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ABSTRACT

The integration of advanced technologies in Cyber-Physical Systems (CPS) has significantly
enhanced various industrial and consumer applications, including Heating, Ventilation, and
Air Conditioning (HVAC) systems. Conventional HVAC control systems, which are
dependent on preprogrammed schedules and setpoints, frequently lead to poor performance,
high energy usage, and restricted flexibility in response to changing environmental conditions.
This project consists of two main parts, a simulation environment for Reinforcement Learning

(RL) and developing a hardware prototype.

The CPS framework's physical foundation for data processing, actuation, and acquisition is
provided by the hardware prototype. It consists of communication modules for wireless data
transmission, microcontrollers for data processing, and sensors to monitor the surrounding
environment. This configuration offers real-time information that is essential for optimizing

HVAC systems.

Simultaneously, the dynamic interactions between the CPS and its surroundings are modeled
by the RL simulation environment. The simulation environment uses reinforcement learning
(RL) algorithms to help with decision-making and control strategies based on system
constraints and environmental data. The RL agent optimizes HVAC management in response

to shifting conditions and user demands by iteratively learning control policies.

The project is important because it has the potential to improve the flexibility, adaptability,
and efficiency of traditional CPS models by overcoming some of their major limitations. This
project advances the field of autonomous industrial systems and lays the groundwork for more
productive and sustainable industrial operations, while also demonstrating the advantages of
integrating RL with CPS. Reducing energy use, improving comfort, and fostering innovation

in HVAC system optimization are the ultimate objectives.
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CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION

The integration of advanced technologies in Cyber-Physical Systems (CPS) has revolutionised
various industrial and consumer domains, promising increased efficiency, automation, and
adaptability. HVAC (heating, ventilation, and air conditioning) systems are among the many
uses of CPS that are essential to maintaining comfort, efficiency, and energy conservation in
constructed environments. However, traditional HVAC control systems frequently depend on
preset schedules and predefined setpoints, which results in suboptimal performance, wasteful
energy use, and restricted flexibility to changing environmental circumstances. This project
addresses these issues by incorporating Reinforcement Learning (RL) approaches into a self-
adaptive CPS framework, which presents a relatively new method of HVAC system control.
By continuously responding to changing conditions and customer requirements, RL shows the

potential to optimise HVAC operations in real-time.

The primary objective of this project is to create a working prototype of a self-adaptive CPS
framework that can learn from its surroundings and optimise HVAC management strategies in
response to system limitations and environmental data. This framework comprises both
hardware and software components, including sensors for data collection, microcontrollers for
data processing and actuation, communication modules for wireless data transmission, and an

RL simulation environment for decision-making.

The project's significance lies in its potential to address key challenges faced by traditional
CPS systems, including suboptimal efficiency, flexibility, and adaptability. The proposed
methodology aims to use reinforcement learning (RL) to improve overall system performance,
lower energy consumption, and increase comfort levels across a range of usage scenarios and

environmental circumstances.



1.2 PROBLEM STATEMENT

Cyber-Physical Systems (CPS) play a pivotal role in modern industrial processes, seamlessly
integrating physical components with computational systems to monitor, control, and optimise
various operations. HVAC (heating, ventilation, and air conditioning) systems, which maintain
ideal interior climatic conditions in commercial and industrial settings, are one of some
famous application domains for CPS. Currently, the foundation of many CPS models follow
deterministic approaches, which ignore the inherent uncertainties and dynamic character of
actual industrial environments. As a result, these deterministic models frequently exhibit
subpar performance and energy inefficiencies due to their inability to adjust to changing

circumstances.

In the realm of autonomous industries, deterministic modelling approaches pose significant
challenges. These sectors rely on flexible and effective systems to manage complex jobs with
minimal assistance from humans. Deterministic models, on the other hand, are rigid and
cannot account for the uncertainties and variations present in actual industrial processes in real
time.

Enhancing CPS models using stochastic modelling techniques and reinforcement learning
(RL) algorithms hold immense significance in addressing the challenges faced by autonomous
industries. Increased ability to capture and adapt to the ever-changing and uncertain nature of
industrial surroundings can be achieved by adding stochastic aspects to CPS models. This
enhanced adaptability enables autonomous systems to make informed decisions in real-time,
leading to improved performance, energy efficiency, and overall productivity. Furthermore, by
highlighting the value of integrating latest technologies like reinforcement learning with the
field of autonomous industrial systems advances and opens the door to future industrial

operations that are more sustainable and productive.



1.3 OBJECTIVES

The primary objective of this project is to develop a prototype encompassing both hardware
and software components for optimising Heating, Ventilation, and Air Conditioning (HVAC)
systems, a prominent example of a self-adaptive Cyber-Physical System (CPS). This involves

two main components: the hardware prototype and the RL simulation environment.

The hardware part serves as the physical infrastructure responsible for data acquisition,
processing, and actuation within the CPS framework. It includes sensors, microcontrollers, and
communication modules, all integrated to facilitate seamless interaction and data flow between
all the components. The DHT22 sensor reads the data of environmental attributes, temperature
and humidity. The microcontrollers process this data and communicate it wirelessly using
communication modules, xbee modules. This hardware setup forms the foundation of the CPS
framework, providing real-time insights into the environmental conditions crucial for HVAC

system optimization.

On the other hand, the RL simulation environment provides a base for decision-making and
control strategies based on environmental data and system limitations.RL simulation
environment is developed using RL algorithms and software libraries. The simulation
environment models the dynamic interactions between the CPS and its surroundings. Through
iterative learning and adaptation, the RL agent within the simulation environment refines
control policies to optimise HVAC management strategies in response to changing conditions

and user requirements.

The hardware prototype and RL simulation environment represent distinct entities, they are
intrinsically linked within the broader CPS framework. This integration will enable the CPS
framework to adapt and optimise HVAC system operation autonomously, leading to improved

energy efficiency, comfort levels, and overall system performance.



By developing these two components, our project aims to demonstrate the feasibility and
effectiveness of integrating advanced technologies such as RL within self-adaptive CPS

frameworks for HVAC system optimization.

1.4 SIGNIFICANCE AND MOTIVATION OF PROJECT WORK

The significance and motivation of this project work extend beyond mere technological
innovation. It addresses fundamental challenges faced by contemporary industrial processes.It
comes from the pressing need to address challenges inherent in traditional HVAC system
optimization methods within industrial and commercial environments. In today's industrial
landscape, sustainability and energy efficiency have emerged as critical concerns, necessitating

the urgent need for innovative solutions.

