Jaypee University of Information Technology, Waknaghat Test-2 Examination, April 2024

B.Tech - II Semester (CSE/CSE-AIML/CSE-AIDS/CSE-CS/IT/ECE/CE)

Course Code/Credits: 18B11MA211/4

Course Title: Engineering Mathematics - II

Max. Marks: 25

Course Instructors: RAD*, BKP, PKP, MDS, SST

Max. Time: 90 min

Note: (a) All questions are compulsory.

- (b) Scientific calculators are allowed.
- (c) Marks are indicated against each question in round brackets.
- (d) The candidate is allowed to make suitable numeric assumptions wherever required.
- 1. Consider the following non-positive term series:

(3 Marks) [CO-1]

$$\sum_{n=2}^{\infty} a_n = \frac{1}{\log 2} - \frac{1}{\log 3} + \frac{1}{\log 4} - \dots$$

Apply Ratio test on the positive-term series $\sum |a_n|$ to see if the given $\sum a_n$ converges.

2. Consider the Bessel function of order 0:

(2 Marks) [CO-1]

$$\mathcal{J}_0(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(n!)^2 2^{2n}}$$

Determine the radius of convergence of $\mathcal{J}_0(x)$.

3. Consider the constant function f(x) = 1 defined on $(0, \pi)$.

- (a) Show that $f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right]$ is the half-range sine series. (3 Marks) [CO-1]
- (b) Deduce $\frac{\pi^2}{8} = \frac{1}{12} + \frac{1}{32} + \frac{1}{52} + \cdots$ by Parseval's identity.
- 4. Consider the following constant-coefficient differential equation:

(3 Marks) [CO-2]

- $\mathbf{D}(\mathbf{D} 1)^2(\mathbf{D}^2 + 1)y = 0$
- (a) Determine the order of the differential equation. (b) Write down its general solution.
- 5. Consider the following Cauchy-Euler differential equation:

(3 Marks) [CO-2]

$$x^{3}\frac{d^{3}y}{dx^{3}} + 6x^{2}\frac{d^{2}y}{dx^{2}} - 12y = \frac{12}{x^{2}}$$

- (a) Convert the given differential equation into constant-coefficient differential equation.
- (b) Determine the complementary solution of the resulting differential equation.
- 6. Consider $(\mathbf{D}^2 3\mathbf{D} + 2)y = e^{3x}$. Let $y_h(x)$ be the homogeneous solution. (4 Marks) [CO-2]
 - (a) Let $y_h(x) = c_1 e^x + c_2 e^{-3x}$. Find the particular integral y_p using variation of parameter.
 - (b) Compute y(x) satisfying y(0) = 1 and y'(0) = 0.

7. Consider the following differential equation:

(4 Marks) [CO-3]

$$\frac{d^2y}{dx^2} - 3x^2 \frac{dy}{dx} = 0$$

- (a) Find the ordinary points of the differential equation.
- (b) Obtain the series solution about the point x = 0.
- 8. Let $\mathcal{P}_n(x)$ be the Legendre polynomial of degree n.

- (a) Write down the Legendre polynomials $\mathcal{P}_n(x)$ for n=0,1,2,3. (b) Express $\mathcal{P}(x)=3\mathcal{P}_3(x)+2\mathcal{P}_2(x)+4\mathcal{P}_1(x)+5\mathcal{P}_0(x)$ as a polynomial in x.