ones. 

 

 

 

 

 

 

 

 

http://snps.biofold.org/meta-snp
https://sift.bii.a-star.edu.sg/www/SIFT_seq_submit2.html


3.4.2. DELETERIOUS nsSNPs INDENTIFICATION USING STRUCTCTURE BASED 

TOOLS 

Five Structure based tools were used to analyse the variation in the stability of the protein-

coding genes of mitochondria caused by the missense SNPs that were analysed as deleterious 

by the sequenced based tools. CUPSAT, MUpro, SNPs&GO3d, Align-GVGD, DynaMut are 

the five tools that analysed the protein stability and dynamics by missense SNPs. 

 

3.4.2.1. CUPSAT  

The online communication CUPSA service analyses and forecasts modifications to protein 

equilibrium caused by single specific amino acid mutations in points. .[23] This tool makes 

predictions about the DeltaDeltaG variation in the free energy of unfolded among the original 

and defective proteins utilising torsion angle the ability and structural environment-specific 

atom capabilities.[23] The position of the residue must be altered, and the protein structure 

must be in Protein Data Bank format. [24] It also examines how well the mutant amino-acids 

can adjust to the measured torsion angles.[23] 

We used this tool using http://cupsat.tu-bs.de/ where we predict mutant stability from existing 

PDB structure. 5XTC is the input for the MT-ND family gene, we go for the one amino acid 

stability prediction, input is set for prediction stability. 

 

3.4.2.2. MU-pro 

Another online bioinformatical tool that forecasts a protein's stability is MUpro. This web 

server was created using two machine learning techniques that forecast the frequency of single 

site amino acid mutation on protein stability: Support Vector Machines and Neural 

Networks.[26][27] Both of them computed a score that ranged from 1 to 1 as the prediction 

reliability after being trained using a large amount of mutation data with an accuracy of more 

than 84%.[28] 

We used this tool using  http://mupro.proteomics.ics.uci.edu/ where protein id 5XTC is used 

as an input, where original amino means wild type of amino acid and substituent amino acid is 

the mutated amino acid. Input is ready to predict the result.  

 

http://cupsat.tu-bs.de/
http://mupro.proteomics.ics.uci.edu/


3.4.2.3. SNPs & GO 

A technique called SNPs&GO uses protein functional annotation to predict harmful Single 

Amino Acid Polymorphisms (SAPs).[29] The web server implementation of SNPs&GO (WS-

SNPs&GO) is presented in this paper. For a specific protein, the server's input consists of its 

sequence and/or three-dimensional structure (where available), a group of target variants, and 

its functional Gene Ontology (GO) keywords. The server is based on Support Vector Machines 

(SVM).[30] The server's output lists the likelihood that each protein variant will be linked to 

human diseases.[31] 

We used this tool using  http://snps-and-go.biocomp.unibo.it/snps-and-go/index.html where 

the input parameter for the output is the UNIPROT the accession Information, the change site, 

the unmodified type residue, and the replacing residue. 

 

3.4.2.4. Align GVGD 

Align-GVGD accepts MSAs, and for each alignment column with a substitution, It determines 

a score for sustainability, a  biochemical distance score (extension of the pairwise Grantham 

difference, GD), and both.[32][33] Based on the observed values of GD and GV substitutions, 

substitutions are divided into seven classes: C0,15,25,35,45,55,65from those that are less 

inclined to impede functionality to those that are most probably to do so.  [34] 

We used this tool using  http://agvgd.hci.utah.edu/ where the input file is of protein sequence 

with the list of mutations. 

 

3.4.2.5. DynaMut 

DynaMut, a web server that implements two independent, well-recognized normal mode 

techniques, which samples configurations to investigate and display protein dynamics, is used 

to evaluate the impact of polymorphisms on protein dynamics and stability brought on by 

changes in vibrational analysis entropy..[35] By attaining a correlation of upto 0.700 in bliend 

test , we show that our approach surpasses competing approaches at predicting the impact of 

mutations on stability and flexibilityof protein  (P-value 0.001). Additionally, DynaMut offers 

a complete suite for the investigation and visualisation of protein motion and flexibility.[37] 

http://snps-and-go.biocomp.unibo.it/snps-and-go/index.html
http://agvgd.hci.utah.edu/


We used this tool using  http://biosig.unimelb.edu.au/dynamut/ where we search the mutation 

effect analysis. Where the PDB id is used as the input with the detailed list of mutation, by 

selecting the chains of protein. 

 

3.5 EVOLUTIONARY CONSERVATION ANALYSIS  

A tool named ConSurf is used to map areas of protein surfaces with known 3D structures that 

have undergone evolutionary conservation.[41] It employs the alignment of sequence 

homologues of proteins whose structures are known to create phylogenetic trees. The assumed 

amino acid swaps that took place during the protein's evolution are then inferred from the 

trees.[42] The physicochemical distance between the swapped amino acid is then used to 

weight each exchange.  Sequence data is used in the ConSurf computation, but the findings are 

more instructive when shown on the macromolecule's 3D structure or a model of it.[43] 

We used this tool using https://consurfdb.tau.ac.il/ where the 5XTC is the protein ID (PDB) 

as input and select chain for different MT-ND family genes. We had performed the 

conservation analysis on those four mutations which are detected as deleterious in the structure-

based analysis. 

