JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST I EXAMINATION (February- 2018)

M. Tech. (II-SEM.)/B.Tech. (VIII-SEM.)

COURSE CODE: 14M31CE213

COURSE NAME: Industrial Wastewater Treatment

COURSE CREDIT: 3

MAX. MARKS: 15

MAX. TIME: 1 HR

Note: Attempt all Questions. Carrying of mobile phones during exams will be treated as case of unfair means. Assume suitable data if required.

- 1. Design an equalization tank for an industrial wastewater flow rate of 15000 m³/d. The average and maximum BOD concentrations are 800 mg/l and 1200 mg/l respectively. The effluent from equalization basin should be less than 1000 mg/l. Statistically; it has been found that 84.1% probability of BOD occurs at 1250 mg/l and 15.9% probability of BOD concentration occurs at 550 mg/l. The 50% probability of BOD is 700 mg/l. Design at 95% probability conditions. Assume (Z = 1.65) (4)
- 2. Explain the concept of grab sampling and composite sampling. In this context, explain the suitability of using a grab sampling or composite sampling on when they should be conducted. Also describe the different steps that needs to be followed for conducting a composite sampling process (1+1+2)
- 3. Determine the effluent concentration from an equalization basin with a sampling interval of 1 hour with an average flow rate of 1600 gal/min. The initial concentration of the pollutant before the sampling process was started was found to be 170 mg/l and the influent concentration entering the equalization basin over the sampling period was found to be 245 mg/l. Assume the volume of equalization basin as 588000 gallons. Use Patterson –Menz equation (2)
- 4. Design an equalization tank from the following data. Also determine the time at which the equalization tank is empty. Use graphical method. (5)

Thre Period (hrs)	Volume of wastewater . (m³)
08-11	72.3
11-14	93.2
14-17	66.8
17-20	91.1
20-23	89.6
23-2	61.1
2-5	61.1
5-8	58.1