As significant energy users in commercial and industrial buildings, HVAC systems are
essential to reaching sustainability and energy efficiency goals. Nevertheless, conventional
control approaches frequently fail to adjust to the changing and unpredictable industrial
environments. Conventional control strategies often rely on preset schedules and fixed
setpoints, leading to suboptimal performance and energy wastage. The significance of this
project in developing a self-adaptive Cyber-Physical System (CPS) framework designed
especially for HVAC system optimization is highlighted by this inadequacy.

In autonomous industries, where real-time performance and energy consumption optimization
are critical, emphasises the importance of this project. The framework allows hardware
prototypes to serve as a base for understanding CPSs and Reinforcement Learning (RL) to add
the autonomous attribute to it. This integration can lead CPS systems the ability to respond

quickly and adaptable to changing user preferences and environmental conditions.

The project's motivation is rooted in the pursuit of enhancing energy efficiency, improving
comfort levels, and driving innovation in the field of HVAC system optimization, contributing

to a more sustainable and resilient future for industrial operations.



1.5 ORGANIZATION OF PROJECT REPORT

CHAPTER 1: INTRODUCTION

Chapter 1 introduces the integration of advanced technologies in Cyber-Physical Systems
(CPS) and their impact on various industrial and consumer domains. It highlights the
importance of CPS in HVAC (heating, ventilation, and air conditioning) systems, which are
crucial for maintaining comfort, efficiency, and energy conservation in built environments.
The chapter discusses the limitations of traditional HVAC control systems and presents the
project's objective of incorporating Reinforcement Learning (RL) into a self-adaptive CPS

framework to optimize HVAC operations in real-time.

CHAPTER 2: LITERATURE REVIEW

Chapter 2 provides an overview of relevant research and existing solutions in the field of CPS
and HVAC systems. It examines previous work on RL and its applications, identifying key
gaps that this project aims to fill. The review highlights the limitations of current deterministic
models and underscores the need for stochastic modeling techniques and RL algorithms to

enhance CPS models' adaptability and efficiency.

CHAPTER 3: PROJECT DESIGN AND ARCHITECTURE

Chapter 3 details the development of the self-adaptive CPS framework for HVAC systems. It
includes a comprehensive analysis of the requirements for both hardware and software
components and describes the architecture of the CPS framework. The chapter explains how
physical components like sensors, microcontrollers, and communication modules are
integrated with advanced control strategies based on RL algorithms to optimize system

performance.



CHAPTER 4: TESTING STRATEGY AND IMPLEMENTATION

Chapter 4 outlines the methodologies used to validate the project's components. It covers unit
testing for hardware and software modules, integration testing to ensure seamless
communication and data exchange, functional testing for accuracy and reliability, and
performance testing to assess the effectiveness of RL algorithms in optimizing HVAC system

control. This comprehensive approach ensures the system's reliability and responsiveness.

CHAPTER 5: RESULTS AND DISCUSSION

Chapter 5 presents the findings from the hardware prototype and RL simulation environment.
It discusses the performance of the CPS framework in real-time HVAC optimization,
highlighting its flexibility and responsiveness. The analysis covers the framework's scalability,
robustness, and potential for practical applications. A comparison with existing solutions
demonstrates the advantages of the proposed approach, particularly its ability to continuously

learn and adapt, leading to improved energy efficiency and user comfort.

CHAPTER 6: CONCLUSION AND FUTURE WORK

Chapter 6 summarizes the project's outcomes and key findings, emphasizing the successful
integration of RL techniques with hardware components to create a self-adaptive CPS
framework. It acknowledges the project's limitations and discusses its contributions to CPS
technology and HVAC system optimization. The chapter also outlines potential future work,
including the integration of the hardware prototype with the RL simulation environment for
real-time interaction, further research on refining RL algorithms, and testing in real-world

industrial settings to enhance system reliability and efficiency.



CHAPTER 2: LITERATURE SURVEY

2.1 OVERVIEW OF RELEVANT LITERATURE

[1] The paper illuminates ZigBee as a standout transceiver standard for WSNs operating over
the IEEE 802.15.4 specification. The paper provides a thorough analysis of ZigBee wireless
technology, elucidating its key features, specifications, and architectural components, such as
its protocol stack architecture and underlying communication mechanisms. With a low
throughput of approximately 250kbps, ZigBee finds use cases in scenarios demanding low
data rates, as evidenced by various examples such as greenhouse monitoring, multi-level
parking vacancy monitoring, intelligent warehouse management, and environmental
monitoring. Additionally, ZigBee's versatility extends to standard applications like home
automation, automatic meter reading, building automation, personal healthcare, and
automotive solutions, underlining its pivotal role in enabling efficient and reliable wireless
communication for a broad range of monitoring and control applications across diverse

domains.

[2]In order to enable remote monitoring of crucial parameters like length filtering, ground
vibration sensing, and electricity monitoring, the study introduces a method employing ZigBee
embedded systems for real-time industrial measurements and monitoring. By offering
centralized control and real-time monitoring capabilities, this method enhances safety and
improves operational efficiency. Through the use of digital signal conversion from analog
signals from several sensors, the system architecture allows for both wireless and wired
transmission via DAQ and ZigBee, allowing for synchronized measurement and monitoring.
By guaranteeing the smooth integration and centralized management of sensor signals, the
LABVIEW program design lowers labor costs, boosts operational effectiveness, and improves
overall safety in industrial settings.The study concludes, the integration of ZigBee embedded
systems holds immense potential to improve efficiency and safety in a variety of industrial

contexts by delivering real-time insights and enabling preventative safety measures.



[3] The research paper offers a thorough analysis of four prominent industrial wireless sensor
network standards: ZigBee, WirelessHART, ISA100.11a, and WIA-PA, focusing on their
design, protocol architectures, uniqueness, and suitability for industrial applications. The paper
clarifies the unique features, constraints, and architecture of every standard, highlighting how
crucial it is to match particular needs with network attributes in order to make well-informed
decisions. Although WirelessHART, ISA100.11a, and WIA-PA are specifically designed for
process automation and address issues with ZigBee, ZigBee is still preferred for low-traffic
and noncritical applications because of its simplicity and lower power consumption. The paper
lists the technical similarities and differences between the
standards,highlightingWirelessHART's suitability for integration with existing HART control
systems and ISA100.11a's flexibility but increased complexity. Additionally, it addresses
upcoming obstacles that hinder wireless solutions from being widely adopted in industrial

settings and suggests solutions that would hasten deployment and acceptance.