 

3.6 ANALYSIS OF SECONDARY STRUCTURE 

The term "protein secondary structure" refers to the local spatial shape of the polypeptide 

backbone absent of side chains.[47] Beta twists and omega loops also occur, but α helices and 

β sheets are the two structural elements that are most frequently observed.[48]. The SOPMA 

bioinformatical programme is utilised with the default parameter settings.  To determine a 

protein's secondary structure, this server combines a neural network method (PHD) and a self-

optimized prediction method.[40] 

We used this tool using https://npsa-prabi.ibcp.fr/ where protein sequence in FASTA format 

without header is the main input. Submit the query with the default parameters. 

 

 

 

http://biosig.unimelb.edu.au/dynamut/
https://consurfdb.tau.ac.il/
https://npsa-prabi.ibcp.fr/


3.6.1 STRUCTURAL EFFECTS  

NetSurf.2.0 tool was used to know, if there are any structural changes arises after the 

mutation.[51] 

We used this tool using https://services.healthtech.dtu.dk/services/NetSurfP-2.0/ where the 

protein sequence is the input, after submitting the query the outputs are visible on the screen. 

After that open this link in the new tab make changes in the protein sequence where you a have 

got the mutation. As I made changes at position 285 from L to P (L285P). similarly do this for 

all the mutations we get from structure-based tools. 

 

3.7PHENOTYPIC CONSEQUENCES OF THE SCREENED MUTATIONS ANALYSIS 

The investigation of the phenotypic effects of 4 mutations was done using the FATHMM 

programme. The phenotypic associations chosen were those from the "Human Phenotype 

Ontology" and the prediction technique utilised was the unweighted algorithm under the 

"Inherited Disease" section.[54] The PDB ID and replacement make up the input. FATHMM 

gives each prediction a confidence value (a p-score) in order to facilitate interpretation and 

focus investigation on a small number of high-confidence forecasts.[55] 

 

3.8 STRUCTURAL EFFECTS OF DELETERIOUS nsSNPs 

HOPE server was used to visualize and analyze the mutations. HOPE stands for Have Your 

Protein Explained server. HOPE elucidates the molecular basis of a trait associated with a 

disease produced by changes in human proteins.[59] 

 

 

 

 

 

 

 

https://services.healthtech.dtu.dk/services/NetSurfP-2.0/


CHAPTER-4 

RESULTS 

 

FUNCTIONAL AND EVOLUTIONARY ANALYSIS 

4.1 STRING DATABASE ANALYSIS 

4.1.1. INTERACTION ANALYSIS 

 

Figure 2. shows the 13-MT protein-coding genes interaction network retrieved from the 

STRING database. Then the network was built between the 7 MT-ND family genes, TAMM41 

and PTGS1 as these are nuclear related mitochondrial genes present in the mitochondrial inner 

membrane and shows their impact in Alzheimer’s Disease. The input was MT-ND, TAMM41, 

PTGS1 and the organism was “HOMO SAPIENS”. The protein coding genes are represented 

by nodes whereas their interactions with the edges, different colours of edges have different 

meaning. Blue colour edge represent that the interaction is from curated databases, purple 

colour represents the experimentally determined interaction, green, red, dark blue colours 

represent the predicted interactions. Text mining interaction is represented by the yellow 

colour, co-expression by brown and protein homology by light blue.  

 

FIGURE:2.  shows the interaction between the 13 -protein-coding genes of mitochondria. 

Here the interaction between the genes shows their physical and functional relation. Now we 

perform the interaction analysis between the 7 protein - coding genes of mitochondria, 

TAMM41 and PTGS1. Where PTGS1 shows its physical and functional relation with other 



mitochondrial genes but TAMM41 does not shows any interaction at the PPI enrichment p-

value: <1.0e-16 as shown in figure3.  

 

 

 

 

 

 

 

FIGURE:3. shows the interaction of query genes i.e, MT-ND family genes and, PTGS1, 

TAMM41. Which shows the that there is no interaction of TAMM41 Gene with early 

interacting partners. 

 

The STRING database's enrichment tools allow us to create a sizable network with 145 nodes 

and 5291 edges, an average node degree of 71, and an average local clustering coefficient of 

0.82. The network's PPI enrichment p-value of 1.0e-16 indicates that it had significantly more 

interactions than predicted. Which leads to this extensive node network where TAMM41 

demonstrates its interaction with additional guilty genes. 

 

 

 

 

 

 

 

FIGURE:4. Shows the interaction of TAMM41 with the cluster after 145 nodes. 



