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Abstract

Since the introduction of the most common input computer devices not a lot have
changed. This is probably because the existing devices are adequate. It is also now that
computers have been so tightly integrated with everyday life, that new applications and
hardware are constantly introduced. The means of communicating with computers at the

moment are limited to keyboards, mice, light pen, trackball, keypads etc.

These devices have grown to be familiar but inherently limit the speed and naturalness
with which we interact with the computer. As the computer industry follows Moore’s
Law since middle 1960s, powerful machines are built equipped with more peripherals.
Vision based interfaces are feasible and at the present moment the computer is able to
“see”. Hence users are allowed for richer and user-friendlier man-machine interaction.
This can lead to new interfaces that will allow the deployment of new commands that are

not possible with the current input devices. Plenty of time will be saved as well.

Recently, there has been a surge in interest in recognizing human hand gestures. Hand-
gesture recognition has various applications like computer games, machinery control and
thorough mouse replacement. One of the most structured sets of gestures belongs to sign
language. In sign language, each gesture has an assigned meaning (or meanings).

We have used developed a neural network based human computer interaction system
incorporating some open ended set of features including classification tasks such as
handwritten digit recognition and gesture recognition. We have used the gestures to
interface with the machine with an example application to control the basic operations of
a media player. The Neural network under problem specific optimization is also capable

of handling several other applications such as voice recognition, facial recognition and

stock market forecast provided the features are extracted properly.




CHAPTER 1: INTRODUCTION

1.1 What is Human Computer Interaction:

It involves the study, planning, and design of the interaction between people (users) and
computers. It is often regarded as the intersection of computer science, behavioral
sciences, design and several other fields of study. The term was popularized by Card,
Moran, and Newell in their seminal 1983 book, "The Psychology of Human-Computer
Interaction", although the authors first used the term in 1980, and the first known use was
in 1975. The term connotes that, unlike other tools with only limited uses (such as a
hammer, useful for driving nails, but not much else), a computer has many affordances

for use and this takes place in an open-ended dialog between the user and the computer.

Because human—computer interaction studies a human and a machine in conjunction, it
draws from supporting knowledge on both the machine and the human side. On the
machine side, techniques incomputer graphics, operating systems, programming
languages, and development environments are relevant. On the human
side, communication theory, graphic and industrial design disciplines, linguistics, social j
sciences, cognitive psychology, and human factors such as computer user satisfaction are
relevant. Engineering and design methods are also relevant. Due to the multidisciplinary
nature of HCI, people with different backgrounds contribute to its success. HCI is also
sometimes referred to as man—machine interaction (MMI) or computer—human

interaction (CHI).

1.2 Goals of Human Computer Interaction:

A basic goal of HCI is to improve the interactions between users and computers by

making computers more usable and receptive to the user's needs. Specifically, HCI is

concerned with:




Methodologies and processes for designing interfaces (i.e., given a task and a class

of users, design the best possible interface within given constraints, optimizing for a

desired property such as learnability or efficiency of use).

o Methods for implementing interfaces (e.g. software toolkits and libraries;
efficient algorithms.

o Techniques for evaluating and comparing interfaces.

o Developing new interfaces and interaction techniques.

o Developing descriptive and predictive models and theories of interaction.

A long term goal of HCI is to design systems that minimize the barrier between the
human's cognitive model of what they want to accomplish and the computer's

understanding of the user's task.

1.3 Applications of Human Computer Interaction:

Excellence in HCI is important for several reasons:

Quality of life: Important applications of computers in medicine are possible only if they
are both useful and easy to use by doctors, nurses, and aides; similarly, use of computers
in education requires that they be both useful and easy to use by students and teachers.
Computers can assist disabled individuals; at the same time, special techniques are

needed to allow computers to be used by some who are disabled.

National competitiveness: Information technology is one of the drivers for increased
productivity. As more and more workers use computers in their jobs, training time and

ease-of-use issues become economically more and more important.

Growth of the computer and communications industries: Powerful, interesting, and
usable applications are the fuel for continuing growth of these industries. The current
growth cycle is the direct consequence of the graphical user interface developed by

Xerox and commercialized by Apple and Microsoft, and of the lower computer costs
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made possible by the microprocessor. The resulting mass market supports commodity
pricing for both hardware and software. Future growth cycles will in part be driven by

current HCI research, which will lead to new applications that are mcreasingly easy to

use.

National security. Computer-based command, control, communications, and
intelligence systems are at the heart of our military infrastructure. Interfaces between
operators and computers are found in cockpits, on the bridge, and in the field. To be

effective, these systems must have high-quality human-computer interfaces.

1.4 Challenges Faced by HCI Applications:

Interactive applications pose particular challenges. The response time should be very
fast. The user should sense no appreciable delay between when he or she makes a gesture
or motion and when the computer responds. The computer vision algorithms should be
reliable and work for different people. There are also economic constraints: the vision-
based interfaces will be replacing existing ones, which are often very low cost.

