JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2024

B. Tech-VIII Semester [All Except Bio]

COURSE CODE(CREDITS): 21B1WBT833 (3)

MAX. MARKS: 35

COURSE NAME: Computational Biology for Engineers

MAX. TIME: 2 Hours

COURSE INSTRUCTORS: Dr. Raj Kumar, Dr. Tiratha Raj Singh, Dr. Shikha Mittal.

Note: (a) All questions are compulsory.

(b) Marks are indicated against each question in square brackets.

- (c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems
- Q1. Differentiate between the following:

 $(CO:3-5)[2\times4=8]$

- (a) Global and Local Alignments
- (b) Pairwise and Multiple Sequence Alignment
- (c) Distance and Similarity (d) Progressive and Iterative Alignment Algorithms for MSA
- Q2. What is Sum of Pairs (SoP) method? Explain its implementation with an example containing 5 nucleotide sequences. Scoring system is Match = +2, Mismatch = -1, Gap Penalty = -2.

 (CO: 5) [4]
- Q3. Define BLAST. Describe the algorithm used by BLAST to perform sequence alignment. Highlight its key steps

 (CO: 5) [5]
- Q4. Briefly explain

(CO: 5) $[3 \times 2 = 6]$

- a) What are the different types of BLAST searches?
- b) Homologs and Orthologs
- c) E-value and Bit-score in BLAST
- Q5. Discuss various stages in a drug development process.

(CO: 5) [3]

- Q6. What is molecular docking? Discuss main components of molecular docking. (CO: 5) [3]
- Q7. What is a Quantitative Structure–Activity Relationship? Enlist some important molecular descriptors used in QSAR modeling. (CO: 5) [3]
- Q7. Write short notes:

 $(CO:3-5)[3 \times 1 = 3]$

- a) Drug repurposing
- b) Lead optimization
- c) Lipinski's rule of five