

Analysis of The Invisible Web

————————— —

Project Report Submitted in partial fulfillment of the Degree of

Bachelor of Technology

In

| Computer Science Engineering

Under the Supervision of
s: Mr. Suman Saha
By
Shivaca Thakur (091293)
Kamaljit Kaur Virk (091321)

To

TR ——

¢ bty
|

@

L\ i XS

e ‘e

Ly G
Y e

t

?

Jaypee University of Information and Technology

Waknaghat, Solan — 173234, Himachal Pradesh

|
|

g
3
E
¥
E 7
§
|
i

Page 1 of 50

CERTIFICATE

This is to certify that the work titled Analysis of Invisible Web submitted by Shivaca Thakur
‘ (091293) & Kamaljit Kaur Virk (091321) in partial fulfillment for the award of degree of
" Bachelor of Technology of Jaypee University of Information Technology, Waknaghat has been
carried out under my supervision. This work has not been submitted partially or wholly to any

~ other University or Institute for the award of this or any other degree or diploma.

Signature of Guide: M

Name of Guide: Mr. Suman Saha
" Designation: Lecturer
- Date: May 16, 2012

Page 2 of 50

i
-’;{'

ACKNOWLEDGEMENT

. This project could not have been at the stage it is right now had it not been for the cooperation of
* Mr. Suman Saha, our project guide, who was always there to tell us how to go about our project
in a systematic manner and who always took out time to help us with our technical and non-

technical doubts at various stages of the project.

Equally important was the contribution of Dr. Nitin, our project supervisor, who kept faith in our

ability to complete the project well and on time.

Last but not the least; it was our fellow students who came to our rescue whenever we got stuck

* in any piece of code or otherwise.

Names of Students:
. Shivaca Thakur (091293)

. Kamaljit Kaur Virk (091321)

. Date:

|

© May 16,2012

Page 3 of 50

L A e T e el b ol TS

\

e e e e - o - e onh

T

5 b

ol

TR R SR EISGI T T R T AT R ¢ e

TR T A R M SR S

kil

§
§
|
|
i
|

Contents
1. Certificate
2. Acknowledgement
3. Introduction
4, Deep web resources
5. Accessing the Deep Web
6. Crawling the Deep Web
7. Classifying Resources
8. Search Engine
9. How Search Engines Work?

10.

11.

124
13.

14.
15.
16.
17.

e Web crawler
e Search Engine Indexers
e Query processor
Issues with Search Engines
e Cost of Crawling
e “Dump” Crawlers
e User Expectations & Skills
e Speedy Response vs Thorough results
e Bias towards Text
Why Search engines can’t see the Invisible Web?
e Casel-7
Surface Web vs Invisible Web
Types of Invisibility
e Opaque web
e Private Web
e Proprietary Web
e Truly Invisible Web
Technologies
Project Design

Sample code of a Web Crawler
References

(O, BRUS I 8]

10
11
12
13
14
15
18
19
20
20
20
21
22
22
23
24
30
2|
32
32
33
33
a5
37
39
49

Page 4 of 50

| Introduction

" The surface Web (also known as the visible Web or indexable Web) is that portion of the World
" Wwide Web that is indexable by conventional search engines. The part of the Web that is not
reachable this way is called the Deep Web. Search engines construct a database of the Web by
" using programs called spiders or Web crawlers that begin with a list of known Web pages.

. The spider gets a copy of each page and indexes it, storing useful information that will let the
page be quickly retrieved again later. Any hyperlinks to new pages are added to the list of pages
" {0 be crawled. Eventually all reachable pages are indexed, unless the spider runs out of time or
~ disk space. The collection of reachable pages defines the Surface Web.

" For various reasons (e.g., the Robots Exclusion Standard, links generated by JavaScript and
Flash, password-protection) some pages cannot be reached by the spider. These 'invisible' pages
are referred to as the Deep Web.

A 2005 study queried the Google, MSN, Yahoo!, and Ask Jeeves search engines with search
terms from 75 different languages and determined that there were over 11.5 billion web pages in
the publicly indexable Web as of January 2005.

P ——

As of June 2008, the indexed web contains at least 6'309 billion pages.

- The Deep Web (also called the Deepnet, the Invisible Web, the Undernet or the hidden Web) is
- World Wide Web content that is not part of the Surface Web, which is indexed by standard
search engines.

It should not be confused with the dark Internet, the computers that can no longer be reached via
Internet, or with the distributed file sharing network Darknet, which could be classified as a
smaller part of the Deep Web.

Page 5 of 50

|

. One of the pages includes "Deep Web Sites" which indicates that the 60 known, largest deep
Web sites contain data of about 750 terabytes (HTML included basis), or roughly 40 times the
size of the known surface Web. These sites appear in a broad array of domains from science to
law to images and commerce. The total number of records or documents within this group is

about 85 billion.

Mike Bergman, founder of BrightPlanet, credited with coining the phrase, said that searching on
the Internet today can be compared to dragging a net across the surface of the ocean: a great deal
may be caught in the net, but there is a wealth of information that is deep and therefore missed.
Most of the Web's information is buried far down on dynamically generated sites, and standard
search engines do not find it. Traditional search engines cannot "see" or retrieve content in the
deep Web—those pages do not exist until they are created dynamically as the result of a specific
search. The deep Web is several orders of magnitude larger than the surface Web.

Google

msn Vahoo

Surface
visible web
(~20 %)

Dynamio Webpag

Restricted access information -

Juanieo - Environmental Consultants Lid,

Page 6 of 50

g
3
&
3
g

Basically, the folks at BrightPlanet found that "Deep Web sources store their content in
searchable databases that only produce results dynamically in response to a direct request.”
Ordinary "spider” indexing of "surface" web sites misses this content, which BrightPlanet says is

truly vast:

Public information on the deep Web is currently 400 to 550 times larger than the
commonly defined World Wide Web

The deep Web contains 7,500 terabytes of information, compared to 19 terabytes of
information in the surface Web

The deep Web contains nearly 550 billion individual documents compared to the 1 billion
of the surface Web

More than an estimated 100,000 deep Web sites presently exist

60 of the largest deep Web sites collectively contain about 750 terabytes of information —
sufficient by themselves to exceed the size of the surface Web by 40 times

On average, deep Web sites receive about 50% greater monthly traffic than surface sites
and are more highly linked to than surface sites; however, the typical (median) deep Web
site is not well known to the Internet search public

The deep Web is the largest growing category of new information on the Internet

Deep Web sites tend to be narrower with deeper content than conventional surface sites
Total quality content of the deep Web is at least 1,000 to 2,000 times greater than that of
the surface Web

Deep Web content is highly relevant to every information need, market and domain

More than half of the deep Web content resides in topic specific databases

Page 7 of 50

Surfoco

~ 99% of scientific documents
in databases in Deep Web

- DeepWeb is not accessible
to search engines and robols

Page 8 of 50

(S

v e Y AR

s

1=

" Deep Web Resources

Deep Web resources may be classified into one or more of the following categories:

Dynamic content: dynamic pages which are returned in response to a submitted query or
accessed only through a form, especially if open-domain input elements (such as text
fields) are used; such fields are hard to navigate without domain knowledge.

Unlinked content: pages which are not linked to by other pages, which may prevent Web
crawling programs from accessing the content. This content is referred to as pages without
backlinks (or inlinks).

Private Web: sites that require registration and login (password-protected resources).
Contextual Web: pages with content varying for different access contexts (e.g., ranges of
client IP addresses or previous navigation sequence).