4.2. CODON USAGE BIAS ANALYSIS  

4.2.1 COMPOSITIONAL ANALYSIS  

 

compositional features of the 7-protein-coding mitochondrial genes, TAMM41, PTGS1. 

One of the most significant variables that could have a major impact on the research of CUB 

is the base composition of the genes. [2]. So, here we observed the base composition of 7 

mitochondrial ND genes, TAMM41, PTGS1 from the data shown in table 2 figure3, it was 

observed that the average AT level was greater than the average GC material overall.   

(34.05556 ,31.83333 respectively) similar trend is seen between the overall mean AT 

percentage at 3rd codon position and GC percentage at 3rd codon position (55.263 and 44.736 

respectively). At 3rd codon position A, T, G, C Trend shows C3% is slightly greater than A3% 

(33.85067 and 33.57822 respectively) and T3% is greater than G3% (21.68567 and 10.88578 

respectively). Trend goes like C3%> A3%> T3%> G3%. The similar trend is seen between the 

bases at the first codon position C%> A%> T3%>G% (31.11111, 28.66667, 27.2222, and 13 

respectively). 

This points to a disparate dispersion of the codons A, T, G, C in all the supplied genes, 

indicating a stronger preference for C in the composition. Therefore, base G shows the lowest 

contribution compared to other bases, according to an analysis of the overall nucleotide 

composition. 

 

FIGURE:5. Comparative analysis of nucleotide compositions of MT-ND family genes, 

TAMM41, PTGS1 
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4.2.2 ENC ANALYSIS  

To gauge the degree of codon, use fluctuation [8] among 7 mitochondrial ND genes, TAMM41, 

PTGS1.The ENC value was calculated for each gene as shown in table 3. The ENC value 

ranged between 31.988 to 47.152, with the mean value of 37.1139 shown in figure 6, which is 

less than 40(ENC <40) represents unstable. ENC shows the conserved genomic composition 

of a genome [8]. In real ENC is inversely related to the expression of the genes [8]. This means 

if the value of ENC is lower than 40 then it indicates the higher expression of genes and high 

preference to codon usage bias. our results show the lower ENC Value that indicated the high 

gene expression and high codon usage which results in slightly biased and would be affect the 

base composition.  

  

FIGURE:6.  Comparative analysis ENC of MT-ND family genes, TAMM41, PTGS1 
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4.2.3 CODON ADAPTIVE INDEX ANALYSIS  

Codon adaptive index (CAI) is frequently used to gauge gene expression levels and evaluate 

adaptations. [8]. Higher gene expression shoes the strong codon usage bias. As opposed to the 

CAI, which measures the deviation of a gene's coding regions, we calculated the ENC value, 

which displays the deviation from the uniform bias. The MT-ND genes, TAMM41, and PTGS1 

coding sequences have been used to determine CAI in this case. CAI values ranges from 0.475 

to 0.795 (CAI should range between 0 - 1) with the mean of 0.6857. which shows the higher 

CAI value and results in higher gene expression of the gene as shows in figure7. 

  

FIGURE:7. Comparative analysis CAI of MT-ND family genes, TAMM41, PTGS1 

 

4.2.2 CORRELATION ANALYSIS  

 Correlation between AT and GC: 

In codon usage bias analysis, correlation plays an important role to know the significant effect. 

Firstly, the Study of the relationship among the AT with GC values of the protein coding genes 

of Mitochondria, PTGS1, TAMM41. The +VE GC value demonstrates the depth of the base G 

over C nucleotide, whereas the -VE correlation means the depth of nucleotide C above G. 

similarly the trend is followed by the AT bases. After analysing the average AT and GC values 

across every gene we analyse that AT and GC shows negative correlation within themselves (-

151 pearson correlation, with the significance of 0.698) which suggests the preference of T 

more than A, and C is more preferred than G.  
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 Correlation between nucleotides at 1st and 3rd codon positions: 

Secondly it is performed between the all the DNA bases at first codon site and third codon 

position. From our study we observed that A shows positive correlation with base A3 with 

0.041 pearson correlation value and at significant value of 0.917, which is greater than 0.01 

and 0.05, which indicates its less significant appearance. T shows negative pearson correlation 

with T3 ( -0.431). G shows its positive pearson correlation value (0.260) with G3. C also 

commits positive correlation value with C3 (0.289). whereas GC shows its positive correlation 

with the GC3 (0.829**). These values shows that the bases in some genes are significantly 

affected while others are not. 

 Correlation between codon usage bias and SCS and CAI: 

Scaled chi-square is one of the another parameter of codon bias, it gives path to CUB [5]. 