[4] In this research paper, industrial communication protocols are examined with a specific
emphasis on the application of the Message Queuing Telemetry Transport (MQTT) protocol to
PLCs in industrial environments. The goal of the study is to increase factory efficiency by
addressing the need for better PLC inter-communication within the Industrial Internet of
Things (IIoT) framework. With the help of Siemens gateways Simatic 10T2020 that use the
Modbus Remote Terminal Unit (RTU) protocol, the study models an experimental setup in
which two PLCs control an industrial plant. The study emphasizes how important it is to
address the communication issues facing PLCs and suggests MQTT as a workable substitute
for fieldbus protocols currently in use.The paper underscores the significance of tackling
PLCs' communication challengesand suggests MQTT as a workable substitute for fieldbus
protocols currently in use. In its concluding remarks, the paper acknowledges the feasibility of
employing Modbus RTU and MQTT for PLC interconnection while highlighting the necessity
for supplementary tools to streamline PLC variable updates when employing MQTT. In
addition, it recommends that future studies investigate additional industrial protocols that are
compatible, like OPC UA, in order to improve system response time and automation

application flexibility.



[5] The project focuses on integrating Internet of Things (IoT) technology into industrial
processes to enable real-time monitoring and intelligent decision-making, aiming to enhance
traditional industrial systems reliant on Programmable Logic Controllers (PLCs) and
Supervisory Control and Data Acquisition (SCADA) systems. The project proposes
developing a web-based real-time PLC data monitoring system to automatically monitor
industrial applications, generate alerts or alarms, and make intelligent decisions. The
integration of artificial intelligence (AI) and the Internet of Things (IoT) is crucial to this
project because it allows for intelligent monitoring and control through the analysis of data
from sensors and actuators to identify anomalies, anticipate failures, and maximize
performance. The project's ultimate goal is to provide a comprehensive solution for industrial
appliance monitoring and control, improving daily operations' performance while lowering

manual labor costs and raising operational efficiency.

[6] The study emphasizes the critical need for smart and cost effective industrial automation
solutions in light of the mounting pressure on businesses to increase operational effectiveness,
while adhering to environmental regulations, and meet financial goals. The paper explores the
design principles and technical difficulties that underlying the creation of IWSNs, scratching
on subjects like standards, energy-harvesting methods, radio technologies, and cross-layer
design. The study explores several unexplored open research topics, such as effective
deployment models, analytical performance assessment, sensor-node deployment
optimization, localization, security, and interoperability issues. Additionally, handling RF
interference and dynamic wireless-channel conditions in industrial settings presents significant
challenges that could be resolved by cognitive radio paradigms and channel hand-off
mechanisms. Through enabling self-organization, rapid deployment, adaptability, and built-in
intelligent processing capabilities, Industrial Web Sensor Networks (IWSNs) support
extremely dependable and self-repairing industrial ecosystems that react quickly to events
occurring in real time. The paper seeks to contribute to to the realization of intelligent and
effective industrial automation systems by advancing the field of Industrial Wireless Sensor

Networks, encouraging innovation, and educating decision-making processes.



[7] This study investigates how wireless sensor networks (WSNs) can revolutionize data
collection procedures for both terrestrial and spaceflight applications. WSNs provide benefits
like scalability, easy sensor installation in difficult-to-reach places, and weight and cost
savings by doing away with the need for large wiring trunks. The real-world implementation
of WSNs poses certain challenges though, which new developments in standards-based
protocols designed for industrial control applications—Ilike ISA100.11a and WirelessHART
aim to address. The paper gives a summary of these protocols, highlighting their salient
characteristics and benefits for industrial applications. It also presents the architecture of a new
standards-based sensor node intended to support applications research and networking in the
framework of these protocols. The article aims to offer insights into resolving real-world
issues related to WSN deployments by utilizing standardized WSN protocols. This will
eventually open the door to better data collection capabilities and increased productivity in a

variety of fields.

[8] The research paper introduces a novel methodology for crack detection in rotating shafts,
employing a combination of Wavelet Packets transform energy and Artificial Neural Networks
with Radial Basis Function architecture (RBF-ANN). The study aims to maximize the success
rates of the detection approach by analyzing vibration signals obtained from a rig under
different crack conditions. The 'Daubechies 6' wavelet function is used to process experimental
data with varying speeds and crack conditions using Wavelet Packets transform energy and the
resultant energies are then used to train multiple RBF-ANNs. The study achieves promising
results by fine-tuning parameters of both the ANNs and the WPT decomposition level.
Notably, features extracted at a specific decomposition level from signals acquired at higher
speeds offer optimal performance. With a minimal false alarm rate of 1.77% and detection
probabilities approaching 100%, Probability of Detection (POD) curves show reliable
detection even at crack levels as low as 4% of the shaft diameter. The suggested methodology
promises improved reliability in crack detection to avert catastrophic failures and lower
expensive repairs. It also has the potential to be integrated into industrial equipment for

improved condition monitoring.
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[9] This study critically reviews prevailing modeling techniques in HVAC systems, aiming to
assess their applicability, practical acceptance, strengths, weaknesses, applications, and
performance. Through a comprehensive analysis, the study provides insights into the efficacy
and outcomes of developed models deployed in real-world HVAC systems, highlighting
inherent shortcomings in nearly every approach.The study also highlights the necessity of
enhancing the performance of building HVAC systems by illuminating these limitations.
Overall, it emphasizes how important modeling methods are to maximizing HVAC
performance and energy economy, providing insightful information to guide future studies and

improve the effectiveness of HVAC control strategies in practical settings.

[10] With an emphasis on Variable-Air-Volume (VAV) systems, the study attempts to
improve the modeling efficiency of HVAC systems by creating modular models for HVAC
components using the state-space method. These modular models provide a uniform
representation of relationships among input, state, and output signals. They are based on state-
space modeling and graph theory, and have been validated through transient response
experiments. This approach enables the efficient development of dynamic models for real air-
conditioning systems. The study also looks into the use of an ARIMA-based predictive
Proportional-Integral (PI) controller for controlling room temperature, demonstrating superior
performance compared to traditional PI controllers through model simulations and

experimental validation.

[11] This study explores the design of Supervisory Control and Data Acquisition (SCADA)
systems for energy management in areas experiencing energy shortages. Specifically, the
design of Remote Terminal Units (RTUs) is examined, as these are an essential component
that enable data transfer between field devices and the SCADA system. The research suggests
two different RTU designs for third-generation SCADA systems: one that uses a Field
Programmable Gate Array (FPGA) as the CPU and the other that uses a Programmable Logic
Controller (PLC) as the CPU.The paper shows the superiority of FPGA-based RTUs through a

11



comparative analysis, providing improved features like support for encryption, radio support,
and increased memory capacity. The performance of each design is assessed with the use of
simulation tools, and FPGA-based RTUs turn out to be the best option overall, especially for
energy management applications that call for the deployment of wireless SCADA. In addition,
the study explores the optimization of wireless communication links connected to RTUs,
addressing factors such as RF spectrum utilization to make it easier to design an optimal
wireless link for the deployment of low-cost RTUs. Overall, the suggested FPGA-based RTU
design offers a more potent and reconfigurable solution for wireless SCADA execution,
overcoming the drawbacks of traditional PLC-based systems and showing promise for
deployment in energy-deficient areas to improve energy distribution and management

efficiency.