Limited access content: sites that limit access to their pages in a technical way (e.g., using
the Robots Exclusion Standard, CAPTCHAS, or no-cache Pragma HTTP headers which
prohibit search engines from browsing them and creating cached copies).

Scripted content: pages that are only accessible through links produced by JavaScript as
well as content dynamically downloaded from Web servers via Flash or Ajax solutions.

Non-HTML/text content: textual content encoded in multimedia (image or video) files or
specific file formats not handled by search engines.

Page 9 of 50

R

i
s Accessing the deep web

e

e

To discover content on the Web, search engines use web crawlers that follow hyperlinks through
* known protocol virtual port numbers. This technique is ideal for discovering resources on the
* qurface Web but is often ineffective at finding deep Web resources. For example, these crawlers

do not attempt to find dynamic pages that are the result of database queries due to the infinite
number of queries that are possible. It has been noted that this can be (partially) overcome by

* providing links to query results, but this could unintentionally inflate the popularity for a
* member of the deep Web.

~ In 2005, Yahoo! made a small part of the deep Web searchable by releasing Yahoo!
© Subscriptions. This search engine searches through a few subscription-only Web sites. Some

subscription websites display their full content to search engine robots so they will show up in

© user searches, but then show users a login or subscription page when they click a link from the
~ search engine results page.

DeepPeep, Intute, Deep Web Technologies, and Scirus are a few search engines that have
accessed the deep web. Intute ran out of funding and is now a temporary static archive as of July,

2011,

Page 10 of 50

————ee it S

i
" Ccrawling the deep Web

© Researchers have been exploring how the deep Web can be crawled in an automatic fashion. In
~ 9001, Sriram Raghavan and Hector Garcia-Molina presented an architectural model for a hidden-

Web crawler that used key terms provided by users or collected from the query interfaces to
query a Web form and crawl the deep Web resources.

Alexandros Ntoulas, Petros Zerfos, and Junghoo Cho of UCLA created a hidden-Web crawler
that automatically generated meaningful queries to issue against search forms. Several form
query languages (e.g., DEQUEL) have been proposed that, besides issuing a query, also allow to
extract structured data from result pages. Another effort is DeepPeep, a project of the University
of Utah sponsored by the National Science Foundation, which gathered hidden-Web sources
(Web forms) in different domains based on novel focused crawler techniques.

Commercial search engines have begun exploring alternative methods to crawl the deep Web. .
The Sitemap Protocol (first developed by Google) and mod oai are mechanisms that allow search |
engines and other interested parties to discover deep Web resources on particular Web servers.

Both mechanisms allow Web servers to advertise the URLs that are accessible on them, thereby
allowing automatic discovery of resources that are not directly linked to the surface Web.
Google's deep Web surfacing system pre-computes submissions for each HTML form and adds
the resulting HTML pages into the

i e

Google search engine index. The surfaced results account for a thousand queries per second to
deep Web content.

In this system, the pre-computation of submissions is done using three algorithms:
(1) selecting input values for text search inputs that accept keywords,
(2) identifying inputs which accept only values of a specific type (e.g., date), and

(3) selecting a small number of input combinations that generate URLs suitable for inclusion
Info the Web search index.

Page 11 of 50

%l Classifying resources

Automatlcally determining if a Web resource is a member of the surface Web or the deep Web is
= difficult. If a resource is indexed by a search engine, it is not necessarily a member of the surface
. Web, because the resource could have been found using another method (e.g., the Sitemap
protocol, mod oai, OAlster) instead of traditional crawling.

[f a search engine provides a backlink for a resource, one may assume that the resource is in the
surface Web. Unfortunately, search engines do not always provide all backlinks to resources.
Even if a backlink does exist, there is no way to determine if the resource providing the link is
itself in the surface Web without crawling all of the Web. Furthermore, a resource may reside in
the surface Web, but it has not yet been found by a search engine.

Therefore, if we have an arbitrary resource, we cannot know for sure if the resource resides in
the surface Web or deep Web without a complete crawl of the Web.

Most of the work of classifying search results has been in categorizing the surface Web by topic.
For classification of deep Web resources, Ipeirotis et al. presented an algorithm that classifies a
deep Web site into the category that generates the largest number of hits for some carefully
selected, topically-focused queries. Deep Web directories under development include OAlster at
the University of Michigan, Intute at the University of Manchester, Infomine at the University of
California at Riverside, and DirectSearch (by Gary Price). This classification poses a challenge
while searching the deep Web whereby two levels of categorization are required.

The first level is to categorize sites into vertical topics (e.g., health, travel, automobiles) and sub-
topics according to the nature of the content underlying their databases.

The more difficult challenge is to categorize and map the information extracted from multiple
deep Web sources according to end-user needs. Deep Web search reports cannot display URLs
like traditional search reports. End users expect their search tools to not only find what they are
looking for quickly, but to be intuitive and user-friendly.

In order to be meaningful, the search reports have to offer some depth to the nature of content
that underlie the sources or else the end-user will be lost in the sea of URLSs that do not indicate
what content lies beneath them. The format in which search results are to be presented varies
Widely by the particular topic of the search and the type of content being exposed.

The challenge is to find and map similar data elements from multiple disparate sources so that

search results may be exposed in a unified format on the search report irrespective of their
source,

Page 12 of 50

P TR—— N e R -

| Gearch Engine

 gearch engines are databases containing full-text indexes of Web pages. When you use a search
engine, you are actually searching this database of retrieved Web pages, not the Web itself.
* Gearch engine databases are finely tuned to provide rapid results, which is impossible if the
engines were to attempt to search the billions of pages on the Web in real time.

| Search engines are similar to telephone white pages, which contain simple listings of names and
addresses. Unlike yellow pages, which are organized by category and often include a lot of
descriptive information about businesses, white pages provide minimal, bare bones information.
However, they’re organized in a way that makes it very easy to look up an address simply by
using a name like “Smith” or “Veerhoven.”

1 Search engines are compiled by software “robots” that voraciously suck millions of pages into
their indices every day. When you search an index, you’re trying to coax it to find a good match
between the keywords you type in and all of the words contained in the search engine’s database.
= In essence, you're relying on a computer to essentially do simple patternmatching between your
" scarch terms and the words in the index. AltaVista, HotBot, and Google are examples of search
engines.

e

Page 13 of 50

How Search Engines Work

E gearch engines are complex programs. In a nutshell, they consist of several distinct parts:

.‘ « The Web crawler (or spider), which finds and fetches Web pages

« The indexer, which as its name implies, indexes every word on every page and stores the ‘
* resulting index of words in a huge database

~ « The query processor, which compares your search query to the index and recommends the best
~ possible matching documents

) i Let’s take a closer look at each part.

P S ———

Page 14 of 50

Saicd o

-

i Web Crawler

Web crawlers are the “scouts” for search engines, with the sole mission of finding and retrieving
pages on the Web and handing them off to the search engine’s indexers, which we discuss in the
next section. It’s easy to imagine a Web crawler as a little sprite scuttling across the luminous
strands of cyberspace, but in reality Web crawlers do not traverse the Web at all.

In fact, crawlers function much like your Web browser, by sending a request to a Web server for
a Web page, downloading the entire page, and then handing it off to the search engine’s indexer.
Crawlers, of course, request and fetch pages much more quickly than you can with a Web
browser. In fact most Web crawlers can request hundreds or even thousands of unique pages

simultaneously.