Whereas the comparable index among CUB and its reference set is measured by the codon 

adaptable value.  They both are directional measures and both shows positive correlation with 

each other. The correlation analysis was performed between the different nucleotide skews, 

after evaluating the relationship between the gene expression level and codon utilisation bias, 

we found that CAI significantly -VE correlates with G, T3, G3 ( -0.838**, -0.885**, and -

0.702* respectively) whereas shoes a significant +VE relation with C, A3, and C3 (0.0675*, 

0.814**, and 0.742*respectively). SCS shows a negative relation with T, G, AT, GC, T3, and 

G3, ( -0.435, -0.264, -0.130, -0.018, -0.148, -0. 129 respectively) but the significance level 

wasn`t related to 0.001, 0.005. 

This demonstrates that the level of protein expression is regulated by either reduced or raised 

nucleotide skews. 

 Correlation between length and bias in utilising codons: 

 The Scaled-chi-square values are statistically +ve correlated among length of the genes 

pretended to be associated in Alzheimer`s disease (r=0.770*, p=0.15).  

 

 

 

 

4.2.4 NEUTRALITY PLOT ANALYSIS  



By plotting GC12 versus GC3 a neutrality plot was created. Plot demonstrates a significant 

association among GC12, GC, and as the regressive line's gradient gets close to one, it implies 

that the dominant evolutionary force is the influence of mutation pressure. If there is no 

discernible relationship between them, it seems that the process of selection by nature might 

have been involved. [2]. TAMM41, PTGS1, and 7 MT-ND genes' three GC codon locations' 

relationships should be shown. Using GC12 as the Y-axis and GC3 as the X-axis, a plot was 

created.  

The analysis shows a significant relation within GC12 and GC3. Moreover, it shows the 

regression coefficient value of GC12 on GC3 as 0.3207, which indicates the mutation pressure 

of 32.07% and the magnitude of natural selection will 67.93%. this suggests the role of natural 

selection was higher than mutation pressure. As we know we are working with the 

mitochondrial genes where the mutations are less. 

  

FIGURE 8: neutrality plot analysis of MT-ND family genes, TAMM41, PTGS1 

 To know the effect of mutation pressure we will further perform the genomic analysis 

in where we will try to find the deleterious SNPs. 

 

 

 

4.3 Prediction of deleterious missense nsSNPs (sequence-based tool) 
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 MT-ND1  

 In order to distinguish harmful nsSNPs from neutral ones, many web servers were set 

up. First, the missense nsSNPs from the NCBI-SNP database were sent to the 

PANTHER software programme,[40] which can be used to determine whether a 

specific change in an amino acid has an effect on a protein's biological functions. By 

using a carefully curated database of the gene or protein family, this programme can 

detect and categorise the various gene products' roles. PANTHER identified 23 nsSNPs 

as potentially harmful out of 27 nsSNPs.[38] tools such as The HIDDEN MARKOV 

MODEL (HMM), which determines whether the nsSNP is related with a disease, is the 

basis for SNAP2, a web server.[40] PhD-SNP is a predictor of human harmful SNPs 

based on support vector machines (SVM). Out of 27, they projected 10, 14, or nsSNPs 

as harmful.[38] Other methods include Meta-SNP and SIFT, which respectively 

indicate 13,12 nsSNPs as harmful. 

 

Table:6. Table of nsSNPs deemed to be damaging by 5-sequence-based tool in all the 

mitochondrial protein-coding genes MT-ND1 GENE. 

VARIENT ID MUTATION PANTHER SNAP2 PhD-SNP Meta-SNP SIFT 

rs199476118 

 

A52T 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs199476119 

 

L285P 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs199476121 

 

Y277C 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs199476122 

 

G131S 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs199476123 

 

E214K 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs199476124 

 

Y215H 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs199476125 

 

E143K 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 



rs397515508 

 

A132T 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs397515612 

 

E59K 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs1603218926 

 

R25Q 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

 

 MT-ND2  

The five sequence-based techniques were utilised to analyse the harmful nsSNPs in the MT-

ND2 gene. Web-based tools PANTHER, SNAP-2, PhD-SNP, Meta-SNP, and SIFT classify 

10, 3, 3, 2, and 2 of the total 31 nsSNPs as harmful, respectively.   

 

Table:7. Table of nsSNPs deemed to be damaging by 5-sequence-based tool in all the 

mitochondrial protein-coding genes of MT-ND2 GENE. 

 

 

 

 

 

 MT-ND3 

VARIENT ID MUTATION PANTHER SNAP2 PhD-SNP Meta-SNP SIFT 

rs199476115  

 

G259S 

 

probably 

damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs267606889 

 

L71P 

 

probably 

damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs387906426 

 

I57M 

 

probably 

damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 



The five sequence-based techniques were utilised to analyse the harmful nsSNPs in the MT-

ND3 gene. Web-based tools PANTHER, SNAP-2, PhD-SNP, Meta-SNP, and SIFT identify 4, 

7, 5, 3, and 2 of the total 38 nsSNPs as harmful, respectively.   

Table:8. Table of nsSNPs deemed to be damaging by 5-sequence-based tool in all the 

mitochondrial protein-coding genes of MT-ND3 GENE. 

