JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -2 EXAMINATION- APRIL-2023

COURSE CODE(CREDITS): 18B11EC311(3)

MAX. MARKS: 25

COURSE NAME: Automatic Control Systems

COURSE INSTRUCTORS: Dr. S R Tailuri

MAX. TIME: 1 Hour 30 Minutes

Note: All questions are compulsory. Marks are indicated against each question in square brackets.

1. Reduce the block diagram shown below to a single block representing the transfer function, $T(s) = \frac{C(s)}{R(s)}$ [CO-2, Marks:4]

2. Using Mason's rule, find the transfer function, $T(s) = \frac{C(s)}{R(s)}$ for the system represented below. [CO-2, Marks:4]

Page 1 of 2

- 3. Find the locations of the poles and zeros, plot them on the s-plane, and then obtain an expression for the general form of the step response solving for the inverse Laplace transform for $T(s) = \frac{20}{s^2 + 6s + 144}$ [CO-3, Marks:4]
- 4. Find the state-space representation in phase-variable form for the transfer function

$$\frac{C(s)}{R(s)} = \frac{24}{s^3 + 9s^2 + 26s + 24}$$

[CO-3, Marks:4]

- 5. For the system with transfer function $\frac{C(s)}{R(s)} = \frac{16}{s^2 + 3s + 16}$ of the second-order system, find damping ratio ζ ; undamped natural frequency ω_n ; settling time T_s ; peak time T_p ; and percentage over shoot %OS. [CO-3, Marks:4]
- 6. Define the following briefly.

[COs-1 to 3, Marks:5]

- a. Open loop system and closed loop system
- b. Negative feedback and positive feedback
- c. State space representation in matrix form with naming of each matrix
- d. Natural response and Forced response
- e. Critically damped and over damped response