JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST-1 EXAMINATION-2024

B.Tech-VIII Semester (ECE)

COURSE CODE (CREDITS): 18B1WEC839 (3)

MAX. MARKS: 15

COURSE NAME: Radar Principles and Applications

COURSE INSTRUCTORS: Dr. Vikas Baghel

MAX, TIME: 1 Hour

Note: (a) All questions are compulsory.

1

(b) Marks are indicated against each question in square brackets.

(c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

- Q1. a) What is the basic principle behind radar technology? Explain the fundamental [3] [CO1] components and their functions in a radar block diagram.
 - b) Discuss in detail the concept of radar propagation effects and their significance in radar [2 systems.
- Q2. a) Discuss the derivation of the Radar Equation and its significance in the design and [2] [CO1] operation of radar systems.
 - b) Show that a radar with the parameters listed below, will get a reasonable S / N on an [3] small aircraft at 80 nmi.

Range- 80 nmi

Aircraft cross section- $2 m^2$

Peak Power- 1.5 Megawatts

Bandwidth- 1.6 MHz

Frequency- 3000 MHZ

Antenna Rotation Rare 15 RPM

Pulse Repetition Rate- 1200 Hz

Antenna Size- 4.9 m wide by 2.7 m high

Azimuth Beamwidth- 1.35 degree

System Noise Temp. - 950 degree K

- Q3. a) Derive the expression for Doppler frequency shift in radar when the target is moving [2] [CO2] away from the radar system.
 - b) A Radar with a frequency of 10 GHz emits a signal towards a moving target with a [1] velocity of 100 m/s. Calculate the Doppler frequency shift if the radar is facing the target directly.
 - e) Explain the basic principles behind the operation of a CW Doppler radar system and how [2] it utilizes the Doppler effect to detect moving objects.