[12] The paper shows the superiority of FPGA-based RTUs through a comparative analysis,
providing improved features like support for encryption, radio support, and increased memory
capacity. The performance of each design is assessed with the use of simulation tools, and
FPGA-based RTUs turn out to be the best option overall, especially for energy management
applications that call for the deployment of wireless SCADA. In addition, the study explores
the optimization of wireless communication links connected to RTUs, addressing factors such
as RF spectrum utilization to make it easier to design an optimal wireless link for the
deployment of low-cost RTUs. Overall, the suggested FPGA-based RTU design offers a more
potent and reconfigurable solution for wireless SCADA execution, overcoming the drawbacks
of traditional PLC-based systems and showing promise for deployment in energy-deficient
areas to improve energy distribution. The paper highlights the potential integration of deep
learning into cloud computing infrastructure for more convenient and on-demand
computational services in smart manufacturing applications. It also identifies emerging
research efforts, future trends, and challenges associated with deep learning in manufacturing
processes. These developments promise to further advance deep learning capabilities within

the manufacturing domain.
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[13] The paper highlights how manufacturing businesses must change to keep up with the
intricacies of contemporary technology and competitive environments, which calls for a move
toward digitalization and intelligence in automated manufacturing. The revolutionization of
industrial processes can be attributed to the potential of artificial intelligence (Al) and machine
learning (ML), specifically reinforcement learning (RL). The paper aims to analyze
reinforcement learning's performance in industrial contexts and identify opportunities and
challenges for further integrating it into automated manufacturing through a thorough review
of recent practical applications. The study performs a hierarchical analysis of RL's application
across a variety of industrial domains, from industrial process systems to human-machine
interaction and process monitoring, drawing on extensive literature reviews. The study offers
valuable insights into the changing field of intelligent manufacturing technologies by
clarifying RL's applicability and potential to improve the effectiveness and control of

automated manufacturing systems.

[14] The present study delves into the use of Deep Reinforcement Learning (DRL) in the
context of smart manufacturing, with a focus on how it can revolutionize different phases of
the manufacturing process. By fusing Reinforcement Learning (RL) and Deep Neural
Networks (DNN), DRL provides a flexible and dynamic approach to accurately making
decisions in intricate manufacturing settings. The review follows the development of DRL
from its launch in 2013 to the present, highlighting its rapid expansion in manufacturing
applications and pointing out a lack of a thorough analysis specifically focused on smart
manufacturing in the literature. It also offers insights into DRL's role throughout the
engineering lifecycle, from design to maintenance, and highlights typical applications of DRL
at each stage by analyzing 261 relevant publications. It also explores new technologies and
approaches to improve deployment viability and learning efficiency, as well as challenges and
future directions for DRL in smart manufacturing. Through tackling these obstacles and
opportunities, the review seeks to guide future investigations and expedite the integration and
progression of DRL in intelligent manufacturing, providing an invaluable asset for scholars

and professionals operating within the domain.
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[15] The paper emphasizes how challenging it is to apply reinforcement learning to practical
situations, especially when trying to represent complex environments effectively from high-
dimensional sensory inputs. A novel artificial agent known as a deep Q-network (DQN) has
been created in response to this challenge thanks to recent developments in deep neural
networks. Unlike earlier methods, DQN utilizes end-to-end reinforcement learning to learn
effective policies directly from high-dimensional sensory inputs, which allows it to perform
exceptionally well in domains with intricate, unstructured input spaces, like vintage Atari 2600
games. Using the same algorithm, network architecture, and hyperparameters across a diverse
set of 49 games, leveraging DQN outperforms prior algorithms and yields results on par with
expert human testers. This groundbreaking work represents a significant milestone in the field
of artificial intelligence research, demonstrating not only the ability of DQN to bridge the gap
between high-dimensional sensory inputs and actions, but also the potential of deep
reinforcement learning agents to master difficult tasks without the need for handcrafted
features or fully observed state spaces, thereby opening up new avenues for the solution of

challenging real-world problems.

[16] In this paper, a novel family of policy gradient methods for reinforcement learning is
presented: Proximal Policy Optimization (PPO). PPO allows for multiple epochs of minibatch
updates to enhance sample complexity and performance. It does this by alternating between
optimizing a surrogate objective function through stochastic gradient ascent and sampling data
from the environment. In contrast to other current strategies like vanilla policy gradient
methods and deep Q-learning, PPO uses only first-order optimization to achieve the
dependable performance and data efficiency of trust region methods. The key to PPO's success
is a novel objective that uses clipped probability ratios to provide stable and reliable
optimization and a pessimistic estimate of policy performance. By combining the stability and
reliability of trust region methods with the ease of use of first-order optimization, the paper

shows that PPO performs better than previous algorithms on both continuous control tasks and
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Atari game playing. PPO is designed to address challenges related to scalability, data

efficiency, and robustness.

[17] This paper presents the first deep learning model that can learn control policies directly
from high-dimensional sensory input, marking a revolutionary development in reinforcement
learning (RL). This study focuses on applying a convolutional neural network (CNN) trained
with a variant of Q-learning to seven Atari 2600 games from the Arcade Learning
Environment (ALE), with notable success. The model uses raw pixels as input and a value
function estimates future rewards. The primary innovation is CNN's capacity to surmount
difficulties in learning control policies from unprocessed video data in intricate reinforcement
learning environments, without necessitating game-specific data or manually-crafted visual
elements.The results demonstrated how well the CNN model can learn challenging control
policies for Atari 2600 computer games, outperforming earlier RL algorithms on six of the
seven games it was tested on and even outperforming a skilled human player on three of them.
Additionally, the study presents an improved version of online Q-learning that uses experience
replay memory and stochastic minibatch updates to improve deep network training for
reinforcement learning. Together, these methods produce cutting-edge outcomes in a variety of
games without requiring changes to the model's architecture or hyperparameters. In general,
the paper represents a noteworthy advance in reinforcement learning research, showcasing the
capacity of deep learning models to acquire control policies straight from unprocessed sensory
data, creating novel opportunities for resolving intricate RL assignments across multiple

fields.