 

 MT-ND4 

To analyse the harmful nsSNPs in the MT-ND4 gene, five sequence-based techniques were 

employed. In all, 45 nsSNPs were analysed using the web-based programmes PANTHER, 

SNAP-2, PhD-SNP, Meta-SNP, and SIFT. Of them, 4, 4, 3, 3, 4 were shown to be harmful.   

 

Table:9. Table of nsSNPs deemed to be damaging by 5-sequence-based tool in all the 

mitochondrial protein-coding genes of MT-ND4 GENE. 

VARIENT ID MUTATION PANTHER SNAP2 PhD-SNP Meta-SNP SIFT 

rs587776438 

 

D66N 

 

probably 

damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs587780529 

 

Q26K 

 

probably 

damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

VARIENT ID MUTATION PANTHER SNAP2 PhD-SNP Meta-SNP SIFT 

rs28384199 

 

R340G 

 

probably 

damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs28384199 

 

R340S 

 

probably 

damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 



 

 MT-ND4L 

The five sequence-based techniques were utilised to analyse the harmful nsSNPs in the MT-

ND4l gene. Web-based tools PANTHER, SNAP-2, PhD-SNP, Meta-SNP, and SIFT identify 

4, 3, 3, 3, and 3 of the total 41 nsSNPs as harmful, respectively.   

 

Table:10. table of nsSNPs deemed to be damaging by 5-sequence-based tool in all the 

mitochondrial protein-coding genes of MT-ND4L GENE. 

 

 

 

 

 

 MT-ND5 

The five sequence-based techniques were utilised to analyse the harmful nsSNPs in the MT-

ND5 gene. PANTHER, SNAP-2, PhD-SNP, Meta-SNP, and SIFT are web-based tools that 

classify 20, 13, 13, and 13 out of a total of 48 nsSNPs as harmful, respectively.   

rs199476112 

 

R340H 

 

probably 

damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

VARIENT ID MUTATION PANTHER SNAP2 PhD-SNP Meta-SNP SIFT 

rs267606892  

 

C32R 

 

probably 

damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs387906422 

 

M1T 

 

probably 

damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs1603221804  

 

G86E 

 

probably 

damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 



Table:11. table of nsSNPs deemed to be damaging by 5-sequence-based tool in all the 

mitochondrial protein-coding genes of MT-ND5 GENE. 

VARIENT ID MUTATION PANTHER SNAP2 PhD-SNP Meta-SNP SIFT 

rs199476108 

 

M237L 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs199974018 

 

A236T 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs200145866 

 

A171V 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs200855215  

 

G465E 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs200873900 

 

G239S 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs267606893 

 

F124L 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs267606895 

 

E145G 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs267606897 

 

S250C 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs267606898 

 

D393H 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs267606898 

 

D393N 

 

probably damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

 

 MT-ND6 

The five sequence-based techniques were utilised to analyse the harmful nsSNPs in the MT-

ND6 gene. Web-based tools PANTHER, SNAP-2, PhD-SNP, Meta-SNP, and SIFT classify 4, 

4, 11, 9, and 7 of the total 23 nsSNPs as harmful, respectively.   

 



Table:12. table of nsSNPs deemed to be damaging by 5-sequence-based tool in all the 

mitochondrial protein-coding genes MT-ND6 GENE. 

VARIENT ID MUTATION PANTHER SNAP2 PhD-SNP Meta-SNP SIFT 

rs199476105 

 

A72V 

 

probably 

damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs199476109  

 

M63V 

 

probably 

damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

rs869025186 

 

Y59C 

 

probably 

damage 

 

EFFECT 

 

DISEASED 

 

DISEASED 

 

DISEASED 

 

 

Sequence-based search of nsSNPs in the MT-ND family genes found 253 total missense 

nsSNPs, of which 34 were shown to be deleterious nsSNPs. Now, utilising methods based on 

structure, these 34 nsSNPs were further examined to know their structural interferences. 

 

4.4 stability change prediction in MT-ND family protein-coding genes 

CUPSAT is a structure-based method that analyses the environment of the mutation site's 

amino acids using amino acid atom potential and torsion angle to anticipate how a point 

mutation would affect a protein's stability.[38] This distinguishes the environment of the amino 

acids depending on the suitability of each solvent and the distinctiveness of its secondary 

structure. The MUpro tool uses several machine learning programmes to forecast the effects of 

single AA changes on stability of protein.[38] A web-based programme called Align-GVGD 

uses the physicochemical properties of AA and protein MSAs to determine is there any mis-

sense mutations is benign or harmful. Four, five, six, seven, and nine nsSNPs were identified 

as structurally harmful mutations by CUPSAT, MUpro, SNPs&GO, DynaMut, and Align-

GVGD, respectively.[38] Out of 34 nsSNPs tested using sequence-based methods, four 

(L285P, L71P, D393H, and Y59C) were demonstrated to be dangerous to the structure's 

stability. by utilising all five of the above-mentioned tools based on structural analysis.   



