JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT T1- EXAMINATION (Summer Semester - June 2018)

B. Tech. (III-SEM.)

COURSE CODE: 10B11CE312 COURSE NAME: Fluid Mechanics

MAX. MARKS: 50

COURSE CREDIT: 4

2

[2]

Note: Attempt all questions. Assume suitable data if required. Carrying of mobile phone during examinations will be treated as case of unfair means CESTED, MINE VOIS

Q1. Answer the	following	in	brief.
----------------	-----------	----	--------

- (a) Define centre of pressure and total pressure for a vertical plane.
- (b) Differentiate between steady flow and unsteady flow.
- (c) Differentiate between linear deformation and angular deformation.
- (d) Bernoulli Theorem for real fluid
- (e) Principle of impulse momentum equation
- Q2. Show that if velocity potential function exists, the flow should be irrotational.

[2] [2] [2]

- Q3. If the velocity distribution of a liquid over a plate is given by $y = (3/4) \cdot y y^2$, where u is the velocity in m/s at a distance y m above the plate, determine the shear stress at y = 0.15 m. Take dynamic viscosity of the liquid as 8.5 x 10⁻⁵ kg-sec/m²
- Q4. If for a two dimensional flow, the velocity potential function is given by $\Phi=4x(3y-4)$, Determine the velocity at the point x (2,3). Determine also the value of stream function at the point x.
- Q5. Water is flowing through a pipe having diameters 30 cm and 15 cm at the bottom and upper end respectively. The intensity of pressure at the bottom end is 29.43 N/cm² and the end is 14.715 N/cm². Determine the difference in datum head if the rate of flow through pipe is 50 pressure at the upper lit/sec.
- Q6. In the following figure, fluid A is water, fluid B is oil of specific gravity 0.85, Z = 0.7 m and y =[10] Compute pressure difference between m and n. 1.5 m. J. W. [10]