[18] The study offers an overview of the literature on modeling techniques for HVAC
(heating, ventilation, and air conditioning) systems, which is essential for comprehending and
optimizing energy usage in these systems. Three broad categories of modeling are outlined in
the review: grey box models, physics-based models, and data-driven models. Data-driven
approaches, such as frequency domain models, data mining algorithms like Artificial Neural
Networks (ANN) and Support Vector Machines (SVM), and statistical models like

AutoRegressive with exogenous input (ARX) and AutoRegressive Integrated Moving Average
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(ARIMA), use measurement data of input and output variables to approximate system
behavior through linear and nonlinear functions. When compared to data-driven models,
physics-based models have better generalization capabilities since they are based on an
understanding of the underlying physical laws and processes. Grey box models use measured
data for parameter estimation and physical laws to define the model structure, combining
elements of data-driven and physics-based methods. Model effectiveness is assessed using
performance comparison metrics and qualitative factors like robustness, ease of tuning,

strengths, and weaknesses.

[19] The research paper frames the problem as a continuous state, continuous action
reinforcement learning (RL) problem and offers a novel decision-making framework
specifically designed for operational indices in the process industry. The paper enriches
decision policy learning by introducing a model-free RL algorithm and using an actor-critic
(AC) framework with a multiactor networks ensemble (MAE) approach. In contrast to
traditional techniques, this strategy uses experience replay and stochastic policy to avoid local
optima and address data scarcity problems in reinforcement learning. The efficacy of the
suggested algorithm is demonstrated in the paper via extensive simulation studies on actual
data from a mineral processing plant, showing improvements in production yield and learning
speed while avoiding local optima. Three main contributions are the creation of an efficient,
quickly converging policy for decision-making at low cost, the use of experience replay to
enhance data utilization, and the application of the MAE-AC framework to solve local optima
problems. It is recommended that future research focus on developing advanced controllers
that can adapt to dynamic environments and strengthening the security of reinforcement

learning algorithms.

[20] This work addresses the crucial problem of real-time scheduling in networks of gas
supply for multiple products, concentrating on steel companies where the availability of gas is
essential to their manufacturing processes. The study aims to maximize resource utilization
and operational efficiency in these networks using a reinforcement learning (RL) framework.

A new reinforcement learning approach is put forth that includes prediction and safety
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modules that use process knowledge to foresee state changes and stop risky behaviors. By
penalizing the agent for unsafe actions, the safeguard module speeds up training and lowers
trial-and-error costs. The effectiveness of the suggested RL method is validated by case studies
on real gas supply networks, which demonstrate superior training speed and market
adaptability through transfer learning. Key innovations include integrating process knowledge
to ensure operational safety and offering streamlined online computation for real-time
scheduling demands. Subsequent investigations could examine approaches customized for
swiftly evolving environmental circumstances and tackle discrepancies between scheduling

models and uncertainties in industrial processes.

[21] The paper tackles the problem of inconsistent performance evaluations resulting from
flawed evaluation metrics, which makes a substantial contribution to the field of reinforcement
learning (RL) research. In an effort to remove inadvertent biases frequently seen in research
settings, the authors present a thorough evaluation methodology intended to generate accurate
performance measurements for reinforcement learning algorithms. By establishing high-
confidence bounds over the evaluation process, their method makes it easier to compare RL
algorithms fairly. The authors also show how effective their methodology is by evaluating
different RL algorithms on common benchmark tasks. The proposed framework has several
important features, such as a fair comparison approach based on principles and
implementations to help other researchers use this methodology. All things considered, the
work greatly improves the consistency and repeatability of performance assessments in RL

research.

[22] This work presents an extensive collection of metrics intended to quantify aspects of
reliability, in particular variability and risk, during the training and post-learning phases. These
flexible metrics are intended to support thorough comparisons between various scenarios,
along with complimentary statistical tests. The paper highlights these metrics' characteristics
and emphasizes how well-suited they are for a variety of situations. It also offers helpful
guidelines for results reporting in order to create a uniform framework for assessing the

reliability of RL algorithms. Additionally, these metrics and statistical tools are provided by
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the study as an open-source library, which increases accessibility and promotes wider adoption
in the RL community. The study shows the effectiveness of these metrics in revealing the
strengths and weaknesses of different RL algorithms and environments through empirical

application.

[23] Although reinforcement learning (RL) has shown to be remarkably effective at handling
difficult decision-making tasks, its application in practical settings raises safety concerns,
especially in fields like robotics and autonomous driving. The work investigates safe RL
algorithms, which are presently in their infancy, as a solution to this. This paper offers a
thorough analysis of safe reinforcement learning, including theory, methods, and applications.
It lists five critical issues—referred to as "2H3W"—for safe RL deployment and evaluates
how far these problems have come. Applications to autonomous driving and robotics are
covered, as well as sample complexity and convergence of safe reinforcement learning
techniques. In an effort to promote research in this area, the study also introduces a benchmark

suite and an open-sourced repository with implementations of significant safe RL algorithms.

[24] Reinforcement Learning (RL) is a state-of-the-art machine learning method that mimics
the human and animal trial-and-error learning processes to enable sequential decision-making
in complex scenarios. RL agents learn optimal policies on their own by continuously
interacting with stochastic environments. They have demonstrated amazing abilities, such as
learning video games from pixel data alone. For researchers who are new to the field of
reinforcement learning, this review offers an extensive introduction to the subject matter,
including basic concepts, important techniques, and a wide range of applications. The review
emphasizes the interdisciplinary significance of reinforcement learning (RL) across multiple
domains by discussing state-of-the-art deep reinforcement learning (DRL) algorithms
alongside conventional RL approaches. But there are still issues, mainly with comprehending
and improving the interpretability of DRL algorithms, adapting RL techniques to practical
problems, and meeting computational demands. Stability, convergence, scalability, and safety
are important issues to address as reinforcement learning (RL) develops in order to advance

the field and realize its maximum potential in solving real-world problems.
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[25] This paper lists nine key obstacles that must be overcome before RL can be effectively
used in real-world situations. Every challenge is carefully outlined along with current methods
from the literature and recommended assessment criteria. If these issues are resolved in their
entirety, RL may become useful for a variety of real-world situations. The paper also provides
an example domain that has been modified to include these difficulties, acting as a useful
testbed for RL research. The goal of the paper is to close the gap between theoretical
developments and practical applications of reinforcement learning by highlighting these
obstacles and providing recommendations for researchers and practitioners.The paper
highlights the significance of model-based reinforcement learning (RL), ensembles, and
expert-human cooperation in addressing these obstacles and clearing the path for the

implementation of RL systems in various real-world products and systems.
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2.2 KEY GAPS IN THE LITERATURE

The above literature can be divided into four sub-sections, each section focusing on a different
aspect of the project.