 

Table:13. List of nsSNPs deemed to be damaging by 5-structure based tool in all the 

mitochondrial protein-coding genes. 

GENE NAME VARIENT ID MUTAT

ION 

CUPSAT MUpro 

 

DynaMut SNPs&G

O 

Align-GVGD 

MT- ND1  

 

rs199476119 

 

L285P 

 

destabilizi

ng 

Decrease destabilizing Diseased Most likely 

MT-ND2 

 

rs267606889 

 

L71P 

 

 

Destabilizi

ng 

Decrease destabilizing Diseased Most likely 

MT-ND5 

 

rs267606898 

 

D393H 

 

Destabilizi

ng 

Decrease destabilizing Diseased Most likely 

MT-ND6 

 

rs869025186 

 

Y59C 

 

destabilizi

ng 

decrease destabilizing diseased Most likely 

 

 

 

4.5 Conservation Analysis of the mitochondrial MT-ND family protein-

coding genes. 

A broad estimation of the damage that detrimental mutations can make to the protein's structure 

as well as its function characteristics is provided by the conservation level of the residues. It is 

quite likely that a harmful mutation at a residue that is highly conserved would have negative 

effects in nature. The protein structure (5XTC with side chains s, i, l, and m sequentially for 

MT-ND1,2,5,6, respectively) was provided as the input for ConSurf, and the Bayesian 

approach was utilised for computation. The residues' conservation rankings might range from 



1 to 9. A residue with a score of "1" indicates that it is highly changeable, whereas one with a 

value of "9" indicates that it is highly conserved. The result we obtained from our analysis is 

shown in table14. 

 

Table:14. this shows the evolutionary conservation of the deleterious nsSNPs of MT-ND 

genes. 

 

According to the ConSurf data, all four mutations (L285P, L71P, D393H, and Y59C) are 

conserved in nature, but the Y59C mutation in the MT-ND6 gene shows the highest 

conservation score value of 9.  ConSurf tool results have been validated using multiple 

sequence alignment. 

 

 

 

 

 

GENE STRUCTURE in ConSurf MUTATION POSITION IN SEQUENCE 

GENE NAME PDB ID with SIDE 

CHAIN 

MUTATION SCORE PREDICTION 

MT-ND1 5XTC (chain s) L285P 7 Conserved 

MT-ND2 5XTC (chain i) L71P 8 Conserved 

MT-ND5 5XTC (chain l) D393H 7 Conserved 

MT-ND6 5XTC (chain m) Y59C 9 Conserved 



mutation: L285P  

mutation: L71P 

 

 

mutation: D393H 

 

 



mutation: Y59C  

FIGURE:9.  Conservation analysis of mutations listed to be deleterious structure-based 

tool. 

 

4.6 SECONDARY STRUCTURE ANALYSIS  

 

SOPMA tool is used to analyse the secondary structure of the genes (MT-ND1, MT-

ND2, MT-ND5, MT-ND6) where the mutations take place (L285P, L71P, D393H, 

Y59C respectively).  

 MT-ND1 protein-coding gene of length 318 AA (amino acid) is put as an input 

where 180 AA (56.0%) were found in the Alpha Helix., 42AA (13.21%) in the 

Extended Strand, 12AA (3.77%) in the Beta Turn and 84AA (26.42) in the 

Random Coil. 

 

 MT-ND2 protein-coding gene of length 347 AA (amino acid) is put as an input 

where 175 AA (50.43%) were found in the Alpha Helix., 59AA (17.00%) in the 

Extended Strand, 18 AA (5.19 %) in the Beta Turn and 95 AA (27.38%) in the 

Random Coil. 

 

 MT-ND5 protein-coding gene of length 603 AA (amino acid) is put as an input 

where 280 AA (46.43%) were found in the Alpha Helix., 113AA (18.74%) in 

the Extended Strand, 28 AA (4.64 %) in the Beta Turn and 182 AA (30.18%) 

in the Random Coil. 

 



 MT-ND6 protein-coding gene of length 174 AA (amino acid) is put as an input 

where 74 AA (42.53%) were found in the Alpha Helix., 51AA (29.31%) in the 

Extended Strand, 19 AA (10.92%) in the Beta Turn and 30 AA (17.24%) in the 

Random Coil. 

 

Table:15.  Secondary structures prediction of MT-ND genes. 