Given this power, most crawlers are programmed to spread out their requests for pages from
individual servers over a period of time to avoid overwhelming the server or consuming so much

" bandwidth that human users are crowded out.

Crawlers find pages in two ways. Most search engines have an “add URL” form, which allows
Web authors to notify the search engine of a Web page’s address. In the early days of the Web,
this method for alerting a search engine to the existence of a new Web page worked well— the
crawler simply took the list of all URLs submitted and retrieved the underlying pages.

Unfortunately, spammers figured out how to create automated bots that bombarded the add URL
form with millions of URLs pointing to spam pages. Most search engines now reject almost 95
percent of all URLs submitted through their add URL forms. It’s likely that, over time, most
search engines will phase-out their add URL forms in favor of the Second method that crawlers
can use to discover pages—one that’s more easy to control.

This second method of Web page discovery takes advantage of the hypertext links embedded in
most Web pages. When a crawler fetches a page, it culls all of the links appearing on the page
and adds them to a queue for subsequent crawling. As the crawler works its way through the
queue, links found on each new page are also added to the queue. Harvesting links from actual
Web pages dramatically decreases the amount of spam a crawler encounters, because most Web
authors only link to what they believe are high-quality pages.

By harvesting links from every page it encounters, a crawler can quickly build a list of links that
can cover broad reaches of the Web. This technique also allows crawlers to probe deep within
individual sites, following internal navigation links. In theory, a crawler can discover and index
Virtually every page on a site starting from a single URL, if the site is well designed with
extensive internal navigation links.

Page 15 of 50

s

-

notion is simple, crawlers must be programmed to handle several challenges.
~First, since most crawlers send out simulta.neous requests for th.ousands of pages, tl’-le .que.ue of
“yisit soon” URLs must be constantly examined and compared with URLs already existing in the
e’s index. Duplicates in the queue must be eliminated to prevent the crawler from

Although their fu

“search engin
fetching the same page more than once.

| If a Web page has already been crawled and indexed, the crawler must determine if enough time
has passed to justify revisiting the page, to assure that the most up-to-date copy is in the index.
* And because crawling is a resource-intensive operation that costs money, most search engines
limit the number of pages that will be crawled and indexed from any one Web site. This is a
* crucial point—you can’t assume that just because a search engine indexes some pages from a site

*that it indexes all of the site’s pages.

Because much of the Web is highly connected via hypertext links, crawling can be surprisingly
~ efficient.

The behavior of a Web crawler is the outcome of a combination of policies:

a selection policy that states which pages to download,

a re-visit policy that states when to check for changes to the pages,

a politeness policy that states how to avoid overloading Web sites, and

a parallelization policy that states how to coordinate distributed Web crawlers. .

A May 2000 study published by researchers at AltaVista, Compaq, and IBM drew several
~ interesting conclusions that demonstrate that crawling can, in theory, discover most pages on the
visible Web (Broder et al., 2000).

- The study found that:

~* For any randomly chosen source and destination page, the probability that a direct hyperlink
path exists from the source to the destination is only 24 percent.

* If a direct hypertext path does exist between randomly chosen pages, its average length is 16
* links. In other words, a Web browser would have to click links on 16 pages to get from random
; page‘ A to random page B. This finding is less than the 19 degrees of separation postulated in a

eprevious study, but-alse-exeludes-the 76-percent of pages lacking direct paths.

* If an undirected path exists (meaning that links can be followed forward or backward, a

technique available to search engine spiders but not to a person using a Web browser), 'its
| average length is about six degrees.

Page 16 of 50

. More than 90 percent of all pages on the Web are reachable from one another by following
. either forward or backward links. This is good news for search engines attempting to create

comprehensive indexes of the Web.

World Wide
Web

Web pages

URLs Multi-threaded

—— Scheduler Er et i
downluader
Text and
metadata l
Queue [=
URLSs
Sturage
SRS,

Page 17 of 50

earch Engine Indexers

hen a crawler fetches a page, it hands it off to an indexer, which stores the full text of the page

‘;m the search engine’s database, typically in an inverted index data structure.

© An inverted index is sorted alphabetically, with each index entry storing the word, a list of the
" documents in which the word appears, and in some cases the actual locations within the text

~ where the word occurs.

This structure is ideally suited to keyword-based queries, providing rapid access to documents
* containing the desired keywords. As an example, an inverted index for the phrases “life is good,”
“pad or good,” “good love,” and “love of life” would contain identifiers for each phrase
~ (numbered one through four), and the position of the word within the phrase. Following table
’H shows the structure of this index.

bad (2T .

‘good | (1,3) a8y B

is (1,2)

life (1,1) (4,3)

love (S72)= (47T} '
of (4,2) |
or (259) :

To improve search performance, some search engines eliminate common words called stop
words (such as is, or, and of in the above example). Stop words are so common they provide
little or no benefit in narrowing a search so they can safely be discarded.

The indexer may also take other performance-enhancing steps like eliminating punctuation and
- multiple spaces, and may convert all letters to lowercase. Some search engines save space in
- their indexes by truncating words to their root form, relying on the query processor to expand
- queries by adding suffixes to the root forms of search terms.

Indexing the full text of Web pages allows a search engine to go beyond simply matching single
keywords, If the location of each word is recorded, proximity operators such as NEAR can be
used (6 limit searches. The engine can also match multi-word phrases, sentences, or even larger
chunks of text. If a search engine indexes HTML code in addition to the text on the page,
searches can also be limited to specific fields on a page, such as the title, URL, body, and so on.

TSR E

Page 18 of 50

he Query Processor

he query processor is arguably the most complex part of a search engine. The query processor

1 h : s?averal parts including the primary user interface (the search form), the actual “engine” that
3 5 . .

‘ eialuates a query and matches it with the most relevant documents in the search engine database

of indexed Web pages, and the results-output formatter.

" The search form and the results format vary little from search engine to search engine. All have
" both basic and advanced search forms, each offering slightly varying limiting, control, and other

* user-specified functions.

And most result formats are equally similar, typically displaying search results and a few
additional extras like suggested related searches, most popular searches, and so on.

The major differentiator of one search engine from another lies in the way relevance is
calculated. Each engine is unique, emphasizing certain variables and downplaying others to
* calculate the relevance of a document as it pertains to a query.

~ Some engines rely heavily on statistical analysis of text, performing sophisticated pattern-
matching comparisons to find the most relevant documents for a query.

* Others use link analysis, attempting to capture the collective wisdom of the Web by finding the
~ documents most cited by other Web authors for a particular query. How an engine calculates
relevance is ultimately what forms its “personality” and determines its suitability for handling a
particular type of query.

Search engine companies closely guard the formulas used to calculate relevance, and change
them constantly as algorithms are updated for improved quality or tweaked to outwit the latest
* technique used by spammers.

- Nonetheless, over time, a searcher can generally get to know how well a particular engine will
perform for a query, and select an engine appropriately.

Page 19 of 50

ssues with Search Engines

ust as Web directories have a set of issues of concern to a searcher, so do search engines. Some
“of these issues are technical; others have to do with choices made by the architects and engineers
ho create and maintain the engines.

“Crawling the Web is a resource-intensive operation. The search engine provider must maintain
“computers with sufficient power and processing capability to keep up with the explosive growth
“of the Web, as well as a high-speed connection to the Internet backbone. It costs money every
“time a page is fetched and stored in the search engine’s database. There are also costs associated
with query processing, but in general crawling is by far the most expensive part of maintaining a
“search engine.