Attention to human-machine interaction is also important because poorly
designed human-machine interfaces can lead to many unexpected problems. A classic
example of this is the Three Mile Island accident, a nuclear meltdown accident, where
investigations concluded that the design of the human—machine interface was at least
partially responsible for the disaster. Similarly, accidents in aviation have resulted from
manufacturers' decisions to use non-standard flight instrument: even though the new
designs were proposed to be superior in regards to basic human--machine interaction,

pilots had already ingrained the "standard" layout and thus the conceptually good idea

actually had undesirable results.
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CHAPTER 2: ARTIFICIAL NEURAL NETWORK

2.1 What is Neural Network:

in machine learning and computational neuroscience, an artificial neural network, often
just named aneural network, is a mathematical model inspired by biological neural
networks. A neural network consists of an interconnected group of artificial neurons, and
it processes information using a connectionist approach to computation. In most cases a
neural network is an adaptive system changing its structure during a learning phase.
Neural networks are used for modeling complex relationships between inputs and outputs

or to find patterns in data.
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Fig 1: Representation of a simple Neural Network




2.2 Background:

The inspiration for neural networks came from examination of central nervous systems.
In an artificial neural network, simple artificial nodes, called "neurons", "neurodes",
"processing elements" or "units", are connected together to form a network which mimics
a biological neural network. There is no single formal definition of what an artificial
neural network is. Generally, it involves a network of simple processing elements
exhibiting complex global behavior determined by the connections between the
processing elements and element parameters. Artificial neural networks are used with
algorithms designed to alter the strength of the connections in the network to produce a

desired signal flow.

Neural networks are also similar to biological neural networks in performing functions
collectively and in parallel by the units, rather than there being a clear delineation of
subtasks to which various units are assigned. The term "neural network" usually refers to
models employed in statistics, cognitive psychologyand artificial intelligence. Neural

network models which emulate the central nervous system are part of theoretical

neuroscience and computational neuroscience. {

In modern software implementations of artificial neural networks, the approach inspired
by biology has been largely abandoned for a more practical approach based on statistics
and signal processing. In some of these systems, neural networks or parts of neural
networks (like artificial neurons) form components in larger systems that combine both
adaptive and non-adaptive elements. While the more general approach of such adaptive
systems is more suitable for real-world problem solving, it has far less to do with the
traditional artificial intelligence connectionist models. What they do have in common,
however, is the principle of non-linear, distributed, parallel and local processing and
adaptation. Historically, the use of neural networks models marked a paradigm shift in
the late eighties from high-level (symbolic) artificial intelligence, characterized by expert
systems with knowledge embodied in if-then rules, to low-level (sub-symbolic) machine

learning, characterized by knowledge embodied in the parameters of a dymamical

system.




2.3 Architecture of Neural Network:

The word network in the term 'artificial neural network' refers to the inter—connections
between the neurons in the different layers of each system. An example system has three
layers. The first layer has input neurons, which send data via synapses to the second layer
of neurons, and then via more synapses to the third layer of output neurons. More
complex systems will have more layers of neurons with some having increased layers of
input neurons and output neurons. The synapses store parameters called "weights" that

manipulate the data in the calculations.

An ANN is typically defined by three types of parameters:

1. The interconnection pattern between different layers of neurons
2. The learning process for updating the weights of the interconnections
3. The activation function that converts a neuron's weighted input to its output
activation. ‘ '
Commonly neural networks are adjusted, or trained, so that a particular input leads to a

specific target output. Such a situation is shown in fig(3). There, the network is !
adjusted, based on a comparison of the output and the target, until the network output J
|

matches the target. Typically many such input/target pairs are used, in this supervised
learning (training method studied in more detail on following chapter), to train a

network.

‘Neural Network
e ] * INCIUING coONnEclions

callad weights) -
Input getwaan neurons Output

Adjust
weights

Fig 2: Neural Net block diagram




2.4 Neuron Model:

A neuron with a single scalar input and no bias is shown on the left below.

Input  Neuron withoul bias Input  Neuron with bias
e oy
P W L] a P Q¥ n 4]
Isb
a = flwp) a = flwp +h)
Fig 3: Neuron

The scalar input p is transmitted through a connection that multiplies its strength by the
scalar weight w, to form the product wp, again a scalar. Here the weighted input wp is the
only argument of the transfer function f, which produces the scalar output a. The neuron
on the right has a scalar bias, b. You may view the bias as simply being added to the
product wp as shown by the summing junction or as shifting the function f'to the left by
an amount b. The bias is much like a weight, except that it has a constant input of 1. The
transfer function net input n, again a scalar, is the sum of the weighted input wp and the
bias b. This sum is the argument of the transfer function . Here f'is a transfer function
typically a step function or a sigmoid function, that takes the argument # and produces
the output a. Examples of various transfer functions are given in the next section. Note
that w and b are both adjustable scalar parameters of the neuron. The central idea of
neural networks is that such parameters can be adjusted so that the network exhibits some
desired or interesting behavior.

Thus, we can train the network to do a particular job by adjusting the weight or bias
parameters, or perhaps the network itself will adjust these parameters to achieve some

desired end. All of the neurons in the program written in MATLAB have a bias.

However, you may omit a bias in a neuron if you wish.
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2.5 Transfer Functions:

Three of the most commonly used transfer functions are shown in fig(5).

a = purelin(n)
Linear Transfer Function

a = hardlinn)

Hard Limit Transfer Function

LEL LR ‘-.l PR L LR R LR RS A

RETWASEMETAWBP R ARV S AW B2

i
a = logyign) |
Log-Sigmold Transfer Function

Fig 4: Transfer Functions
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The hard limit transfer function shown above limits the output of the neuron to either 0, if
the net input argument 7 is less than 0, or 1, if » is greater than or equal to 0. This is the
function used for the Perceptron algorithm written in MATLAB to create neurons

that make a classification decision.

2.6 Learning:
Learning is the process by which the free parameters of a neural network are adapted

through a process of stimulation by the environment in which the network is embedded.

There are two modes of learning: Supervised and unsupervised. Below there is a

brief description of each one to determine the best one for our problem.

2.6.1 Supervised Learning:

Supervised learning is based on the system trying to predict outcomes for known
examples and is a commonly used training method. It compares its predictions to the
target answer and “learns” from its mistakes. The data start as inputs to the input layer
neurons. The neurons pass the inputs along to the next nodes. As inputs are passed along,
the weighting, or connection, is applied and when the inputs reach the next node, the
weightings are summed and either intensified or weakened. This continues until the data
reach the output layer where the model predicts an outcome.

