JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST-3 EXAMINATION-2024

B.Tech- II Semester (BI/BT)

COURSE CODE(CREDITS): 18B11EC212(4)

MAX. MARKS: 35

COURSE NAME: Basic Electrical Science

COURSE INSTRUCTORS: Dr. Alok Kumar

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

- (b) Marks are indicated against each question in square brackets.
- (c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems
- Q.1 Find the current in 3Ω resistance using superposition theorem in the given Fig.1.

[CO1] [4 Marks]

- Q.2 How do biomedical signals differ from other types of signals? Explain the importance of biomedical signal processing in healthcare. [CO5] [4Marks]
- Q.3 Explain the different waves and intervals observed in a typical ECG waveform. Discuss emerging technologies and advancements in ECG monitoring and interpretation.

[CO5] [4 Marks]

Q.4 Find the average value, RMS value, form factor and peak factor of the waveform shown In Fig.2

[CO2, CO3] [4 Marks]

Page 1 of 2

- Q.5 What are the main components of a transformer, and how do they contribute to its operation? [CO4] [4 Marks]
- Q.6 What are the clinical indications for MRI, and in which scenarios is it preferred over CT?

 [CO5] [3Marks]
- Q.7 A 100-kVA, 2400/240-V, 60-Hz step-down transformer (ideal) is used between a transmission line and a distribution system.
 - a) Determine turns ratio.
 - b) What secondary load impedance will cause the transformer to be fully loaded, and what is the corresponding primary current?
 - c) Find the load impedance referred to the primary.

[C04] [3 Marks]

- Q.8 In the given Fig. 3, find the following.
 - (a) equation for current i(t), (b) value of current at time t=0.1 sec. (c) analyze the response. Consider the value of voltage source and other components as follows: v_s =20V, R=9 Ω , L= 1H, and C=.05F.

Fig.3

[CO2, CO3] [5 Marks]

Q.9 Find the current i(t) in the circuit shown in Fig.4. Consider the $V_s = 40Sin(3000t)V$ [CO3] [4 Marks]