“Since no search engine’s resources are unlimited, decisions must be made to keep the cost of !
“crawling within an acceptable budgetary range. Some engines limit the total number of pages in
“their index, dumping older pages when newer ones are found. Others limit the frequency of
recrawl, so pages in the index may be stale or out of date. Still others limit their crawling to
certain portions or domains believed to contain reliable, non-duplicated material.

Whenever an engine decides to limit its crawling, it means pages that potentially could be
“included in its index are not. It’s tempting to think that these unretrieved pages are part of the
“Invisible Web, but they aren’t. They are visible and indexable, but the search engines have made
“a conscious decision not to index them. Competent searchers must take this into account when
ijplanning a research strategy. Much has been made of these overlooked pages, and many of the .
“major engines are making serious efforts to include them and make their indexes more

iicomprehensive. Unfortunately, the engines have also discovered through their “deep crawls” that

f:ther_e’s a tremendous amount of duplication and spam on the Web. The trade-off between |
~excluding bogus material and assuring that all truly relevant material will be found is a difficult \
one, and virtually assures that no engine will ever have a totally comprehensive index of the
~Web,

“Dumb” crawlers: |

~ At their most basic level, crawlers are uncomplicated programs. Crawlers are designed simply i
tQ find and fetch Web pages. To discover unindexed pages, crawlers rely on links they’ve ;
tdiseovered-onother pages. If @ Web page has no links pointing to it, a search engine spider |
-~ Cannot retrieve it unless it has been submitted to the search engine’s “add URL” form. Another
- broblem with search engines compiled by crawlers is simply that it takes a lot of time to crawl

the entire Web, even when the crawler is hitting millions of pages a day. Crawler lag time is a
+ tWo-fold issye:

£

|

Page 20 of 50

. :

First, there’s typically a gap between when a page is published on the
- Web’and when a crawler discovers it.

gecond, there’s a time lag between when a crawler first finds a page and when it recrawls the
i e Jooking for fresh content.

Both of these time issues can contribute to incomplete or inaccurate search results. Current
* generation crawlers also have little ability to determine the quality or appropriateness of a Web
* page, of whether it is a page that changes frequently and should be recrawled on a timely basis.

User expectations and skills:

" Users often have unrealistic expectations of what search engines can do and the data that they
" contain. Trying to determine the best handful of documents from a corpus of millions or billions
of pages, using just a few keywords in a query is almost an impossible task.

Vet most searchers do little more than enter simple two- or three-word queries, and rarely take
advantage of the advanced limiting and control functions all search engines offer. Search engines
© go to great lengths to successfully cope with these woefully basic queries.

© One way they cope is to create a set of preprogrammed results for popular queries. For example,
" if a pop star releases a hit song that generates lots of interest, the engine may be preprogrammed
~ to respond with results pointing to biographical information about the star, discographies, and
~ links to other related music resources.

Another method is to adjust results so that the most popular, commonly selected pages rise to the
- top of a result lists. These are just two techniques search engines apply to help users who can’t or
~ won’t take advantage of the powerful tools that are available to them.

Tagng the time to learn how a search engine works, and taking advantage of the full capabilities
- 1tolfers can improve search results dramatically.

Page 21 of 50

o o SRR e s 4

© Now that we live on

Speedy Response Vs. Thorough Results:

“Internet time,” everyone expects nearly instantaneous results from search

engines. To accommodate this demand for speed, search engines rarely do as thorough an
analysis as they might if time were not an issue. Shortcuts are taken, total results are truncated,

and invariably important documents will be omitted from a result list.

Fortunately, increases in both processing power and bandwidth are providing search engines
with the capability to use more computationally intensive techniques without sacrificing the need

for speed.

Unfortunately, the relentless growth of the Web works against improvements in computing
power and bandwidth simply because as the Web grows the search space required to fully
evaluate it also increases.

© Bias toward text:

Most current-generation search engines are highly optimized to index fext. If there is no text on a
page—say it’s nothing but a graphic image, or a sound or audio file—there is nothing for the
engine to index. |

For non-text objects such as images, audio, video, or other streaming media files, a search engine
can record, in an Archielike manner, filename and location details but not much more. While

researchers are working on techniques for indexing non-text objects, for the time being non-text
objects make up a considerable part of the Invisible Web.

\“1)! search engines cannot see the Invisible Web

Text—more specifically hypertext—is the fundamental medium of the Web. The primary

% funct?on of search engines is to help users locate hypertext documents of interest. Search engines
- are highly tuned and optimized to deal with text pages, and even more specifically, text pages

3

1
3
3
:

that have been encoded with the HyperText Markup Language (HTML).

As the Web evolves and additional media become commonplace, search engines will

. undoubtedly offer new ways of searching for this information. But for now, the core function of

most Web search engines is to help users locate text documents.

HIML documents are simple. Each page has two parts: a “head” and a “body,” which are clearly
Separated in the source code of an HTML page. The head portion contains a title, which is

Page 22 of 50

ayed (logically enough) in the title bar at the very top of a browser’s window. The head
also contain some additional metadata describing the

ument, which can be used by a search engine to help classify the document. For the most
g other than the title, the head of a document contains information and data that help the Web
«er display the page but is irrelevant to a search engine. The body portion contains the
cument itself. This is the meat that the search engine wants to digest.

rowser
actual do

he simplicity of this format makes it easy for search engines to retrieve HTML documents,
. 1oy every word on every page, and store them in huge databases that can be searched on
* demand. Problems arise when content doesn’t conform to this simple Web page model. To
" understand why, it’s helpful to consider the process of crawling and the factors that influence
* whether a page either can or will be successfully crawled and indexed.

~ The first determination a crawler attempts to make is whether access to pages on a server it is
attempting to crawl is restricted. Webmasters can use three methods to prevent a search engine

* from indexing a page.

Two methods use blocking techniques specified in the Robots Exclusion Protocol
* (http:/info.webcrawler.com/mak/projects/robots.html) that most crawlers voluntarily honor and
* one creates a technical roadblock that cannot be circumvented.

The Robots Exclusion Protocol is a set of rules that enables a Webmaster to specify which parts

© of a server are open to search engine crawlers, and which parts are off-limits. The Webmaster

~ simply creates a list of files or directories that should not be crawled or indexed, and saves this {
* list on the server in a file named robots.txt. This optional file, stored by convention at the top |
level of a Web site, is nothing more than a polite request to the crawler to keep out, but most ‘
~ major search

~ engines respect the protocol and will not index files specified in robots.txt.

= o

. Tha second means of preventing a page from being indexed works in the same way as the
 T008Gs.txt file, but is page-specific. Webmasters can prevent a page from being crawled by
including a “noindex” meta tag instruction in the “head” portion of the document. Either
- robots.txt or the noindex meta tag can be used to block crawlers. The only difference between the
two is that the noindex meta tag is page specific, while the robots.txt file can be used to prevent
indexing of individual pages, groups of files, or even entire Web sites.

Password protecting a page is the third means of preventing it from being crawled and indexed
by a search engine. This technique is much stronger than the first two because it uses a technical
- barrier rather than a voluntary standard.

= Why would a Webmaster block crawlers from 2 page using the Robots Exclusion Protocol
rather than simply password protecting the pages?

gassword‘PTOteCted pages can be accessed only by the select few users who know the password.
ages excluded from engines using the Robots Exclusion Protocol, on the other hand, can be

Page 23 of 50

accessed by anyone ¢
pages from indexing 1s

one excep! a search engine crawler. The most common reason Webmasters block
that their content changes so frequently that the engines cannot keep up.

using any of the three methods described here are part of the Invisible Web. In many
o they contain no technical roadblocks that prevent crawlers from spidering and indexing the
ciZZS’The); are part of the Invisible Web because the Webmaster has opted to keep them out of
p 0

the search engines.