In a supervised learning system, the predicted output is compared to the actual output for
that case. If the predicted output is equal to the actual output, no change is made to the
weights in the system. But, if the predicted output is higher or lower than the actual
outcome in the data, the error is propagated back through the system and the weights are
adjusted accordingly. This feeding errors backwards through the network is called “back-
propagation.” Both the Multi-Layer Perceptron and the Radial Basis Function are
supervised learning techniques. The Multi-Layer Perceptron uses the back-propagation

while the Radial Basis Function is a feed-forward approach which trains on a single pass

of the data.
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2.6.2 Unsupervised Learning:
Neural networks which use unsupervised learning are most effective for describing data
rather than predicting it. The neural network is not shown any outputs or answers as part
of the training process—in fact, there is no concept of output fields in this type of system.
The primary unsupervised technique is the Kohonen network. The main uses of Kohonen
and other unsupervised neural systems are in cluster analysis where the goal is to group
“like” cases together.

The advantage of the neural network for this type of analysis is that it requires no initial
assumptions about what constitutes a group or how many groups there are. The system

starts with a clean slate and is not biased about which factors should be most important.

2.7 Multilayer Perceptron:

A multilayer perceptron is a feed forward neural network with one or more hidden
layers. The network consists of an input layer of source neurons, at least one middle
or hidden layer of computational neurons, and an output layer of computational
neurons. The input signals are propagated in a forward direction on a layer-by-layer

basis.

} Input hidden hidden Output
' layer layer layer layer

Fig 5: A Multi-layered Perceptron with 2 hidden layers
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It works by using the following algorithms:

1. Feed forward neural network algorithm

2. Back Propagation algorithm

The general steps in Perceptron training Algorithm are:

1. Initialization of weights.

2. Activation of the perceptron by applying inputs and desired outputs.
3. Update the weights after the learning phase.

4. Increase iteration by 1 and repeat the process till minimization of cost function.

2.8 Back propagation learning Algorithm:

Back propagation, an abbreviation for "backward propagation of errors", is a common
method of training artificial neural networks. From a desired output, the network learns
from many inputs, similar to the way a child learns to identify a dog from examples of

dogs.

= mes

For better understanding, the back propagation learning algorithm can be divided into

two phases: propagation and weight update.

Phase 1: Propagation

Each propagation involves the following steps:

1. Forward propagation of a training pattern's input through the neural network in

order to generate the propagation's output activations.
2. Backward propagation of the propagation's output activations through the neural
network using the training pattern target in order to generate the deltas of all

' output and hidden neurons.




Phase 2: Weight update

For each weight-synapse follow the following steps:

I. Multiply its output delta and input activation to get the gradient of the weight.
2. Bring the weight in the opposite direction of the gradient by subtracting a ratio of

it from the weight.

This ratio influences the speed and quality of learning; it is called the learning rate. The
sign of the gradient of a weight indicates where the error is increasing, this is why the

weight must be updated in the opposite direction.
Repeat phase 1 and 2 until the performance of the network is satisfactory.

As the algorithm’'s name implies, the errors propagate backwards from the output
nodes to the input nodes. Technically speaking, back propagation calculates the gradient
of the error of the network regarding the network's modifiable weights. This gradient is
almost always used in a simple stochastic gradient descent algorithm to find weights that
minimize the error. Back propagation usually allows quick convergence on

satisfactory local minima for error in the kind of networks to which it is suited.

Back propagation networks employ gradient descent algorithm. Gradient descent is
a first-order optimization algorithm. To find alocal minimum of a function using
gradient descent, one takes steps proportional to the negative of the gradient (or of the

approximate gradient) of the function at the current point.

2.9 Advantages of Neural Computing:

There are a variety of benefits that an analyst realizes from using neural networks in their

work.
1. Pattern recognition is a powerful technique for harnessing the information in the data

and generalizing about it. Neural nets learn to recognize the patterns which exist in the

12




data set.

2. The system is developed through learning rather than programming. Programming is
much more time consuming for the analyst and requires the analyst to specify the exact
behavior of the model. Neural nets teach themselves the patterns in the data freeing the
analyst for more interesting work.

3. Neural networks are flexible in a changing environment. Rule based systems or
programmed systems are limited to the situation for which they were designed--when
conditions change, they are no longer valid. Although neural networks may take some
time to learn a sudden drastic change, they are excellent at adapting to constantly
changing information.

4. Neural networks can build informative models where more conventional approaches
fail. Because neural networks can handle very complex interactions they can easily model
data which is too difficult to model with traditional approaches such as inferential
statistics or programming logic.

5, Performance of neural networks is at least as good as classical statistical modeling, and
better on most problems. The neural networks build models that are more reflective of
the structure of the data in significantly less time.

6. Neural networks now operate well with modest computer hardware. Although neural
networks are computationally intensive, the routines have been optimized to the point
that they can now run in reasonable time on personal computers. They do not require

supercomputers as they did in the early days of neural network research.

2.10 Limitations of Neural Computing:

There are some limitations to neural computing. The key limitation is the neural
network's inability to explain the model it has built in a useful way. Analysts often want
to know why the model is behaving as it is. Neural networks get better answers but they

have a hard time explaining how they got there.

There are a few other limitations that should be understood. First, It is difficult to extract

13
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rules from neural networks. This is sometimes important to people who have to explain
their answer to others and to people who have been involved with artificial intelligence,

particularly expert systems which are rule-based.

