JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2023

B.Tech-III Semester (ECE)

COURSE CODE (CREDITS): 18B11EC312(4)

MAX. MARKS: 35

COURSE NAME: Digital Electronics and Logic design

COURSE INSTRUCTORS: Munish Sood

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) Marks are indicated against each question in square brackets.

- (c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems
- Q1) Design a 3 bit binary GRAY code synchronous counter using state diagram, state table and J-K flip flops.

 CO-3[7]
- Q2) Design a 4 bit asynchronous binary Decade counter with each flip flop negatively edge triggered. Develop a timing diagram showing the Q output of each flip flop.

 CO-6[5]
- Q3) Design a 4 bit bidirectional shift register using D flip flop. Develop a timing diagram showing the Q output of each fli flop.

 CO-4[5]
- Q4) Design a 4 bit Digital to Analog Converter (DAC) using binary weighted resistor. A certain binary-weighted-input DAC has a binary input of 1101. If a HIGH = +3.0 V and a LOW = 0 V, what is V_{out} ?
- Q5) Implement the following logic expression using only NOR or NAND gates C0-1[5]
 - a) $X = (A + B)(\bar{C} + D)(E + F)$
 - b) $(AB + \bar{C})D + EF$
- Q6) Using Boolean Algebra and De-Morgan's theorem simplify the following expressions
 - a) AB + A(B + C) + B(B + C)

CO-2[3]

- b) $\overline{ABC + DEF}$
- Q7) Use a Karnaugh map to minimize the following standard SOP 5 variable expression:

 $X = \overline{A}\overline{B}\overline{C}\overline{D}\overline{E} + \overline{A}\overline{B}C\overline{D}\overline{E} + \overline{A}BC\overline{D}\overline{E} + \overline{A}B\overline{C}\overline{D}\overline{E} + \overline{A}\overline{B}\overline{C}\overline{D}E + \overline{A}BC\overline{D}E + \overline{A}BCDE + \overline{A}BC\overline{D}E + \overline{A}BC\overline{D}E$