JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST - 2 EXAMINATION - 2023

B.Tech. - VII Semester (CSE/IT/ECE/BT/BI)

COURSE CODE (CREDITS): 22B1WCE733

MAX. MARKS: 25

COURSE NAME: Perennial Power Structures

COURSE INSTRUCTORS: Saurabh Rawat

MAX. TIME: 1 Hour 30 Minutes

Note: (a) All questions are compulsory.

- (b) Marks are indicated against each question in square brackets.
- (c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems
- Q1. A horizontal shaft, propeller type wind-turbine is in area having following wind characteristics:

Speed of wind 10 m/s at 1 atm and 15°C. Given R = gas constant 287 J/kg.K 1 atm and Pressure 1 atm = 1.01325×10^5 Pa. Calculate the following:

- a). Air density ρ
- b). Total power density in wind stream, W/m²
- c). Maximum possible obtainable power density, W/m²
- d). Actual obtainable power density corresponding to an efficiency of 42%, W/m²
- e). Total power from a wind-turbine of 120 m dia. corresponding to the actual obtainable power density calculated in (4).
- f). Torque and axial thrust on the wind-turbine operating at 40 rpm and at maximum efficiency of 42%. (CO2, CO3) [1+1+2+2+1+3=10]
- Q2. Derive and prove that the maximum efficiency of an ideal wind turbine is '16/27 times the wind power'.
- Q3. Calculate the total thrust and aerodynamic power developed in a 3 blade wind turbine at a wind velocity of 9 m/s. The machine specifications are as follows: Diameter of rotor = 9 m; Rotational speed = 100 rpm; Blade length = 4 m; TSR = 5.23; Chord Length = 0.45 m; Pitch angle = 5°; Distance from shaft to inner edge = 0.5 m; Airfoil section = NACA 23018 (CO3) [6]

Attack angle (°)	CL	CD
i 1	0.95	0.0105
i ₂	1.20	0.0143
i ₃	0.75	0.0092
i4	0.46	0.0078

Q4. Supporting with technical aspects, elaborate on the type of wind turbine you would install for harnessing wind energy in Rajasthan and in coastal area of Tamil Nadu. (CO2, CO3) [4]