JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST-3 EXAMINATION- 2024

B. Tech-IV Semester (CSE/IT)

COURSE CODE (CREDITS): 18B11CI414 (3)

MAX. MARKS: 35

COURSE NAME: Discrete Computational Mathematics

COURSE INSTRUCTORS: RKB, NKT, AVA*

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) Marks are indicated against each question in square brackets.

(c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems.

- 1. [CO-1] Test the validity of the following argument using the concept of truth table:

 If there was a ball game, then travelling was difficult. If they arrived on time, then travelling was not difficult. They arrived on time. Therefore, there was no ball game.

 (3)
- 2. [CO-2] Using principle of mathematical induction, prove that $(\cos \theta + i \sin \theta)^n = (\cos n\theta + i \sin n\theta) \forall n, n \in \mathbb{N}$. (3)
- 3. [CO-3] Let $A = \{3, 4, 5, 6, 7, 8\}$ and define a binary relation R on A as follows: For all $x, y \in A$, $x R y \Leftrightarrow 2 \mid (x - y)$. Draw the directed graph of R. (2)
- 4. [CO-3] Draw Hasse diagram for the poset $(P(S), \subseteq)$, where P(S) is power set of $S \& S = \{a, b, c\}$. Is it a complemented lattice? Justify your answer.
- 5. [CO-4] Using Prim's algorithm, find the minimum spanning tree for the following weighted labeled graph: (4)

6. [CO-4] With the help of Kuratowski's theorem, show that the following graph (label the graph as per your convenience) is a non-planar graph:

(3)

7. [CO-4] Eight chemicals are to be shipped across country by air express. The cost of doing this depends on the number of containers shipped. The cost of shipping one container is \$125. For each additional container the cost increases by \$85. Some chemicals interact with one another and it is too risky to ship them in the same container. The chemicals are labeled by $c_1, c_2, c_3, ..., c_8$ and chemicals that interact with a given chemical are given below:

(3)

What is the minimum cost of shipping the chemicals and how should the chemicals be packed into containers?

- 8. [CO-4] A certain tree T with 21 vertices has only vertices of degree 1, 3, 5 and 6. If T has exactly 15 end-vertices and 1 vertex of degree 6, how many vertices of T have degree 5? (2)
- 9. [CO-5]
 - (a) Show that the set $G = \{A, B, C, D\}$; where $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ and $D = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$; forms a multiplicative abelian group.
 - (b) Find generators of the cyclic group (Z_4, \bigoplus_4) .

(2)

10. [CO-5] Suppose $R = \{a, b, c, d, e\}$ is a set with operation of addition and multiplication defined as follows:

(4)			
	ſ	7	n
	ı	•	а

+	а	b	c	d	e
а	a	b	c	d	е
b	b	c	d	е	а
c	c	d	е	а	b
d	d	е	а	b	∂\.
e	e	а	b	q_{11}	, d

					14.18
×	а	b	c	d^{ij}	¹i e
а	а	а	d	a_{ij}	а
b	а	b	te, C	'd	e
c	а	c 1,	[e]	b	d
d	a	d	b_0	е	С
e	а	e	i, "d	С	\bar{b}

Show that $(R, +, \times)$ is a commutative ring with unity.

11. [CO-6]

(a) Define a phase structure grammar,

(1)

(b) Discuss the language generated by the grammar G = (T, N, S, P); where

(3)

$$T = \{a, b, c\}, \ N = \{S, B, C\}, S \text{ is the starting symbol; and } P = [S \longrightarrow aSbc, S \longrightarrow aBc, cb \longrightarrow Bc, aB \longrightarrow ab, bB \longrightarrow bb, bc \longrightarrow bc, cc \longrightarrow cc].$$