The first section focuses on Zigbee, PLC, embedded systems and inter-communications
between them in industrial set-up. The second section focuses on the modelling techniques for
HVAC. The third section, on the other hand, focuses on deep learning, reinforcement learning,
deep reinforcement learning and the policies and opportunities present in them. And the last

section focuses on the evaluation strategies for reinforcement learning.

Below are the main gaps identified while exploring the above literatures:

¢ Lack of proper evaluation metrics for RL
Inconsistent performance evaluations are caused by the absence of comprehensive and
standard evaluation metrics for reinforcement learning algorithms. In order to
guarantee fair comparisons and remove inadvertent biases, suggested solutions seek to
define high-confidence bounds over the evaluation procedure. To further improve and

standardize these evaluation techniques, more study is necessary.

e Lack of a standard modelling technique that can represent complex nature of
HVAC systems
Comprehensive and standardized modelling techniques that are capable of accurately
representing the complex dynamics of HVAC systems are lacking in the HVAC
industry. The suggested approaches centre on fusing graph theory and state-space
modelling to create modular HVAC component models that facilitate effective
dynamic system modelling. To validate these models in actual HVAC systems and
investigate cutting-edge control algorithms for better system performance, more

research is necessary.

e Unexploited potential of DRL and DL in smart manufacturing

Although DRL has the potential to completely transform smart manufacturing, there
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aren't many thorough reviews that are especially focused on DRL applications in this
field. By offering a methodical analysis of DRL's function throughout the engineering
lifecycle of smart manufacturing, suggested solutions seek to close this gap.
Nevertheless, additional investigation is required to tackle obstacles and investigate
cutting-edge technologies in order to enhance the practicability and effectiveness of
DRL in manufacturing systems. Additionally, An exhaustive examination of
techniques and efficacy is lacking when it comes to the use of deep learning algorithms
in smart manufacturing. Solutions that are suggested are meant to offer a survey of this
kind, emphasizing how deep learning can be used to optimize different phases of the
manufacturing process. More investigation is necessary to address issues with
deployment viability and learning efficiency in manufacturing systems, as well as to

investigate more sophisticated deep learning approaches.
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CHAPTER 3: SYSTEM DEVELOPMENT

3.1 REQUIREMENTS AND ANALYSIS

Hardware Requirements:

DHT?22 Sensor For measuring temperature and humidity

Arduino Uno Microcontrollers for data processing and interfacing with

sensors and communication modules

XBee S2C Modules For wireless data transmission between nodes

Jumper Wires To establish electrical connections between components
Programmable Logic | For controlling HVAC system actuators based on sensor
Controller (PLC) data

Xbee Adapters, Breadboard | To facilitate the hardware connections

& USB Cables

Table 3. 1 Hardware requirements
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Software Requirements:

Google Colab

It compensates for the GPU and high computing

requirements.

Python (3.10)

Programming language

OpenAl Gym

For simulating the HVAC model to train the agent

Stable Baselines

To use RL agent training policies

Programmable Logic Controller

(PLC)

For controlling HVAC system actuators based on sensor

data

Zigbee Communication Protocol

For data transmission between Xbee Modules

Arduino IDE For compiling and uploading Arduino Sketch in
Arduino Uno
XCTU Software For configuring xbee modules for successful wireless

data transmission.

Table 3. 2 Software requirements
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3.2 PROJECT DESIGN AND ARCHITECTURE

The project focuses on the development of a self-adaptive Cyber-Physical System (CPS). For
better understanding and focused work optimising Heating, Ventilation, and Air Conditioning
(HVAC) systems is considered. The architecture of the CPS framework is designed to
seamlessly integrate hardware components with advanced control strategies, leveraging

Reinforcement Learning (RL) algorithms to achieve optimal HVAC system performance.

At its core, CPS framework consists of two main components: hardware and software.
The hardware component encompasses the physical components involved in data gathering
and processing, while the software component comprises the algorithms and simulation

environment responsible for system optimization.

Important parts of the hardware component are sensors, microcontrollers, and communication
modules. The primary sensor used to collect temperature and humidity data from the
surroundings is the DHT22 sensor. The microcontroller Arduino Uno serves as the data
processing unit and receives this data. Jumper wires enable communication between the
microcontroller and sensor, resulting in a smooth transfer of data.The processed data is then
wirelessly transferred by the Arduino Uno microcontroller to a slave XBee module. Data is
sent by the slave XBee module to the master XBee module, which then relays it to an
additional Arduino Uno microcontroller that is linked to a PLC (programmable logic
controller). For control decision-making, real-time data transmission from the sensor to the

PLC is made possible by this hierarchical communication architecture.

To maximise HVAC system performance, sophisticated control techniques are used on the
software side. RL libraries like TensorFlow or PyTorch, along with the Python programming
language, are used to implement the RL simulation environment

Sensor data is received by the hardware parts, processed, and then wirelessly transmitted. The
RL agent in the simulation environment uses testdata to make control decisions. The CPS
framework can adjust and optimise HVAC system operation in real-time, balancing energy

efficiency.
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3.3 DATA PREPARATION
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Figure 3. 4Real time data generated by DHT22 sensor
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Figure 3. 6Real time data generated by DHT22 sensor
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Figure 3. 8 Arduino Sketch for getting data from DHT22 Sensor and further processing it.



3.4 IMPLEMENTATION

Figure 3. 9Hardware connections between Arduino Uno and Xbee
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Figure 3. 10Tangible connections including Arduino UNo, DHT11 Sensor, Relay, DC power
Supply, PLC
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Figure 3. 11Arduino Sketch for reading data from DHT22 Sensor and sending it to Slave
Xbee (a)

26 Serial.println(humiditv]);

27 // Send data to XBee module

28 xbeeSerial.print ("H:") ;

29 xbeeSerial.print (humidity);

30 xbeeSerial .print ("\n");

31 xbeeSerial.println(temperature);

Figure 3. 12Arduino Sketch for reading data from DHT22 Sensor and sending it to Slave

Xbee (b)
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import numpy as np
import random
import os

from stable baselines3 import PPO

from stable_baselines3,common.vec_env import DummyVecEnv
from stable baselines3.common.evaluation import evaluate policy

Figure 3. 15 Importing libraries
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self.indoor_temp +=1
else:
self.indoor temp ==
else:
if fan_speed-1<0:
self,humidity += 1
elif fan_speed-1»8:
self.humidity -= 1

# one step happens in 1 minute and energy consumed in 1 minute = 58 wh
self.time_stamp -=1
self.energy_consumption += 508

