JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT **TEST-2 EXAMINATION 2024**

B. Tech-IV Semester (CSE/IT)

COURSE CODE (CREDITS): 18B11CI414 (3)

MAX. MARKS: 25

COURSE NAME: Discrete Computational Mathematics

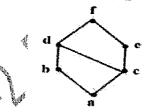
COURSE INSTRUCTORS: Dr. Amol Vasudeva, Dr. Rakesh Bajaj, and Dr. Neelkanth

Note:

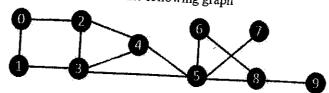
- (a) All questions are compulsory. (b) Marks are indicated against each question in square brackets. (c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems
- Using the concept of generating function, solve the following recurrence relation: $a_k = 2a_{k-1} + 3a_{k-2} + 4^k + 6$ with initial conditions $a_0 = 20$ and $a_1 = 60$.

O-7 [4 marks]

(a) Suppose $A_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$; $n \in N$ (set of natural numbers) is an interval. Find (i) $A_3 \cup A_5$ (ii) $A_4 \cap A_{10}$ (iii) $A_1 \cap A_2 \cap A_3 \cap \dots A_k \cap A_{k+1} \dots \dots$; 2.


CO-2 [3 marks]

- (b) Among 18 students, 7 study mathematics, 10 study physics and 10 study computer programming. Also, 3 study mathematics and physics, 4 study mathematics and computer programming, and 5 study physics and computer programming. Given that 1 student studies all three subjects. How many of these students study CO-2 [2 marks]
- Let A be the set $\{1, 2, 3\}$ and R be the relation $R = \{(1, 2, 3)\}$ 3.
 - (a) Draw the diagraph for this relation (b) Determine the transitive closure of R?


CO-3 [1 mark] CO-3 [3 marks]

Verify whether the lattice given in the following figure is distributive or not. 4.

CO-3 [3 marks]

- Draw the Hasse diagram of the lattice D_{42} and show that it is bounded and complemented. CO-3 [3 marks] 5. 6.
 - What will be the complement of the complete graph Kn
 - Draw the planar representation of the complete bipartite graph $K_{2,4}$
 - Show that K_5 is an Eulerian graph and find an Eulerian circuit in it.
 - Find the distance d(1,6) and diameter for the following graph

- Find the cut points in the above graph. (e)
- A graph has 26 vertices and 58 edges. There are five vertices of degree 4, six vertices of degree 5 and seven vertices of degree 6. If the remaining vertices all have the same degree, what is this degree?

(CO-4) $[1 \times 6 = 6 \text{ marks}]$