JAYF EE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2024

M.Tech-II Semester (CSE-DS)

COURSE CODE (CREDITS): 22M1WCI231 (3)					MAX. MARKS: 35
COURSE NAME: A	Advanced Comput	ational Technic	ques		
COURSE IN STRUC	CTORS: Dr. Anit	a		N	AX. TIME: 2 Hour
Note: (a) All question	ons are compulsor	<i>y</i> .		·	
(b)Marks are indicate	ted against each q	uestion in squ	are brackets	<i>.</i>	
(c) The candidate is	allowed to make S	Suitable numer	ic assumpti	ons whereve	r required for
solving problems		•			X.
(d) Scientific Calculo	ator is allowed				
Q1 Find the first der	ivative of f(x) at x	=0.4 from the	following ta	ible: (5) CO	4
X	0.1	0.2	0.3	**	0.4
F(X)	1.10517	1.22140	1.349	986	1.49182
Q2 Given the table o	of values, estimate	y" (1.3): (5) C	O5		
X 1	1.5	1.9	2.1	2.3	
Y 2.0648	2.6599 2.333	3 1.9922	1.6442	1.2969	

Q3 Using culic spine interpolation, find the value of y at x=1/2, for the following data: (5) CO8

	Selection of the select		
(0,1)	(1,2)	(2,9)	(3,28)
<u> </u>			' '

Q4 Using Ne wton's divided difference formula, evaluate f (15) from the following table of values (5) CC8

X	4	5	7	10	11	13
F(X)	48	100	294	900	1210	2028

Q5 Fit a strai 3ht line of the form y=ax+b, to the following data by the method of moments (5) CO5

X	2	3	4	5
Y	27	40	55	68

Q6 Find the largest eigen value and the corresponding eigenvector of the matrix (5) CO7

- 3 1 4
- 0 2 6
- 0 0 5

By power method at the end of 6th iteration, taking unit vector as the initial vector

Q7 Using Ga assian elimination method, Find the inverse of the matrix? (5) CO7

- 0 1 2
- 1 2 3
- 3 1 1

All the Best