 

 

 

GENE 

NAME 

Protein 

length 

MUTATION Secondary Structure PREDICTED 

TO BE 

PRESENT IN  

SOPMA ANALYSIS  

MT-ND1 

(318AA) 

chain s 

L885P  H12-HELICES  

MT-ND2 

(347AA) 

chain i 

L71P 

 

H3-HELICES 

 

MT-ND5 

(603AA) 

chain l 

D393H 

 

H20-HELICES  

MT-ND6 

(174AA) 

chain m 

Y59C 

 

BETWEEN 

H3-H4 

HELICES 

(LOOPS) 

 



4.6.1. STRUCTURAL EFFECTS 

Using NetSurf.2.0 tool we get to know about the structural effects, that occur after 

mutation in these protein-coding genes. As the result of this analysis, it is seen that 3 

(L285P, L71P, D393H) out of 4 shows the changes in their structure. In L285P mutation 

of MT-ND1gene where there are 10 helixes, the 2nd helix which starts from residue L 

and ends at residue T in wild type sequence, does not end with same affinity in the 

mutated one, whereas in the mutated one, this helix ends one amino acid prior to that  

 

 

of original one. i.e., now it starts from same residue L but ends at residue F. it converts 

the residue at position 37 from helix to coil. This will affect the binding affinity at this  

 binding site. 

 

In L71P mutation of MT-ND2 GENE, after mutation it is seen that the 1st helix which 

starts from residue P and ends at residue L, but after mutation residue at position 23 

converted from coil to helixes.  

 

 

 

 

MT-ND1 GENE without MUTATION 

 

 

MT-ND1 GENE with MUTATION 

MT-ND2 GENE without MUTATION  

  

MT-ND2 GENE with MUTATION  

L285P 

L71P 



In D393H mutation of MT-ND5 gene, the residue at position 56 converted from coil to 

helix. These mutations might be damaging due to the change induced with respect 

to the helix. As this affects its binding affinity at these positions. 

 

4.7 Analysis of Phenotypic Consequences of deleterious nsSNPs 

Based on the mutation score, FATHMM provides a prediction. There has been little to no 

change in the underlying amino acid if the score is close to zero. 

Table:16. Using the FATHMM tool, phenotypic repercussions of alterations are predicted. 

 

 

 

 

 

MT-ND5 GENE without MUTATION  

 

       MT-ND5 GENE with MUTATION 

 

VARIENT ID  GENE 

NAME  

MUTATION PREDICTION SCORE  DO 

INFORMATION 

HPO 

Information 

 

 

rs1999476119 

rs267606889 

rs267606898 

 

  

 

MT-ND1  

MT-ND2 

MT-ND5 

 

L285P 

L71P 

D393H 

 

DAMAGING 

DAMAGING 

DAMAGING 

 

-6.68 

-8.21 

-4.58 

 

Anatomical 

entity disease 

Neurological 

Disorders 

Disease of the 

Brain illness. 

 

Phenotypic 

abnormality 

 

D393H 



4.8 Structural Effects of deleterious nsSNPs 

Input for HOPE server consists of mutation and the sequence. HOPE starts to gather data from 

a variety of data sources. The result highlights the affects of the submitted mutation in the 

protein’s 3D structure with the proper description of amino acid properties and domains as 

shown in  

Table 17:  HOPE server data on structural impact on mutational genes 

Mutation Structure alteration Amino-Acid 

Characteristics 

Domain 

L285P  More 

compact than 

the wild-type 

residue is the 

mutant 

residue. 

The size 

of the mutated 

one and 

original AA 

does not 

match. 

More 

compact than 

the wild-type 

residue is the 

mutant 

residue. 

 

 

 

 

 core of a 

domain 

contains the 

residue. The 

essential 

structural 

integrity of this 

domain may be 

disturbed by 

the variations 

between the 

wild-type and 

mutant 

residue. 

 

 

 

 

 

 



 

L71P  Greater in size 

than the wild-

type residue is 

the mutant 

residue. 

The size 

of the mutated 

one and 

original AA 

does not 

match. 

Protein's 

centre 

concealed the 

wild-type 

residue. 

Because it is 

larger, the 

mutant residue 

probably won't 

fit. 

 

 

 

 

The core of a 

domain 

contains the 

residue. The 

fundamental 

structure of this 

domain might 

be disturbed by 

the variations 

between the 

wild-type and 

mutant 

residue. 

 

 

 

 

 

 

 

 



 

 

 

 

 

D393H 

 

The mutant 

residue is 

Larger than the 

original 

residue. 

The original 

and mutated 

AA are different 

in size. 

The mutated 

residue is far 

larger  than the 

wild-type 

residue. 

 

 

 

 

 

The mutated 

residue is in a 

domain that is 

important for 

the activity of 

the protein and 

in contact with 

residues in 

another 

domain. It is 

possible that 

this interaction 

is important for 

the correct 

function of the 

protein. 

 



Y59C   mutant 

residue is 

smaller than 

the wild-type 

residue. 

The original 

and mutated 

amino acids 

differ in size. 

The mutated 

residue is 

smaller than 

the original 

residue. 

 

 

The mutated 

residue is in a 

domain that is 

important for 

the activity of 

the protein and 

in contact with 

residues in 

another 

domain. It is 

possible that 

this interaction 

is important for 

the correct 

function of the 

protein. 