As with most analytical methods, you cannot just throw data at a neural net and get a
good answer. You have to spend time understanding the problem or the outcome you are
trying to predict. And, you must be sure that the data used to train the system are
appropriate and are measured in a way that reflects the behavior of the factors. If the data
are not representative of the problem, neural computing will not product good results.

This is a classic situation where "garbage in" will certainly produce "garbage out."

Finally, it can take time to train a model from a very complex data set. Neural techniques
are computer intensive and will be slow on low end PCs or machines without math
coprocessors. [t is important to remember though that the overall time to results can still
be faster than other data analysis approaches, even when the system takes longer to train.
Processing speed alone is not the only factor in performance and neural networks do not
require the time programming and debugging or testing assumptions that other analytical

approaches do.

2.11 Applications of Neural Networks:

1. Medical Diagnosis:
Eg: Classification of Breast Cancer Cells

Input: 17 morphometric features including object size, object shape, object sum density,
object average density, object texture, angular, second moment co'ntrast, difference
moment, sum variance, difference variance (Fisher), difference entropy, information
measure B, maximum correlation coefficient, difference variance, diagonal moment,

second diagonal moment.

Outputs: Well differentiated, moderate, poor, benign

zFF
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2. Business Applications:

Eg: Credit Scoring Goal: Determine whether a load should be approved based on
features extracted from applicant’s information.

Inputs: Own/Rent your home, Years with Employer, Credit Cards, Store Account, Bank
Account, Occupation, Previous Account, Credit Bureau

Outputs: Credit scores: delinquent, charged-off, or paid-off

3. Energy Cost Prediction:

Eg: Natural gas price prediction

Inputs: Quarter of the year, season, NNG's sales commodity rate last year, NNG's
market sensitive price last year, Nat. Gas Week price index last month, Nat. Gas Week
price index last year, Degree-days last month

Output: Gas index next month

4. Data processing, including filtering, clustering, blind source separation and

compression.

A\ 2/

5, Classification, including pattern and sequence recognition, novelty detection and

sequential decision making.

6. Function approximation, or regression analysis, including time series prediction,

fitness approximation and modeling.

15




CHAPTER 3: GESTURE RECOGNITION

3.1 What is Gesture Recognition:

Gesture recognition is a topic in computer science and language technology with the
goal of interpreting human gestures via mathematical algorithms. Gestures can originate
from any bodily motion or state but commonly originate from the face or hand. Current
focuses in the field include emotion recognition from the face and hand gesture
recognition. Many approaches have been made using cameras and computer vision
algorithms to interpret sign language. However, the identification and recognition of

posture and human behaviors is also the subject of gesture recognition techniques.

Gesture recognition can be seen as a way for computers to begin to understand

human body language, thus building a richer bridge between machines and humans than ﬁ
primitive text user interfaces or even GUIs (graphical user interfaces), which still limit r
the majority of input to keyboard and mouse. Gesture recognition enables humans to j |
communicate with the machine (HMI) and interact naturally without any mechanical )

devices. Using the concept of gesture recognition, it is possible to point a finger at

the computer screen so that the cursor will move accordingly. This could potentially
make conventional input devices such as mouse, keyboards and even touch

screens redundant. Gesture recognition is useful for processing information from humans
which is not conveyed through speech or type. As well, there are various types of
gestures which can be identified by computers. Gesture recognition can be conducted

with techniques from computer vision and image processing.

The literature includes ongoing work in the computer vision field on capturing gestures
or more general human pose and movements by cameras connected to a computer.Hand
gestures can be classified in two categories: static and dynamic. A static gesture is a

particular hand configuration and pose, represented by a single image. A dynamic gesture

16
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is a moving gesture, represented by a sequence of images. We will focus on the

recognition of static images.

3.2 Applications of Gesture Recognition:

Recently, there has been a surge in interest in recognizing human hand gestures. Hand

gesture recognition has various applications like -

o Sign language recognition. Just as speech recognition can transcribe speech to text,
certain types of gesture recognition software can transcribe the symbols represented
through sign language into text.

o Directional indication through pointing. Pointing has a very specific purpose in
our society, to reference an object or location based on its position relative to
ourselves. The use of gesture recognition to determine where a person is pointing is
useful for identifying the context of statements or instructions. This application is of
particular interest in the field of roboties.

o Control through facial gestures. Controlling a computer through facial gestures is a
useful application of gesture recognition for users who may not physically be able to
use a mouse or keyboard. Eye tracking in particular may be of use for controlling
cursor motion or focusing on elements of a display.

o Immersive game technology. Gestures can be used to control interactions within
video games to try and make the game player's experience more interactive or

immersive.

Fig 6: ASL. Examples
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The main goal of the project is implementation of a Human Computer Interaction
system having the following open ended set of features-

e Handwritten Character Recognition

o Gesture Recognition

and finally integrating these set of features under a GUI and testing it in a robotic
platform and interacting with the machine in a natural way, the way we interact among

ourselves in our day to day lives.
In other words, the objective of our project is two-fold:

Firstly, to develop a system able to recognize static hand gestures/handwritten
characters using neural networks. We would train our system in the learning phase and

then test our system with test examples and calculate the accuracy of the system.

Secondly, to control any day to day used computer application like Windows Media
Player using our system, i.e. we can control its functioning by static hand gestures or

characters as the case may be.

18




CHAPTER 4: METHODOLOGY

The basic methodology in any supervised learning problem starts with the collection of
training dataset i.e. samples containing both input and output values. In case of digit
recognition we started by gathering a dataset of 5000 samples of handwritten digits from
0 to 9 and then trained the neural network using backpropagation algorithm as a multi
class classifier. Similarly in case of Gesture recognition we started by gathering a data set
of five gestures. From each gesture we extracted a feature vector of length 19 using
orientation histogram method. This feature vector was used to train the neural network .

