JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2023

B.Tech-V Semester (ECE)

COURSE CODE (CREDITS):18B11EC513

MAX. MARKS: 25

COURSE NAME: Electromagnetic Waves

COURSE INSTRUCTOR: SRU

MAX. TIME: 1 Hour 30 Minutes

Note: (a) All questions are compulsory.

(b) Marks are indicated against each question in square brackets:

(c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

1. Write the entire Maxwell's equation in pint form and integral from along with their significance.

[4m CO-2]

- 2. Within a certain region, $\varepsilon = 10^{-11}$ F/m and $\mu = 10^{-5}$ H/m. If $B_x = 2 \times 10^{-4}$ cos (10⁵ t) sin (10⁻³y) T: (a) use $\nabla \times H = \varepsilon \partial E/\partial t$ to find E; (b) Find the total magnetic flux passing through the surface x = 0, 0 < y < 40 m, 0 < z < 2 m, at t = 1 μ s;
- 3. Given the complex amplitude of the electric field of a uniform plane wave, $E_0 = 100a_x + 20 \angle 30~a_y~V/m$, construct the phasor and real instantaneous fields if the wave is known to propagate in the forward z direction in free space and has frequency of 10 MHz. Use a suitable Maxwell's equation to find the magnetic field intensity associated with this.

 [5m CO-4]
- 4. Volume charge density is located in free space as $\rho_v = 2e^{-1000r}$ nC/m³ for 0 < r < 1 mm, and $\rho_v = 0$ elsewhere. (a) Find the total charge enclosed by the spherical surface r = 1 mm. (b) By using Gauss's law, calculate the value of D_r on the surface r = 1 mm.
- 5. What are the boundary conditions for electric field and magnetic field intensities at the interface between two dielectric materials? Explain in detail with proper mathematical equations. [4m CO-3]
- 6. Define the following

[4m CO-5]

- a. Phase constant and attenuation constant
- b. Impedance Matching
- c. Telegrapher's equations
- d. TE and TM waves