JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2023

B.Tech - V Semester (BI)

COURSE CODE(CREDITS): 18B11BI511 (03)

MAX. MARKS: 25

COURSE NAME: Design And Analysis of Algorithms

COURSE INSTRUCTOR: Dr. Tiratha Raj Singh

MAX. TIME: 1 Hour 30 minutes

Note: (a) All questions are compulsory. (b) Marks are indicated against each question in brackets.(c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving algorithmic problems.

- Q.1. What are various methods available for solving the recurrence relations. Demonstrate recursion tree method with an example. [4] (CO-2)
- Q.2. Consider the recurrence $T_n = 2T_{n-1} + 1$, where $n \ge 1$, with initial condition $T_0 = 0$. Obtain the solution using substitution method. [4] (CO-2)
- Q.3. Demonstrate the growth of functions for asymptotic notations for upper bound :

(a)
$$f(n) = 7n + 5$$

(b)
$$f(n) = 10n^2 + 7$$

(c)
$$f(n) \neq 3n^3 + 4n^3$$

(d)
$$f(n) = 27n^2 + 16n$$

$$[1*4=4]$$
 (CO-1,2)

- Q.4. Solve the LCS problem for the given DNA sequences S_1 and S_2 as: $S_1 = ATAGCATGA$ and S_2 = TACTA. Discuss all the computational steps and parameters for the same problem along [5] (CO-3)
- Q.5. Time complexity of two algorithms is as : Algo $l = C_1 n^3 + C_2 n^2$; Algo 2: $C_3 n^2$. If we consider $C_1 = 1$, $C_2 = 2$ and $C_3 = 100$ then for which values of *n* following conditions will be satisfied? Condition a: $C_1 n^3 + C_2 n^2 = C_3 n^2$; Condition b. $C_1 n^3 + C_2 n^2 >= C_3 n^2$. [3] (CO-1,2)
- Q.6. What is Knapsack problem. Solve it for the given dataset using greedy approach? [5] (CO-4)

P _i (Rs.)	50	30	32	27	
W _i (Kg)	5	6	4	3	W = 11