When the neural network got trained, we stored the network parameters and used it to
recognize gesture. Finally different instructions were given to the media player

corresponding to different hand gestures to play, pause, stop the music.

4.1 Collection of Image Database:

The starting point of the project was the creation of a database with all the images that
would be used for training and testing. The image database can have different formats.
Images can be ecither hand drawn, digitized photographs or a 3D dimensional hand.

Photographs were used, as they are the most realistic approach.

Images came from internet database and they have different sizes. different resolutions
and at times almost completely different angles of shooting. Two operations were carried
out in all of the images. They were converted to grayscale and the background was made

uniform. The internet databases already had uniform backgrounds.

The database itself was constantly changing throughout the completion of the project as it
was it that would decide the robustness of the algorithm. Therefore. it had to be done in
such way that different situations could be tested and thresholds above which the

algorithm didn’t classify correct would be decided.

The construction of such a database is clearly dependent on the application. If the application

19
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is a crane controller for example operated by the same person for long periods the algorithm
doesn’t have to be robust on different person’s images. In this case noise and motion blur
should be tolerable. The applications can be of many forms and since we were not

developing for a specific one we have tried to experiment for many alternatives.

We can see figure 7. In the first row are the training images. In the second row are the

testing images.

Train image 1 Train image 2 Train image 3

Test Image 1 Test Image 2 Test Image 3

Figure 7: Train — Test images

For most of the gestures the training set originates from a single gesture. Those were
enhanced in MATLAB using various filters. The reason for this is that we wanted the
algorithm to be very robust for images of the same database. If there was a

misclassification to happen it would be preferred to be for unknown images.

The final form of the database is as follows:
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Train set:
Five training sets of images, each one containing twenty five images. Each set

originates from a single image for testing.

Test Set:

The number of test images varies for each gesture. There is no reason for keeping those
on a constant number. Some images can tolerate much more variance and images from
new databases and they can be tested extensively, while other images are restricted

to fewer testing images.

The system could be approached either in high or low-level. The former would employ
models of the hand, finger, joins and perhaps fit such a model to the visual data. This

approach offers robustness, but at the expense of speed.

A low-level approach would process data at a level not much higher than that of pixel

intensities.

Although this approach would not have the power to make inferences about occluded

AT — e

data, it could be simple and fast. The pattern recognition system that will be used can be
seen in Fig (8). Some transformation T, converts an image into a feature vector, which

will be then compared with feature vectors of a training set of gestures.

tralning

image

%
% e s
7 /

L]
i com pare

Figure 8: Pattern Recognition System




We will be seeking for the simplest possible transformation T, which allows gesture

recognition.

Histogram orientation has the advantage of being robust in lighting change conditions. If
we follow the pixel-intensities approach certain problems can arise for varying
illumination. Taking a pixel-by-pixel difference of the same photo under different
lighting conditions would show a large distance between these two identical gestures. For
the pixel-intensity approach no transformation T has been applied. The image itself is

used as the feature vector. In Fig (9) we can see the same hand gesture under different

lighting conditions.

S

L .

Figure 9: Illumination Variance

Another important aspect of gesture recognition is translation invariance. The position of
the hand within the image should not affect the feature vector. This could be enforced
forming a local histogram of the local orientations. This should treat each orientation

element the same, independent of location.

Therefore, orientation analysis should give robustness in illumination changes while
histogram will offer translational invariance. This method will work if examples of the
same gesture map to similar orientation histograms, and different gestures map to

substantially different histograms.
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4.2 Feature Extraction through Orientation Histogram:

We want gestures to be the same regardless of where they occur with the images
boarders. To achieve this we will ignore position altogether, and tabulate a histogram of
how often each orientation element occurred in the image. Clearly, this throws out
information and some distinct images will be confused by their orientation histograms. In
practice, however, one can choose a set of training gestures with substantially different

orientation histograms from each other.

One can calculate the local orientation using image gradients. We used two 3 — tap x and
y derivative filters. The outputs of the x and y derivative operators will be dx and dy.
Then the gradient direction is atan (dy/dx). We had dccided to use the edge orientation as
the only feature that will be presented to the neural network. The reason for this is that if
the edge detector was good enough it would have allowed me to test the network with
images from different databases. Another feature that could have been extracted from the

image would be the gradient magnitude using the formula below
N

This would lead though to testing the algorithm with only similar images. Apart from this
the images before resized should be of approximately the same size. This is the size of
the hand itself in the canvas and not the size of the canvas. Once the image has been
processed the output will be a single vector containing a number of elements equal to the

number of bins of the orientation histogram.

Figure 10 shows the orientation histogram calculation for a simple image. Blurring can be

used to allow neighboring orientations to sense each other.
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raw histogram

A

blurred histogram

image

polar plot

Figure 10: Orientation histogram

4.2.1 Operation:

The program can be divided in six steps. Let us examine them one by one.

Stepl:

The first thing for the program to do is to read the image database. A for loop is used to
read an entire folder of images and store them in MATLAB’s memory. The folder is
selected by the user from menus. A menu will firstly pop-up asking you whether you
want to run the algorithm on test or train séts. Then a second menu will pop-up for the

user to choose which ASL sign he wants to use.

Step2:
Resize all the images that were read in Stepl to 150x140 pixels. This size seems the

optimal for offering enough detail while keeping the processing time low.
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Step3:
Next thing to do is to find the edges. Two filters were used.

For the x direction x = [0 -1 1] and For the directiony =[0 1 -1]

Step 4:
Dividing the two resulting matrices (images) dx and dy element by element and then

taking the atan ( dy/dx ). This will give the gradient orientation.