Once a crawler has determined whether it is permi.tted to access a page, the next stelp is-to
attempt to fetch it and hand it off to the.sez-ir.ch engine’s mde.xer compone'nt.l This crucial step
determines whether a page is visible or 1nv151b!e. Let’s examine some variations that crawlers
encounter as they discover pages on the Web, using the same logic they do to determine whether

a page is indexable.

Case 1.

The crawler encounters a page that is straightforward HTML text, possibly including basic Web
graphics. This is the most common type of Web page. It is visible and can be indexed.

Case 2.

The crawler encounters a page made up of HTML, but it’s a form consisting of text fields, check

boxes, or other components requiring user input. It might be a sign-in page, requiring a user

name and password. It might be a form requiring the selection of one or more options. The form

itself, since it’s made up of simple HTML, can be fetched and indexed. But the content behind

the form (what the user sees after clicking the submit button) may be invisible to a search engine.
There are two possibilities here:

~ * The form is used simply to select user preferences. Other pages on the site consist of

» straightforward HTML that can be crawled and indexed (presuming there are links from other

1 pagefielsewhere on the Web pointing to the pages). In this case, the form and the content behind
~ itare visible and can be included in a search engine index.

- A good example is Hoover’s Business Profiles http://www.hoovers.com), which provides a form

| ?odsearch for a company, but presents company profiles in straightforward HTML that can be
indexed.

. Tl}e form is used to collect user-specified information that will generate dynamic pages when
the information is submitted. In this case, although the form is visible the content “behind” it is

= 1nvisible. Since the only way to access the content is by using the form. how can a crawler—

;Vhicgl 1S simply designed to request and fetch pages— possibly know what to enter into ‘the
ormS?

Page 24 of 56

 Gince forms can literally have infinite variations, if they function to access dynamic content they
| entially roadblocks for crawlers. A good example of this type of Invisible Web site is The
bs clsds Bank Group’s Economics of Tobacco Control Country Data Report Database, which
; V;Ilgl;vs you toO select any country and choose a wide range of reports for that country
: z(ihtt [[WWW | worldbank.org/tobacco/database.asp). It’s interesting to note that this database is
| just one part of a much larger site, the bulk of which is fully visible.

o even if the search engines do a comprehensive job of indexing the visible part of the site, this
yaluable information still remains hidden to all but those searchers who visit the site and

 discover the database on their own.

In the future, forms will pose less of a challenge to search engines. Several projects are underway
' aimed at creating more intelligent crawlers that can fill out forms and retrieve information. Qne
- approach uses preprogrammed “brokers” designed to interact with the forms of specific
databases. Other approaches combine brute force with artificial intelligence to “guess” what to
enter into forms, allowing the crawler to punch through” the form and retrieve information.

However, even if general-purpose search engines do acquire the ability to crawl content in
databases, it’s likely that the native search tools provided by each database will remain the best

way to interact with them.

Case 3.

The crawler encounters a dynamically generated page assembled and displayed on demand. The
telltale sign of a dynamically generated page is the “?” symbol appearing in its URL.
Technically, these pages are part of the visible Web. Crawlers can fetch any page that can be
displayed in a Web browser, regardless of whether it’s a static page stored on a server or
generated dynamically. '

A good example of this type of Invisible Web site is Compaq’s experimental SpeechBot search
engine, which indexes audio and video content using speech recognition, and converts the
streaming media files to viewable text http://www.speechbot.com). Somewhat ironically, one
could make a good argument that most search engine result pages are themselves Invisible Web
content, since they generate dynamic pages on the fly in response to user search terms.

Dynamically generated pages pose a challenge for crawlers.

Dynamic pages are created by a script, a computer program that selects from various options to
asse_rilb_l_e'a customized page. Until the script is actually run, a crawler has no way of knowing
what it wil] actually do. The script should simply assemble a customized Web page.
Unfortunately, unethical Webmasters have created scripts to generate millions of similar but not

qQuite identical pages in an effort to “spamdex” the search engine with bogus pages. Sloppy

Page 25 of 50

gramming can also result in a script that puts a spider into an endless loop, repeatedly
10
fetrieving the same page.

These “spider traps” can be a real drag on the engines, so most have simply made the decision ’i
ot to crawl or index URLs that generate dynamic content. They’re “apartheid” pages on the
r\II,IE:b__separate but equal, making up a big portion of the “opaque” Web that potentially an

be indexed but is not. Inktomi’s FAQ about its crawler, named “Slurp,” offers this explanation:

“Slurp now has the ability to crawl dynamic links or dynamically generated documents. It will r
not, however, crawl them by default. There are a number of good reasons for this. A couple of I
reasons are that dynamically generated documents can make up infinite URL spaces, and that
dynamically generated links and documents can be different for every retrieval so there is no use

in indexing them” (http://www.inktomi.com/slurp.html).

As crawler technology improves, it’s likely that one type of dynamically generated content will
increasingly be crawled and indexed. This is content that essentially consists of static pages that
are stored in databases for production efficiency reasons. As search engines learn which sites
providing dynamically generated content can be trusted not to subject crawlers to spider traps,
content from these sites will begin to appear in search engine indices.

For now, most dynamically generated content is squarely in the realm of the Invisible Web.

Case 4.

The crawler encounters an HTML page with nothing to index. There are thousands, if not
millions, of pages that have a basic HTML framework, but which contain only Flash, images in

the .gif, .jpeg, or other Web graphics format, streaming media, or other non-text content in the
body of the page.

These types of pages are truly parts of the Invisible Web because there’s nothing for the search
engine to index. Specialized multimedia search engines, such as ditto.com and WebSeek are able
10 recognize some of these non-text file types and index minimal information about them, such
as file name and size, but these are far from keyword searchable solutions. :

+ Case 5,

e crawler encounters a site offering dynamic, real-time data. There are a wide variety of sites
Providing this kind of information, ranging from real-time stock quotes to airline flight arrival
Information,

Page 26 of 50

|
|
i)

sites are also part of the Invisible Web, because these data streams are, from a practical
nt, unindexable. While it’s technically possible to index many kinds of real-time data
the value would only be for historical purposes, and the enormous amount of data
uld quickly strain a search engine’s storage capacity, so it’s a futile exercise.

These Sl
standpo!
sreams,
captured WO

A good example of this type of Invisible Web site is TheTrip.com’s Flight tracker, which
rovides real-time flight arrival information taken directly from the cockpit of in-flight airplanes

(mﬂmn.com/ﬂ/homc/(),'l()%. 1-1,00.shmtl).

Case 6.

The crawler encounters a PDF or Postscript file. PDF and Postscript are text formats that
preserve the look of a document and display it identically regardless of the type of computer used
to view it. Technically, it’s a straightforward task to convert a PDF or Postscript file to plain text
that can be indexed by a search engine.

However, most search engines have chosen not to go to the time and expense of indexing files of
this type.

One reason is that most documents in these formats are technical or academic papers, useful to a
small community of scholars but irrelevant to the majority of search engine users, though this is
changing as governments increasingly adopt the PDF format for their official documents.

Another reason is the expense of conversion to plain text. Search engine companies must make
business decisions on how best to allocate resources, and typically they elect not to work with
these formats.