Figure 3. 17 Defining the Step function of training class
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Figure 3. 18 defining the reward function for every step

def reset(self):
self.indoor_temp = 25 + random.randint(-3,3)
self.outdoor_temp = 14 + random.randint(-12,12)
self.humidity = 48 + random.randint(-18,18)
self.energy_consumption = @
self.thermostat_setting = 25 + random.randint(-3,3)
self.fan _speed = 488 + random.randint(-2986,200)
self.time stamp = 18
return np.array([self.indoor_temp, self.outdoor_temp, self.humidity,
self.energy consumption, self.thermostat setting, self.fan_speed])

0 O O O

[

Figure 3. 19 Defining the reset function to reset the environment
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Figure 3. 20 Testing the training environment
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Figure 3. 21 Training the model on PPO policy and defining the log_path
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Figure 3. 22 learning the parameters
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Figure 3. 23 Evaluating the policy
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Figure 3. 25 Defining the similar reward function for testing environment
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Figure 3. 27 Running evaluation episodes
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Figure 3. 28 evaluation episode continued

# Visuaiize resuits

plt.figure{figsize=(14, 18))

plt.subplot{3, 1, 1)

# plt.plot(avg_energy consumption Marker: Literal['o’] ,tjon')

plt.plot(avg_energy consumption, marker="o', linestyle="-", label="Energy
plt.xlabel{ " Time Steps’)

plt.ylabel (" 'Energy Consumption’)

plt.title( "Average Energy Consumption')

plt.axhspan{2588, 35884, color="gray', alpha=8.3, label='Target Range')
plt.legend()

Figure 3. 29 plotting the energy consumption v/s timestamp
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Figure 3. 32 printing statistics
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Figure 3. 34 Exploitation v/s exploration curve

3.5 KEY CHALLENGES

Seamless communication and data exchange between hardware elements such as the DHT22
sensor and microcontrollers was one of the crucial aspects of this project. The inherent
complexity of implementing Reinforcement Learning (RL) algorithms in the simulation

environment was a big challenge.

A thorough grasp of machine learning principles was necessary for developing suitable reward

functions, training RL agents, and comprehending and putting into practice RL concepts. To

48



overcome this obstacle, the use of already-existing RL frameworks and libraries was done

with knowledge through online resources and academic literature.

Optimising energy efficiency in HVAC systems using RL-based control strategies introduced
further challenges due to the system dynamics and trade-offs between energy consumption and
user comfort. Balancing these competing objectives while ensuring optimal system
performance demanded careful consideration and iterative refinement of control policies. A
multi-objective optimization approach was adopted, defining suitable reward functions and

state-action spaces to achieve a balance between energy savings and user satisfaction.

Testing and validating the performance of the hardware prototype and RL simulation
environment presented additional challenges. Comprehensive testing procedures,
encompassing unit tests, integration tests, and performance evaluations were essential to

ensure the system's reliability and responsiveness.
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CHAPTER 4: TESTING

4.1 TESTING STRATEGY

1. Unit Testing:

Hardware Unit Testing: Each hardware component (DHT22 Sensor, Arduino Uno, XBee
modules) is tested individually to ensure proper functionality and connectivity.

Software Unit Testing: Unit tests are conducted for each software module, including Arduino
sketches for data processing and communication, Python scripts for interfacing with the RL

simulation environment, and RL algorithms.

2. Integration Testing:
Hardware Integration: Hardware integration between Arduino boards, sensors, and Xbee

modules have been done properly for Seamless communication and data exchange.

Wireless Communication Testing: Tested the reliability and range of wireless communication

between XBee modules, ensuring stable transmission of sensor data.

Serial Communication Testing: Serial communication between Arduino Uno and the PLC,

verifying the accuracy of data transmission and reception.
3. Functional Testing:
Sensor Data Acquisition: Thoroughly checked accuracy and reliability of temperature and

humidity data acquired by the DHT?22 sensor.

Wireless Data Transmission: Ensured the successful transmission of sensor data between

Arduino boards via XBee modules.
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RL Simulation Environment: Tested the RL simulation environment's ability to accurately

model HVAC system dynamics and generate optimal control actions.

4. Performance Testing:

RL Algorithm Performance: Evaluate the performance of RL algorithms in optimising HVAC

system control in the simulated environment.

Tools Used:

1. Arduino IDE: For developing and uploading Arduino sketches for data processing and
control logic.

2. Python: For scripting and interfacing with the RL simulation environment, as well as
implementing control algorithms.

3. OpenAl Gym: If using a RL simulation environment, OpenAl Gym can be utilised for
developing and testing RL algorithms.

4. XBee Configuration Tools (XCTU): Tools provided by the XBee manufacturer for

configuring and testing XBee modules' communication settings.

4.2 TEST CASES AND OUTCOMES

Different test cases were used to make sure that the data and communication flow is
seamless.Each hardware component was tested individually to ensure proper functionality and
connectivity.It has been verified that the sensor accurately measures temperature and humidity.
Functionality tests were performed to ensure that the microcontroller can process data
correctly and communicate with other components. Checked the communication capabilities
of both slave and master XBee modules to ensure they could reliably transmit and receive data.
The DHT?22 sensor provided accurate readings, the Arduino Uno processed data correctly, and

the XBee modules reliably transmitted data wirelessly.
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Arduino Sketches were tested to ensure proper data processing and communication logic.
Python Scripts were tested for their ability to interface with the RL simulation environment
and handle data accurately. The tests were conducted to ensure that the RL algorithms could
operate within the simulation environment without errors.

The software modules demonstrated correct functionality in data processing, interfacing, and

algorithm execution.

Evaluated the performance of RL algorithms in optimising HVAC system control within the
simulated environment. The RL algorithms significantly improved HVAC system efficiency
and performance. The system adapted to changing conditions effectively, optimising energy

usage and maintaining comfort levels.
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CHAPTER 5: RESULTS AND EVALUATION

5.1 RESULTS

The project focused on two distinct components: a hardware prototype and a Reinforcement
Learning (RL) simulation environment.The hardware prototype was made up of integrated
sensors, microcontrollers, and communication modules that were used to gather and wirelessly
transmit real-time environmental data. In particular, the prototype made use of XBee modules
for wireless communication, an Arduino Uno microcontroller for data processing, and a
DHT22 sensor for temperature and humidity data collection. The prototype effectively
illustrated the viability of gathering environmental data and sending it to the RL simulation

environment for additional analysis through hardware integration and testing.