Step 5:

Orientation Binning: It aims that local object appearance and shape within an image can
be described by the distribution of edge directions. It is achieved by dividing the images
into small connected regions called cells and for each cell compiling a histogram of

gradient orientations for pixels within the cell.

Step 6:
Input this feature vector in the ANN.

Original image 5_1 Original image 5_2
Figure 11 : Training image
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CHAPTER 5: RESULT

5.1 Complexities involved:

Under this heading we are going to mention the complexities we faced while building this

project:

o Designing the basic structure of our Neural Network system: There are
various factors taken into consideration while designing the system such as the

number of hidden layer nodes and the activation function of the neuron.

o Initializing the weights of the system: If the weights are assigned large initial
values, neurons are driven into saturation whereas if weights are too small,

algorithm operates around the origin.

e Algorithm to be used for feature extraction: After testing for different

B, e

algorithms, we found that Orientation Histogram provided the best results.

e An accurate dataset must be chosen so that the system is properly trained.

e The number of iterations must be carefully chosen so that the system can be

effectively trained without making it too slow.

¢ The learning rate should neither be too large nor too small. Hence choosing the

learning rate is another complexity we need to counter.
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5.2: Analysis:

e We have successfully trained our artificial neural network with the suitable

dataset for Digit Recognition and Static Hand Gesture Recognition.

e The testing accuracy for gesture recognition system had been calculated for

different hidden layer sizes :

88.07

90.10

97.42

97.84

Table 1: Variation of accuracy of gesture recognition system with hidden layer size

In case of digit recognition, the variation of accuracy with hidden layer size was:

95182
95.10

98.42
I 97.84
96.02

Table 2: Variation of accuracy of digit recognition system with hidden layer size
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Inference: We select optimum middle layer size to be 7500 in case of gesture
recognition and 25 for digit recognition as for lower sizes of hidden layer, the
accuracy as not good and for higher higher layer sizes, the complexity of computation

increases. Therefore, we select the lowermost value of layer size for which we get a

desired accuracy.

e Finally we were successful in controlling Windows Media Player functions

like play, pause, next, previous and stop using various hand gestures.

5.3 Output:

Do wou what to continue (Y/IN)

v

MEDIA PLAYEPR OPTICINS

A.PLAY

B.PAUSE

C.MEXT

D.PREVIOUS

E .STOP

Enter the test example you what to use:"a,B,C,D or E"

Figure

File Edit View Insert Tools Desktop Window Help

e D | k| REMBDY 52| >

[e= & 38

=

Fig 12 : Using NN to control Media Player

Here, we have selected test image “A” which contains gesture 1. We have used gesture 1
to play the current item on the playlist. Similarly, choosing other gestures we can pause

and stop the music on the playlist.
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CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 Conclusion:

HCI is widely being used these days in the design of user-friendly machines like smart
TV, laptops, robots, smartphones etc. We have developed our interface with regard to the
complexity of a general computer system and the limitations of humans. The same

system can also be deployed in a robot or a smart television with minor adjustments.

With the evolution of big data, performance of Human machine interface can be
subsequently improved by networking it with global repositories which keep on updating
in the real time. So interaction will become even more effective as more and more

training data is made available to it.

We have seen that artificial neural network can be effectively used to perform a wide
variety of supervised learning tasks which form the basis of human computer interactive

systems. It can be used to perform tasks like voice recognition, human emotion

recognition, handwriting recognition, gesture recognition, etc. Hence by building a robust

ANN system, we can these tasks effectively.

For a robust ANN system, we need to take care of certain heuristics such as learning rate,
hidden layer size, number of iterations, initial weights and selection of training data.

The learning rate should neither be too large nor too small. We experimentally found its
optimal value to be 1. The hidden layer size should be large enough to accommodate the
non-linearity between input and output but it should not be very large as it increases the
complexity of the program. The training data should be chosen such as to maximize the
information content. Initial weights should be chosen as small non-zero values for
symmetry breaking.

Taking care of these heuristics, we were successful in designing a generic multi class

classifier able to recognize digits and hand gestures.
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6.2 Future Work:

Since the scope of human computer interaction is very wide. we will extend our interface
to control more daily used applications such as Windows Explorer, web browsers, start
and shut down the PC using different techniques like dynamic hand gesture
recognition, voice command recognition, facial cxpression and handwriting

recognition.

We will implement our interface on a robotic platform to enable it to perform advanced
cognition functionalities like vision, hearing, reading, understanding human mood and act
accordingly. For example if a human near the robot is depressed, it will play a soothing

music.

We will use the neural network in other domains such as tinance, medical diagnostics to

perform advanced prediction tasks such as stock market forecast, cancer prediction.

30




REFERENCES

Simon Haykin, “Neural Networks, A comprehensive Foundation™ 2d ed., Prentice
Hall

Duane Hanselman, Bruce Littlefield, “Mastering MATLAB, A comprehensive
tutorial and reference” 1% ed., Prentice Hall

Christopher M. Bishop, “Neural networks for Pattern Recognition” Oxford, 1995.
Maria Petrou, Panagiota Bosdogianni, “Image Processing, The Fundamentals” 1
ed., Wiley

N. Sivanandam, S. N Deepa, “Introduction To Neural Networks using Matlab
6.0” 1* ed., Tata McGraw-Hill Education.

Klimis Symeonidis, “Hand Gesture Recognition Using Neural Networks”

6
7. http://www kaggle.com/digit
8.
9

http://www.coursera.com/digit

http://www.tk.uni-linz.ac.at/~schaber/ogr.html

10. http://vismod.www.media.mit.edu/vismod/classes/mas622/projects/hands/

31




APPENDIX A

Digit Recognition Code:

clear ;
close all;

cle;
input_layer size = 400;
hidden layer size =25;

out_layer_size = 10;

load('data. mat’);

m = size(X, 1);

