JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2024

B Tech. II Semester (CSE/IT/ECE/CE)

COURSE CODE (CREDITS): 18B11EC211

MAX. MARKS: 25

COURSE NAME: Electrical Sciences

COURSE INSTRUCTORS: Prof. Rajiv Kumar, Prof. Shruti Jain, Dr. Salman Raju, Lt. Pragya Gupta, Dr. Harsh Sohal

MAX. TIME: 1 Hour 30 Minutes

Note: (a) All questions are compulsory.

- (b) Marks are indicated against each question in square brackets.
- (c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems
- Q1. a) Write the mesh equations for circuit shown in Fig 1. V_a is the voltage across 7Ω resistor, I_x is the current across 4Ω resistor.

- b) Write appropriate nodal equations for the circuit shown in Fig 2.
- [5 + 2, CO 2]
- Q2. a) Employ superposition theorem to obtain a value for the current I_x as labeled in Fig 3.

[5, CO 3]

- Q3 a) Find the venin's equivalent resistance (R_{th}) for the circuit shown in Fig. 4.
- b) Derive the condition for maximum power transfer to the load considering thevenin's equivalent. [5 + 2, CO 2]

Q4. a) Determine the inductor voltage v in the circuit shown in Fig 5 for t > 0.

b) Reduce the circuit represented in Fig 6 to the smallest possible number of components. The value of the current source is Is

[4 + 2, CO3]