JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2023

B.Tech-I Semester (CSE/IT/ECE/CE/BT/BI)

COURSE CODE (CREDITS): 18B11CI513 (3)

MAX. MARKS: 25

COURSE NAME: Formal Languages and Automata The Gry

COURSE INSTRUCTORS: RKI, DHA,SGL, VKS

MAX. TIME: 1 Hour 30 Minutes

Note: (a) All questions are compulsory

- (b) Marks are indicated against each question in square brackets.
- (c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems
- Q1. Assume L_1, L_2 and L_3 are regular language.
- (i) Proof $(L_1 \cap L_2) \cup L_3$ is regular language.

[3] [CO3]

(ii) Proof $(L_1 \cap L_2) \cup L_3 \neq L_1 \cap (L_2 \cup L_3)$.

[2] [CO3]

Q2. (i) Convert the below FSA to regular expression.

(ii) Perform the DFA minimization on given finite automata

[2+3] [CO3]

- Q3. Proof L= $\{a^n b^n c^n \mid n \ge 0\}$ is non regular by pumping lemma. Why pumping lemma is a contradiction proof? [4+1] [CO3]
- Q4. (i) Explain the role of context free grammar in programming language with an example.
- (ii) Provide the context free grammar for L= $\{a^n\ b^n\ WW^r\ |\ n\geq 0\ \text{and}\ W\in \Sigma^*\ and\ \Sigma=\{a,b\}\}$

(iii) E->E+E | E*E|E /E | F

F-> a|b

Proof the above grammar is ambiguous .

[1+2+2] [CO4]

Q5. Simplify the below given grammar.

S->AB, A->a/Null, B-b/C, C->D, D->A, E->c/null, assume S is starting variable.

Derive the language generated by the above grammar?

[4+1] [CO4]