Thetal = randInitializeWeights(input layer size, hidden_layer size),

Theta2 = randlnitializeWeights(hidden_layer _size, out_layer size);

nn_params = [Thetal(:) ; Theta2(:)];

%% Weight regularization parameter |

lambda = I;

J =nnCostFunction{nn_params, input_layer_size, hidden_layer size,out layer size, X,

y, lambda):

options = optimset('Maxlter', 100);

lambda=1;

1
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costFunction = @(p)

nnCostFunction(p,input_layer size,hidden_layer_size,out_layer size X, y, lambda);

[nn_params, cost] = fmincg(costFunction, nn_params, options);

Thetal = reshape(nn_params(1:hidden layer size * (input_layer size + 1)),

hidden laver size, (input_layer size + 1)),

Theta2 = reshape(nn_params((1 + (hidden_layer size * (input_layer size +

DY:end),out_layer size, (hidden layer_size + 1));

pred = predict(Thetal, Theta2, X);

fprintf("\nTraining Set Accuracy: %f\n', mean(double{pred == y)) * 100);

e

T

load{'testS.mat');

-
¥ IT

~

imshow(test5);
test_double=im2double(test5);
test_gray=rgb2gray(test_double);
test=mat2vec(test_gray');

predl= predict(Thetal, Theta2,test);
display("The predicted output is :);

display(pred1); -

I1




Functions used:

nn_costfunction( )
function [J grad] =
nnCostFunction{nn_params,input layer_size,hidden_layer_size.output layer sizeX,y,
lambda)

Thetal = reshape(nn_params(1:hidden_layer size * (input_layer size +
)),hidden_tayer size, (input_layer_size + 1));

Theta2 = reshape(nn_params((l + (hidden_layer_size * (input_layer_size +

D):end),output layer size, (hidden_layer_size + 1)),

m = size{X, 1);

I=0;

Thetal grad = zeros(size(Thetal));
Theta2_grad = zeros(size(Theta2});

r

al=X";
al=[ones(1,size(al,2)); al];
z2=Thetal *al;

N

a2=sigmoid(z2);
a2=[ones(1,size(a2,2)); a2];
z3=Theta2*a2;
a3=sigmoid(z3);

h=a3";

Y = repmat(y,1,10)==repmat{[1:10],5000,1);

for i=I:m
for k=l:output_layer_size
J=IH-Y (k) *logh(i,k))-(1-Y (1K) *log(1-h(1,k));
end

end
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J=Jm;

DELTA 1=zeros(hidden_layer size,(input_layer_size +1));
DELTAZ=zeros(output_layer size,(hidden_layer_size +1));

delta3=h-Y;
delta2=[(Theta2'*delta3").*(a2.*(1-a2))]:
delta2=delta2(2:end,:);

DELTA1=DELTA l+(delta2*al");
DELTA2=DELTA2+(delta3'*a2";

Thetal grad=(1/m).*DELTAL;
Theta2 grad=(1/m).*DELTAZ2,

grad = [Thetal grad(:) ; Theta2 grad(:)]:

L
T

for j=1:hidden_layer size
for k=1:input_layer size
J=I+((lambda/(2*¥m)).*Thetal(j,k)"2);
end

end

for j=1:10
for k=1:hidden_layer_size
J=J+((lambda/(2¥m}).* Theta2(j,k)"2);
end
end

end
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APPENDIX B

Gesture Recognition code:

cle;
clear all;
cont="Y",
while cont=="Y"||cont="y"
fprintfMENU: \nl1.TRAINING THE NEURAL NETWORK FOR GESTURE
RECOGNITION \n2. TESTING THE NEURAL NETWORK \n3.CONTROLLING THE
MEDIA PLAYER WITH GESTURE RECOGNITION\";
choice=input('Enter your choice\n');
if choice==1
training_nn;
else if choice==
testing_nn;

else if choice==3

control_media_player;
else
fprintf('Enter a valid choice.\n");
end
end
end

cont=input('Do you want to continue (Y/N) \n''s');

end

break;




Functions used:
1) training_ nn()
cle;

clear all;
store_traindata;
featureiextraction;

load{'t.mat');
m = size(X,1);
input_layer_size =size(X,2) ;

hidden layer size = 5000;

out_layer_size =5;

Thetal = randInitializeWeights(input_layer size, hidden_layer size);

Theta2 = randlnitializeWeights(hidden_layer size, out_layer size);

nn_params = [Thetal(:) ; Theta2(:}];

% regu. parameter 1
lambda = 1;

J = nnCostFunction{(nn_params, input_layer size, hidden_layer size,out layer size, X,

y, lambda);
options = optimset('MaxIter', 82);
lambda = 1;

costFunction = @(p)

nnCostFunction(p,input_layer_size,hidden_layer size,out layer size.X, y, lambda);
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[nn_params, cost] = fmincg(costFunction,nn_params, options);

Thetal = reshape(nn_params(1:hidden layer size * (input_layer size + 1)),

hidden_layer size, (input_layer size + 1));

Theta2 = reshape(nn_params((1 + (hidden_layer size * (input_layer size +

1)):end),out_layer size, (hidden_layer size + 1));

pred = predict(Thetal, Theta2, X);
save ('nnsystem.mat','Thetal’,'Theta2');

printf("\nTraining Set Accuracy: %f\n', mean(double(pred == y)) *100);

2) testing_nn( )

cle:

store_testdata;

feature extraction;

load('t.mat');% loads X,y

load('nnsystem.mat');%loads Thetal.Theta2

pred = predict(Thetal, Theta2, X),

fprintf("\nTesting Set Accuracy: %f\n', mean(double(pred == y)) * 100);