 

 

  

 

 

 

L285P L71P 



 

 

FIGURE:10. Visualization using HOPE server of both mutated amino acid residues (red) and 

wild type amino acid residue (green) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
D393H Y59

C 



DISCUSSION 

Thanks to mitochondrial genomes' abundantly available code for proteins sequences of data, 

we were able to examine the patterns of codon usage. Numerous studies have focused on the 

codon use and evolutionary factors of mitochondrial genomes. [61,62] However, as far as our 

search is made no research on the mitochondrial ND genes' codon usage pattern has been 

published. A deeper understanding of the molecular evolutionary viewpoint would result from 

research on the DNA count and codon utilization pattern of mitochondrial ND genes. 

Base composition is a crucial component of a genome and is thought to be the primary factor 

influencing codon use. The third position is typically preferred by GC-rich organisms [63,64]. 

As opposed to this, AT-rich organisms favour A or T in the third position [65]. The total CUB 

was bi-ased towards nucleotides A, T in the all MT-ND genes, PTGS1, TAMM41, where AT 

was abundant. Our results are satisfactory because the MT-ND1 gene has a strong predilection 

for AT, as described in a publication [60], and the Alzheimer's brain is AT-rich, as documented 

in numerous research. It is found that AT% is 55.26% which means GC content is 44.73%. 

Similar patterns were seen in human mitochondrial DNA across continents, with A and T 

nucleotides being more preferred [66]. 

Only if the frequencies of A and T at the third codon location are equivalent to those of G and 

C, according to Zhang et al. (2013), is it believed that mutational pressure is the only 

evolutionary force that has shaped the synonymous codon usage bias. Our findings showed an 

AT bias for the genes, pointing to the possibility that other mechanisms, such as natural 

selection, may be involved in base composition. The total number of nucleotides and their 

associated synonymous locations were therefore correlated, and both substantial positive and 

negative correlations were discovered. While there was a negative association between T and 

T3, there was a positive correlation between A and A3, G and G3, and Cand C3. 

Between GC and GC3, a sizable positive connection was observed. All these findings 

suggested that compositional restrictions may have been a major factor in determining the 

pattern in CUB. Contrarily, DNA composition at the third codon site and total nucleotide 

composition in human mitochondrial protein coding genes also exhibited a positive association, 

demonstrating that both modes of selections had a role in the synonym’s codon utilization [66].  

Calculating ENC values allows one to gauge the extent of codon use bias. Therefore, a strong 

CUB caused by smaller ENC value was suggested by the analysis of ENC value in all the MT-



ND, TAMM41, and PTGS1 genes. ENC's value should be lower than 40. Comparatively, the 

CAI value should fall between 0 and 1. The average CAI score in our study was 0.685, 

indicating greater gene expression. Gene expression is inversely correlated with the ENC, 

whereas CAI is directly correlated with gene expression. Here, we concur that the gene 

expression is higher based on our analysis of ENC and CAI. 

Whereas, points were distributed with a small range according to neutral plot analysis, and the 

slant of the regress was additionally quite near to zero, indicating that it is possible that the 

codon use bias of the MT-ND, TAMM41, PTGS1 gene was caused by both Type of selection.  

This result was in line with the article's results that the codon use patterns of 13 human protein-

coding genes were influenced equally by mutation pressure and selection.  [66]. 

As MT-ND genes exhibit the effects of mutation pressure, our next task was to identify SNPs 

in these genes at the structural and sequence levels. where we determined 4 nsSNPs to be 

harmful. The nsSNPs (L285P), (L71P), (D393H), and (Y59C) were identified as harmful, and 

we further analysed these nsSNPs to determine their conservation, oncogenic nature, and 

structural effects. where the harmful nsSNPs (L285P, L71P, and D393H) were found in the 

FANTHMM tool and are linked to brain and central nervous system diseases. 

 

 

 

 

 

 

 

 

 

 

CONCLUSION 



In the current investigation, considerable CUB was found when synonymous codon use in the 

genes MT ND, PTGS1, and TAMM41 was examined. The third codon position was preferred 

by either A or T in all of the genes' most frequent codons, highlighting the crucial importance 

of compositional constraint. Additionally, neutrality plot analysis revealed that natural 

selection and very little mutation pressure both played a significant influence in the gene's 

evolution. The new investigation has increased our understanding of codon usage strategies 

and the development of the poorly described genes. The MT-ND gene's nsSNPs have been 

examined in the current study since it is linked to a number of complex disorders. Four 

extremely harmful SNPs (L285P, L71P, D393H, and Y59C) have been found among the 34 

nsSNPs of ND Genes. Based on a variety of analyses, it was determined that the L285P, L71P, 

and D393H were the most dangerous. Future research projects that aim to battle the diseases 

by studying MT-ND1, MT-ND2, and MT-ND5 are anticipated to benefit from the findings of 

the current study. This study is expected to serve as a model for other nsSNP analyses of a 

similar nature soon. 
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