An experimental search engine called Research Index, created by computer scientists at the NEC
Research Institute, not only indexes PDF and Postscript files, it also takes advantage of the
unique features that commonly appear in documents using the format to improve search results
(http://www.researchindex.com).

For example, academic papers typically cite other documents, and include lists of references to
related material. In addition to indexing the full text of documents, Research Index also creates a
citation index that makes it easy to locate related documents, It also appears that citation
searching has little overlap with keyword searching, so combining the two can greatly enhance
the relevance of results.

We hope that the major search engines will follow Google’s example and gradually adopt the
pioneering work being done by the developers of Research Index. Until then, files in PDF or
Postscript format remain firmly in the realm of the Invisible Web.

Page 27 of 50

S e . _aaer

_

case 7.

The crawler encounters a database offering a Web interface. There are tens of thousands of
Jatabases containing extremely valuable information available via the Web. But search engines
cannot index the material in them. Although we present this as a unique case, Web-accessible
Jatabases are essentially a combination of Cases 2 and 3.

patabases generate Web pages dynamically, responding to commands issued through an HTML
form. Though the interface to the database is an HTML form, the database itself may have been
created before the development of HTML, and its legacy system is incompatible with protocols
used by the engines, or they may require registration to access the data. Finally, they may be
proprietary, accessible only to select users, or users who have paid a fee for access.

Jronically, the original HTTP specification developed by Tim Berners- Lee included a feature
called format negotiation that allowed a client to say what kinds of data it could handle and allow
a server to return data in any acceptable format. Berners-Lee’s vision encompassed the
information in the Invisible Web, but this vision—at least from a search engine standpoint— has
largely been unrealized.

Page 28 of 50

Type of Invisible Web Content

Why It’s Invisible

Disconnected page

No links for crawlers to finl the peige

Pagje consisting primarily of images, audlio,
or video

Insufficient text for the search engine to
“understand” what the page is about

Pages consisting primarily of PDF or
Postscript, Flash, Shockwave, Executables
L |[programs) or Compressecl files

' (.zip, far, etc.)

Technically incexable, but usually
ignored, primarily for business or
policy recsons

Content in relational databases

Crawlers can't fill out required fields in
intercictive forms

Recil-time content

Ephemeral data; huge quantities;
r‘apid|y chqnging information

Dynamically generated confent

Customized content is irrelevant for
most searchers; fear of “spicler traps”

Page 29 of 50

i e e s et s i

4 Rt in

Surface Web

»Size: Estimatedito be 87
billion (Google) to 45 billion
(About.com) web pages

eStatic;_ 't:.rawl_ablh. we,b pages

slarge amounts of unfiltered
mformatlon -

) lENcEaﬁﬁa&%

Global Sclence Gateway

vs Deep Web

20067

*Size: Estimated to be 5 to 500
times larger (BrightPlanet)

*Dynamically geherated
content that Iwes msnde
databases

-ngh-quality, managed

aubject-spemﬁc content

Page 30 of 50

Four Types of Invisibility

Technical reasons aside, there are other reasons that some kinds of material that can be accessed
either on or via the Internet are not included in search engines. There are really four “types” of
[nvisible Web content. We make these distinctions not so much to make hard and fast
distinctions between the types, but rather to help illustrate the

Amorphous boundary of the Invisible Web that makes defining it in concrete terms so difficult.

The four types of invisibility are:
» The Opaque Web

« The Private Web

« The Proprietary Web

» The Truly Invisible Web

Page 31 of 50

foh ibitis - Splii e SRS

PR | ot M R e N PN U

The Opaque Web

The Opaque Web consists of files that can be, but are not, included in search engine indices. The

Opaque Web is quite large, and presents a unique challenge to a searcher. Whereas the deep

. content in many truly Invisible Web sites is accessible if you know how to find it, material on

he Opaque Web is often much harder to find.

The biggest part of the Opaque Web consists of files that the search engines can crawl and index,
put simply do not. There are a variety of reasons for this; let’s look at them.

Depth of Crawl

Frequency of Crawl

Maximum Number of Viewable Results
Disconnected URL’S

The Private Web

The Private Web consists of technically indexable Web pages that have deliberately been
gxcluded from search engines. There are three ways that Webmasters can exclude a page from a
search engine:

» Password protect the page. A search engine spider cannot go past the form that requires a
username and password.

*Use the robots.txt file to disallow a search spider from accessing the page.

*Use the “noindex” meta tag to prevent the spider from reading past the head portion of the page
and indexing the body.

For the most part, the Private Web is of little concern to most searchers. Private Web pages
§1mp1y use the public Web as an efficient delivery and access medium, but in general are not
intended for use beyond the people who have permission to access the pages.

There are other types of pages that have restricted access that may be of interest to searchers, yet
they typically aren’t included in search engine indices. These pages are part of the Proprietary
Web, which we describe next.

Page 32 of 50

—

N S

The Proprietary Web

gearch engines cannot for the most part access pages on the Proprietary Web, because they are
only accessible to people who have agreed to special terms in exchange for viewing the content.

Proprietary pages may simply be content that’s only accessible to users willing to register to
yiew them. Registration in many cases is free, but a search crawler clearly cannot satisfy the
requirements of even the simplest registration process.

Examples of free proprietary Web sites include The New York Times, Salon’s “The Well”
community, Infonautics’ “Company Sleuth” site, and
countless others.

Other types of proprietary content are available only for a fee, whether on a per-page basis or via
some sort of subscription mechanism.

Examples of proprietary fee-based Web sites include the Electric Library, Northern Light’s
Special Collection Documents, and The Wall Street Journal Interactive Edition.

Proprietary Web services are not the same as traditional online information providers, such as
Dialog, LexisNexis, and Dow Jones. These

services offer Web access to proprietary information, but use legacy database systems that
existed long before the Web came into being.

e

While the content offered by these services is exceptional, they are not
considered to be Web or Internet providers.

P

The Truly Invisible Web

Some Web sites or pages are truly invisible, meaning that there are technical reasons that search
engines can’t spider or index the material they have to offer. A definition of what constitutes a
truly invisible resource must necessarily be somewhat fluid, since the engines are constantly
improving and adapting their methods to embrace new types of content. But at the time of
writing this book, truly invisible content consisted of several types of resources.

The simplest, and least likely to remain invisible over time, are Web pages that use file formats
that current generation Web crawlers aren’t

programmed to handle. These file formats include PDF, Postscript, Flash, Shockwave,
executables (programs), and compressed files. There are two reasons search engines do not
currently index these types of files.

First, the files have little or no textual context, so it’s difficult to categorize them, or compare
them for relevance to other text documents. The addition of metadata to the HTMIL container

Page 33 of 50

I

]

carrying the file could solve this problem, but it would nonetheless be the metadata description
(hat got indexed rather than the contents of the file itself.

The second reason certain types of files don’t appear in search indices is simply because the
search engines have chosen to omit them. They can be indexed, but aren’t. You can see a great
example of this in action with the Research Index engine, which retrieves and indices PDF,
ostscript, and even compressed files in real time, creating a searchable

database that’s specific to your query.

AltaVista’s Search Engine product for creating local site search services is capable of indexing
more than 250 file formats, but the flagship public search engine includes only a few of these
formats. It’s typically lack of willingness, not an ability issue with file formats.

More problematic are dynamically generated Web pages. Again, in some cases, it’s not a
technical problem but rather unwillingness on the part of the engines to index this type of
content. This occurs specifically when a non-interactive script is used to generate a page. These
are static pages, and generate static HTML that the engine could spider.