Controlling media player functions Code:

aley
clear all;
cont="y";
while cont=="y'||cont=="Y"
[printf(MEDIA PLAYER OPTIONS \nl.PLAY \n2.PAUSE \n3.NEXT
\n4.PREVIOUS \n5.STOP\n");
count=1;

c=input('Enter the test example you what to use :A,B,C,D or E:\n\,'s');
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" myFolder=strcat('C:\Users\Aman\Desktop\project\gesture recognition\music\test',c);
filePattern = fullfile(myFolder, '* .png");
JpegFiles = dir(filePattern);

for k = 1:length(jpegFiles)

baseFileName = jpegFiles(k).name;

fullFileName = fullfile(myFolder, baseFileName);
imageArray = rgb2gray(imread(fullFileName));
imageArray = imresize(imageArray,| 150,140]);
imshow(imageArray),

T{count}=imageArray,

count=count+1;

end

y=0; \

save('data.mat’,'T",'y");

feature extraction;

load('t.mat");% loads X,y
load('nnsystem.mat');%loads Thetal, Theta2
pred = predict(Thetal, Theta2, X);

if pred==
control = actxcontrol("WMPlayer.ocx.7"); % Create Controller
plylst= control.newMedia("C:\Users\Aman\Desktop\project\gesture
recognition\music\plylst.wpl’); % Create Media object
control.currentMedia = plylst;

control.Controls.play;
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fprintf(strcat{"Y ou have selected gesture "',num2str(pred),". The current item on the
playlist is being played\n"));
else if pred==2
control.Controls.pause;
fprintf(strcat("You have sclected gesture ™,num2str(pred),. The current item on the

playlist has being paused\n”));

else if pred==3
control.Controls.next;

1H

fprintf(strcat("Y ou have selected gesture "',num2str{pred),"" . The next item on the

playlist is being played\n"));

else if pred==4
control.Controls.previous:
fprintf(strcat("You have selccted gesture ™, num?2str(pred),”. The previous item on the
playlist is being playedin')); \
else if pred==5
control.Controls.stop;

T

fprintf(strcat("You have selected gesture ",num2str(pred),”" . The current item on the
playlist has being stopped\n’)):

else

fprintf('Please enter a valid option.\n")

end

end

end

end

end

cont=input('Do you what to continue (Y/N)\n','s');
end

break;
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Feature extraction code:

cle

%clear all;

load('data.mat"); %variable train is loaded in its workspace

filtx = [0 -1 1];
filty = [0 1 -1]';

for i=1:length(T)
dx{i} = convn(T {i},filtx,'same"};

dy{i} = convn{T {i},filty,'same");

gradient{i} = dy{i} /dx{i};
theta{i} = atan(gradient{i});

cl{i}= im2col(theta{i},[1 1],'distinct’); p
N{it = (cl{i}*180)/(22/7);

cH{ip=(N{i}>0)&(N{i}<10);
sl{i}=sum(cl{i});
c2{i}=(N{i}>10.0001)& (N {1} <20);
s2{i}=sum(c2{i});
c3{it=(N{i}>20.0001)&(N{i}<30);
sum{c3{i});

s3{i}=sum(c3{i});
cd{i}=(N{i}>30.0001)&(N{i}<40);
sum{c4{i});

s4{i}=sum(c4{i});
c5{i}=(N{i}>40.0001)&(N{i}<50);
sum(c3{i});




s5{i}=sum(c5{i}):
c6{i}=(N{i}>50.0001)&(N{i}<60);
sum(c6{i});

s6{i}=sum(c6{i}):
c7{i}=(N{i}>60.000)&(N{i}<70),
sum(c7{i});

s7{i}=sum(c7{i}):
c8{i}=(N{i}>70.0001)&(N{i}<80);
sum{c8{i}});

s8{i}=sum(c8{i});
c9{i}=(N{i}>80.0001)&IN{i}<90);
sum(c9{i});

s9{t}=sum(c9{i});

c104i}=(N{i}>90.0001)&N{i}<100);

sum{c10{i});
s10{i}=sum(cl{i});
cl1{i}=(N{i}>-89.9)&(N{i}<-80);
sum(el1{i});

sl1{iy=sum(c! 1{i});

c12§i}=(N{i}>-80.000 &N {i}<-70);

sum{c12{i});
s12{i}=sum(c12{i});

13 £} =(N{i}>-70.000 &N {i} <-60);

sum(c13{i});
s13{i}=sum(cl3{i});

c14{i}=(N{i}>-60.0001)&N{i} <-50);

sum{c14{i});
sl4{i}=sum{c14{i});

c15{i}=(N{i}>-50.0001)&(N{i} <-40);

sum(c15{i});
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s15{i}=sum(cl5{i});
c16{i}=(N{i}>-40.000 )& (N {i}<-30);
sum(cl6{i});

s16{i}=sum(c16{i});
c17{i}=(N{i}>-30.0001)&(N{i}<-20);
sum(c17{i});

s17{i}=sum(c17{i});
c18{i}=(N{i}>-20.0001)&(N{i}<-10);
sum(c18{i});

s18{i}=sum(c18{i});
c19{i}=(N{i}>-10.0001)&(N{i}<-0.0001);
sum(c19{i});

s19{i}=sum(c19{i});

D{i}=[s1{i} s2{i} s3{i} sd{i} s5{i} s6{i} s7{i} sB{i} s9{1} s10{i} sli{i} s12{i} s13{i}

sld{i} s15{i} s16{i} s17{i} s18{i} s19{i}]: '
X(i,))=D{i};

end;

save('t.mat','X",'y");
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