The RL simulation environment was developed to simulate the decision-making process of the
CPS framework. Utilising RL libraries like TensorFlow and PyTorch and the Python
programming language, the simulation environment made it possible to implement and test RL
algorithms for optimising HVAC system control. The RL simulation environment was an

essential tool for testing various control strategies and algorithms in a controlled environment.

The findings demonstrated how flexible and responsive the CPS framework is when it comes
to dynamically modifying control parameters in response to shifting environmental
circumstances. The framework demonstrated the capacity to optimise HVAC system operation
in real-time by utilising RL algorithms, which effectively balanced energy consumption and
user comfort requirements.Analysis examined the scalability and robustness of the developed
CPS framework in addition to performance evaluation. It was noted that the framework
showed encouraging potential for scalability, as it could support more sensors and actuators

for more thorough system optimization and monitoring.

The interpretation of the findings emphasises how important each part is to achieving the

project's goals. Although the hardware prototype demonstrated how data acquisition and
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transmission mechanisms could be implemented practically, the RL simulation environment

offered a way to test

deployment. The project

and improve control strategies without requiring their physical

created the foundation for the eventual integration of software and

hardware components into a single, self-adaptive CPS framework by developing these

components concurrently.
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Figure 5. 2 Average Indoor Temperature
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Figure 5. 3 Average Humidity

The average energy consumption is increasing in a continuous manner, as supposed to be in a
real-world system. The average indoor temperature remains almost constant, maintaining good
comfort level, indicating good optimization of the parameter. The graph of humidity versus
time steps showing a declining straight line indicates a decrease in humidity over time. This
implies that the environment is becoming drier or that moisture is being removed from the air

gradually, suggesting the operation of natural drying of the air due to heating.
The continuous trends in the graphs above show that the agent has learnt to handle all the three

parameters in an optimal manner and has learnt a fair trade-off between them during the

training phase and is good at applying the same when exposed to unforeseen situations.
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Figure 5. 4Statistical results

The statistical analysis gives more inference on the performance of the RL agent, describing
the mean and variance of all the three parameters namely, Energy consumption, Indoor
Temperature and Humidity. The standard deviation value of Indoor Temperature is 0.0
highlighting the model’s capability to exactly determine the environment conditions and adapt

to it.
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Figure 5. 5 PPO learning curve

The PPO learning Curve graphically shows the learning process of the RL agent in the
HVACEnv environment. The agent adjusts its actions to maximise the rewards per episode to

define, update and redefine the policies it leans.
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5.2 COMPARISON WITH EXISTING SOLUTIONS

Existing Solutions typically consist of standard sensors, thermostats, and basic controllers with
limited processing capabilities.The hardware prototype for the RL-based system includes
advanced sensors, microcontrollers capable of handling complex data processing,
communication modules for seamless data exchange, and a simulation environment for RL
decision-making. They may rely on wired communication or basic wireless protocols with
potential latency issues.Whereas this project utilises advanced wireless communication
modules that ensure low latency and high reliability in data transmission between sensors,

controllers, and the RL environment.

In contrast to prevalent deterministic approaches in Cyber-Physical Systems (CPS) modeling,
the proposed project advocates for a shift towards stochastic modeling techniques and
reinforcement learning (RL) algorithms, notably utilizing the Proximal Policy Optimization
(PPO) algorithm. While current methodologies, such as frequency domain models, Artificial
Neural Networks (ANN), Support Vector Machines (SVM), AutoRegressive with exogenous
input (ARX), and AutoRegressive Integrated Moving Average (ARIMA), rely on data-driven
approaches to approximate system behavior, they often overlook the inherent uncertainties and
dynamic characteristics of industrial environments. This limitation leads to suboptimal
performance and energy inefficiencies, hindering adaptability to changing circumstances. By
integrating stochastic aspects into CPS models and leveraging RL algorithms within a
simulation environment, the project aims to enhance decision-making and control strategies.
The RL simulation environment facilitates iterative learning and adaptation, enabling the
refinement of control policies for HVAC management in response to evolving conditions and
user requirements. Through the implementation of the PPO algorithm, the project seeks to
develop stochastic policies that optimise HVAC system performance, thereby addressing the
challenges faced by autonomous industries and advancing the efficiency and adaptability of

CPS in industrial settings.

By dynamically modifying control parameters in response to shifting environmental factors

and user preferences, the framework exhibits exceptional adaptability. The framework
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continuously learns and adapts based on real-time feedback, ensuring optimal performance
under varying operating conditions, in contrast to rule-based approaches that depend on fixed

control policies.
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CHAPTER 6: CONCLUSION AND FUTURE
SCOPE

6.1 CONCLUSION

It is shown via test results that the incorporation of Reinforcement Learning (RL) techniques
with hardware components allows for autonomous learning and adaptation of control
strategies, leading to notable gains in user comfort and energy efficiency over conventional
rule-based approaches. The investigation also demonstrated the framework's resilience,

scalability, and adaptability, underscoring its potential for practical uses in industrial contexts.

Despite its promising performance, the self-adaptive CPS framework exhibits certain
limitations that warrant consideration for betterment. One drawback is the difficulty and
resources needed to integrate hardware and implement RL algorithms, which could make it
difficult for them to be widely adopted and used. Additionally, more investigation and
improvement may be necessary to address particular domain requirements and constraints
before the framework can be applied to a variety of industrial environments and HVAC

systems, as new models are required for new environments everytime.

The project makes several noteworthy contributions to the field of CPS technology and HVAC
system optimization. Firstly, It has been shown that it is both feasible and effective to combine
RL techniques with hardware elements to build CPS frameworks that are self-adaptive,
opening the door to more adaptive and efficient industrial processes. Important insights are
offered for future CPS technology research and development, guiding the design of more
reliable and scalable solutions, by exposing the shortcomings and performance of the
framework. Finally, the project promotes innovation and interdisciplinary collaboration in the
field by improving discussion on energy efficiency, sustainability, and autonomy in industrial

systems.
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6.2 FUTURE SCOPE

There are further things that can be added in this project. The integration of the hardware
prototype with the RL simulation environment to create a unified CPS framework will be the
main focus in future. This integration will enable real-time interaction between the physical
environment and the decision-making algorithms which will lead to autonomous control and

optimization of HVAC systems.

Further research and experimentation will be conducted to refine and optimise the RL
algorithms used in the simulation environment. The RL model will be properly trained and
optimised for a large number of parameters. This will increase the learning capabilities and

decision-making accuracy.

Training and testing will be done with respect to the real world industrial settings making it

more reliable and efficient.

Additional sensors and actuators will be integrated to capture more comprehensive
environmental data and enable better control of HVAC systems, thus, making it more
optimised. This includes exploring the use of IoT devices and new learning technologies to

enhance data collection and processing capabilities.
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