The problem is that unscrupulous use of scripts can also lead crawlers into “spider traps” where
the spider is literally trapped within a huge site of thousands, if not millions, of pages designed
solely to spam the search engine. This is a major problem for the engines, so they’ve simply
opted not to index URLs that contain script commands.

Finally, information stored in relational databases, which cannot be extracted without a specific
query to the database, is truly invisible. Crawlers aren’t programmed to understand either the
database structure or the command language used to extract information.

Page 34 of 50

I

How technologies these days are changing a part of invisible web to
the visible web?

Amazon
Amazon

Amazon.com is hoping to leverage human intelligence with a new service called Amazon
Mechanical Turk. The name comes from Wolfgang von Kempelen’s Turk, which was
supposedly a chess-playing automaton (in the late 1700s) but actually had a human inside it.
Amazon’s director of Web service software Peter Cohen pointed to the company’s A9 search
service and its yellow pages feature. That service offers users photographs of, for example, pizza
restaurants near specific addresses. But he said that asking a computer to choose the best one
from a number of possible images isn’t practical. A person, on the other hand, could make such a
decision in seconds. :

Also known as HI'T’s-Human intelligence tasks!

Google

But now search engines like Google have come up with a way to search images !
A

Google analyses the image, creating a mathematical model based on shapes, lines, proportions,

colors and other elements, it then matches the model against images already in the Google’s .

index. Google then does page analysis to take a text based guess at what the image is, which is 4
o

part the process of identifying the image and returning similar results. Search by Image looks for
similar content on the web, so unique or never-before-seen images won’t work well.

Shazam

There is a cool service called Shazam, which take a short sample of music, and identifies the

song. There are couple ways to use it, but one of the more convenient is to install their free app
onto an iPhone. Just hit the “tag now” button, hold the phone’s mic up to a speaker, and it will
usually identify the song and provide artist information, as well as a link to purchase the album.

What is so remarkable about the service, is that it works on very obscure songs and will do so
even with extraneous background noise.

[t relies on fingerprinting music based on the spectrogram.

Page 35 of 50

|

Here are the basic steps:

{, Beforehand, Shazam fingerprints a comprehensive catalog of music, and stores the
fingerprints in a database.

7. A user “tags” a song they hear, which fingerprints a 10 second sample of audio.

3. The Shazam app uploads the fingerprint to Shazam’s service, which runs a search for a
matching fingerprint in their database.

4, If a match is found, the song info is returned to the user, otherwise an error is returned.

Page 36 of 50

Project Design

Crawling 4

\,___W H_M__d][Searching

S,

Indexing /

Page 37 of 50

Web crawler

Send Url

Prefetch

\

Page Dump

V.

Index

WWW

s

N
Builder }

.—’/

~d

Inverted Index

A

Search Results

Optimization

Page 38 of 50

_| |

Sample Code (Basic Crawler) :
package webcrawler;

import java.applet. Applet;

| import java.awt.BorderLayout;

| import java.awt.Button;

| import java.awt.Choice;

import java.awt.FlowLayout;

import java.awt.Frame;

import java.awt.Graphics;

import java.awt.Label;

import java.awt.List;

import java.awt.Panel;

import java.awt. TextField;

import java.awt.event. ActionEvent;
import java.awt.event.ActionListener;
import java.io.IOException;

import java.io.InputStream;

import java.net. HttpURLConnection;
import java.net.MalformedURLException;
import java.net. URL;

import java.net. URLConnection;

import java.util.StringTokenizer; \
import java.util.Vector; '

public class WebCrawler extends Applet implements ActionListener, Runnable { ;
public static final String SEARCH = "Search"; /
public static final String STOP = "Stop";
public static final String DISALLOW = "Disallow:";
public static final int SEARCH_LIMIT = 50;

Panel panelMain;
List listMatches;
Label labelStatus;

/I URLs to be searched
Vector vectorToSearch;
// URLs already searched
Vector vectorSearched;
// URLs which match
Vector vectorMatches;

Thread searchThread;

TextField textURL;

Page 39 of 50

Choice choiceType;
public void init() {
/1 set up the main Ul panel

panelMain = new Panel();
panelMain.setLayout(new BorderLayout(5, 5));

4 // text entry components
Panel panelEntry = new Panel();
panelEntry.setLayout(new BorderLayout(5, 5));

Panel panelURL = new Panel();

panelURL.setLayout(new FlowLayout(FlowLayout.LEFT, 5, 5));
Label labelURL = new Label("Starting URL: ", Label. RIGHT);
panelURL.add(labelURL);

textURL = new TextField("", 40);

panelURL.add(textURL);

panelEntry.add("North", panelURL);

Panel panelType = new Panel();

panel Type.setLayout(new FlowLayout(FlowLayout. LEFT, 5, 5));
Label labelType = new Label("Content type: ", Label. RIGHT);
panelType.add(label Type);

choiceType = new Choice();

choiceType.addItem("text/html");
choiceType.addItem("audio/basic"); .
choiceType.addItem("audio/au"); /
choiceType.addItem("audio/aiff");

choiceType.addItem("audio/wav");

choiceType.addItem("video/mpeg");

choiceType.addItem("video/x-avi");

panel Type.add(choiceType);

panelEntry.add("South", panel Type);

panelMain.add("North", panelEntry);

/1 list of result URLs
Panel panelListButtons = new Panel();
panelListButtons.setLayout(new BorderLayout(s, 5));

Panel panelList = new Panel();
panelList.setLayout(new BorderLayout(5, 5));
Label labelResults = new Label("Search results");
panelList.add("North", labelResults);

Panel panelListCurrent = new Panel();

Page 40 of 50

panelListCurrent.setLayout(new BorderLayout(5, 5));
listMatches = new List(10);
panelListCurrent.add("North", listMatches);
labelStatus = new Label("");
panelListCurrent.add("South", labelStatus);
panelList.add("South", panelListCurrent);

panelListButtons.add("North", panelList);

// control buttons

Panel panelButtons = new Panel();

Button buttonSearch = new Button(SEARCH);
buttonSearch.addActionListener(this);
panelButtons.add(buttonSearch);

Button buttonStop = new Button(STOP);
buttonStop.addActionListener(this);
panelButtons.add(buttonStop);

panelListButtons.add("South", panelButtons);

panelMain.add("South", panelListButtons);

add(panelMain);

setVisible(true); \

repaint(); 1
/

// initialize search data structures
vectorToSearch = new Vector();
vectorSearched = new Vector();
vectorMatches = new Vector();

/1 set default for URL access
URLConnection.setDefaultAllowUserInteraction(false);

}

public void start() {

}

public void stop() {
if (searchThread != null) {
setStatus("stopping...");
searchThread = null;

}
}

Page 41 of 50

public void destroy() {

boolean robotSafe(URL url) {
String strHost = url.getHost();

/I form URL of the robots.txt file
String strRobot = "http://" + strHost + "/robots. txt";
URL urlRobot;
try {
urlRobot = new URL(strRobot);
} catch (MalformedURLException e) {
// something weird is happening, so don't trust it
return false;

}

String strCommands;

try {
InputStream urlRobotStream = urlRobot.openStream();

// read in entire file
byte b[] = new byte[1000];
int numRead = urlRobotStream.read(b);
strtCommands = new String(b, 0, numRead);
while (numRead !=-1) {
if (Thread.currentThread() != searchThread)
break;
numRead = urlRobotStream.read(b);
if (numRead != -1) {
String newCommands = new String(b, 0, numRead);
strCommands += newCommands;
}
f
urlRobotStream.close();
} catch (IOException e) {
/1 if there is no robots.txt file, it is OK to search
return true;

}

// assume that this robots.txt refers to us and
/1 search for "Disallow:" commands.

String sttURL = url.getFile();

int index = 0;

while ((index = strCommands.indexOf(DISALLOW, index)) !I=-1) {

Page 42 of 50

|
|
|
|

}

index += DISALLOW.length();
String strPath = strCommands.substring(index);
StringTokenizer st = new String Tokenizer(strPath);

if (!st.hasMoreTokens())
break;

String strBadPath = st.nextToken();

// if the URL starts with a disallowed path, it is not safe

if (sttURL.indexOf{(strBadPath) == 0)
return false;
}

return true;

public void paint(Graphics g) {

}

//Draw a Rectangle around the applet's display area.

g.drawRect(0, 0, getSize().width - 1, getSize().height - 1);

panelMain.paint(g);

panelMain. paintComponents(g);
// update(g);

// panelMain.update(g);

public void run() {

String strURL = textURL. getText();

String strTargetType = choiceType.getSelectedItem():
int numberSearched = 0;

int numberFound = 0;

if (strURL.length() == 0) {
setStatus("ERROR: must enter a starting URL");
return;

}

// initialize search data structures
vectorToSearch.removeAllElements();
vectorSearched.removeAllElements();
vectorMatches.removeAllElements():
listMatches.removeAll();

vectorToSearch.addElement(strURL);

Page 43 of 50

while ((vectorToSearch.size() >0)
&& (Thread.currentThread() == searchThread)) {
/1 get the first element from the to be searched list
sttURL = (String) vectorToSearch.elementAt(O);

setStatus("searching " + strtURL);

URL url;

try {
url = new URL(strURL);

} catch (MalformedURL Exception ejif
setStatus("ERROR: invalid URL " + strtURL);
break;

}

// mark the URL as searched (we want this one way or the other)

vectorToSearch.removeElementAt(O);
vectorSearched.addElement(strURL);

// can only search http: protocol URLs
if (url. getProtocoI().compareTo("http") != 0)
break;

// test to make sure it is before searching
if (!robotSafe(url))
break;

try {
// try opening the URL

URLConnection urlConnection = url.openConnection();

urIConnection.setAIlowUserInteraction(false);

InputStream urlStream = url.openStream();
String type
= urlConnection.getCOntentType();

if (type == null)
break;

if (type.compareTo(”text/html") 1=0)
break;

// search the input stream for links
// first, read in the entire UR],
byte b[] = new byte[1000];

int numRead = urlStream.read(b);

Page 44 of 50

String content = new String(b, 0, numRead);
while (numRead != -1) {
if (Thread.currentThread() |= searchThread)
break;
numRead = urlStream.read(b);
if (numRead != -1) {
String newContent = new String(b, 0, numRead);
content += newContent;

}
}

urlStream.close();

/ltextURL.setText("1. " + content);
if (Thread.currentThread() |= searchThread)
break;

String lowerCaseContent = content.toLowerCase();
int index = 0;

boolean hasForm = false;
while ((index = lowerCaseContent.indexOf("<a", index)) = -1)

{
if ((index = lowerCaseContent.indexOf("href", index)) == -1)
break;
if ((index = lowerCaseContent.indexOf "=", index)) == -1) \
break;

if (lowerCaseContent.indexOf("<f0rm“) ==
hasForm = true;

}

if (Thread.currentThread() 1= searchThread)
break;

index++;
String remaining = content.substring(index);

StringTokenizer st
= new StringTokenizer(remaining, "\tn\r\">#");
String strLink = st.nextToken();

URL urlLink;

try {
urlLink = new URL(url, strLink);
strLink = urlLink.toString();

} catch (MalformedURLException e) {

Page 45 of 50

setStatus("ERROR: bad URL " + strLink),
continue;

}

// only look at http links
if (urlLink.getProtocol().compareTo("http") != 0)
break;

if (Thread.currentThread() != searchThread)
break;

try {
/1 try opening the URL

URLConnection urlLinkConnection
= urlLink.openConnection();
urlLinkConnection.setAllowUserInteraction(false);
InputStream linkStream = urlLink.openStream();
String strType
= urlLinkConnection.getContentType();
int responseCode = 200;
HttpURLConnection httpConnection;
if (urlLinkConnection instanceof HttpURLConnection)

{
httpConnection = (HttpURLConnection) urlLinkConnection;
responseCode = httpConnection.getResponseCode(); \
/if(strType.indexOf("302 Authentication Failed") >= 0)
/I responseCode = 302; }
}

linkStream.close();

/I if another page, add to the end of search list
if (strType == null || responseCode != 200)
break;
if (strType.compareTo("text/html") == 0) {
// check to see if this URL has already been
// searched or is going to be searched
if ((!vectorSearched.contains(strLink))
&& (!vectorToSearch.contains(strLink))) {

/[test to make sure it is robot-safe!
if (robotSafe(urlLink))
vectorToSearch.addElement(strLink);

}
}

// if the proper type, add it to the results list

Page 46 of 50

// unless we have already seen it
if (strType.compareTo(strTargetType) == 0) {
if (vectorMatches.contains(strLink) == false) {
listMatches.add(strLink);
vectorMatches.addElement(strLink);
numberFound+-+;
if (numberFound >= SEARCH_LIMIT)
break;
!
}

}
catch (IOException e) {

setStatus("ERROR: couldn't open URL " + strLink);
continue;
h
}

h
catch (IOException e) {

setStatus("ERROR: couldn't open URL " + strURL);
break;

}

numberSearched++;
if (numberSearched >= SEARCH_LIMIT)
break; ‘
}

if (numberSearched >= SEARCH_LIMIT || numberFound >= SEARCH_LIMIT)
setStatus("reached search limit of " + SEARCH_LIMIT);

else
setStatus("done");

searchThread = null;

// searchThread.stop();

}

void setStatus(String status) {
labelStatus.set Text(status);
H

public void actionPerformed(ActionEvent event) {
String command = event.getActionCommand();

if (command.compareTo(SEARCH) == 0) {
setStatus("searching...");

// launch a thread to do the search

Page 47 of 50

p if (searchThread == null) {
searchThread = new Thread(this);

}

searchThread.start();

}
else if (command.compareTo(STOP) == 0) {
stop();

}

i

public static void main (String argv[])

{
Frame = new Frame("Web Crawler");
WebCrawler applet = new WebCrawler();
f.add("Center", applet);

/* Behind a firewall set your proxy and port here! */

Properties props= new Properties(System.getProperties());
props.put("http.proxySet", "true");

props.put("http.proxyHost", "webcache-cup");
props.put("http.proxyPort", "8080");

Properties newprops = new Properties(props);
System.setProperties(newprops);

applet.init();
applet.start();
f.pack();
f.show();

Page 48 of 50

References:

- http://en.wikipedia.ore/wiki/Surface Web

- http://worldwidescience.org/speeches/Oct2008/alternate. html

- http://cathryno.global2.vic.edu.au/2010/05/08/deep-web-vs-surface-web/

- http://windowssecrets.com/langalist-plus/surface-vs-deep-web%C2%A0/

- http://en.wikipedia.org/wiki/Deep Web

- “The Invisible Web”, Uncovering Information Search Engines can’t find, by ‘Chris
Sherman’ & ‘Gary Price’.

Page 49 of 50

