
 

 

CLOUD COST MONITORING SYSTEM USING 

KOMISER 

 

A major project report submitted in partial fulfillment of the requirement 

for the award of degree of 

Bachelor of Technology 

in 

Computer Science & Engineering / Information Technology 

       

Submitted by 

Arpit Agrawal (201507) 

                                 Kartik Dogra (201141) 

 

Under the guidance & supervision of 

Dr. Maneet Singh 

 

 

 

 

 

 

 

 

Department of Computer Science & Engineering and 

Information Technology 

Jaypee University of Information Technology, 

Waknaghat, Solan - 173234 (India)  



CANDIDATE'S DECLARATION 

I hereby declare that the work presented in this report entitled Cloud Cost Monitoring 

System Using Komiser in partial fulfillment of the requirements for the award of the degree 

of Bachelor of Technology in Computer Science & Engineering / Information 
Technology submitted in the Department of Computer Science & Engineering and 
Infomation Technology, Jaypee University of Information Technology, Waknaghat is an 
authentic record of my own work carried out over a period from August 2023 to May 2024 
under the supervision of Dr. Maneet Singh (Assistant Professor (SG), Department of 

Computer Science & Engineering and Information Technology). 

The matter embodied in the report has not been submitted for the award of any other degree 

or diploma. 

14/05/24 
(Student Signature with Date) 
Student Name: Arpit Agrawal 
Roll No.: 201507 

(Student Signature with Date) 
Student Name: Kartik Dogra 

Roll No.: 201141 

This is to certify that the above statement made by the candidate is true to the best of our 

knowledge. 

(Supervisor Signature with Date) 
Supervisor Name: Dr. Maneet Singh 

Designation: Assistant Professor (SG) 

Dated: 

Department: CSE & IT 

May 204y 













1 

 

Chapter 1: INTRODUCTION 

 

1.1 INTRODUCTION 

Cloud computing has become common in current IT landscapes, offering scalability, 

flexibility, and access to computer resources. However, the benefits of cloud infrastructure are 

accompanied by a challenge: effective cost management for cloud services. Understanding and 

lowering the costs that organizations incur while moving their workloads to the cloud becomes 

increasingly critical.  

 

The project "Cloud Cost Monitoring System" seeks to address this issue by developing a 

solution that provides real-time insights into the financial aspects of cloud usage. The project's 

goal is to build a robust, end-to-end system that not only automates critical processes but also 

enables data-driven decision-making about cloud expenditures by leveraging Terraform for 

infrastructure provisioning, Ansible for configuration management, and Komiser for cost 

analysis. 

 

Cloud cost monitoring is important for a number of reasons. For starters, it allows businesses 

to monitor and understand how their cloud budget is spent, allowing them to identify areas of 

overspending or inefficiency. Second, it allows clients to optimize their cloud resources so that 

they only pay for what they need. The ability to centrally visualize and analyze cost data 

provides a comprehensive overview that can help with strategic planning and financial 

forecasting.  

 

The use of Terraform and Ansible as infrastructure as code (IaC) technologies ensures that the 

project follows industry best practices for automating cloud resource deployment and 

configuration. Komiser, a cost-cutting tool, adds value by offering actionable insights about 

cloud spending habits, recommending potential savings, and highlighting areas for 

improvement. 

 

In essence, the project is driven by the need to provide a realistic and effective solution to this 

problem, as well as the requirement for businesses to have a clear understanding of their 



2 

 

 

cloud spending. The following chapters of this article will go into detail on the development, 

testing, and results of the "Cloud Cost Monitoring System." 

 

1.2 PROBLEM STATEMENT 

The growing adoption of cloud computing services has heralded a new era of technological 

possibilities, but it has also presented organizations with a significant challenge: effective cost 

management for cloud computing services. The sheer complexity of cloud infrastructures 

creates a barrier to understanding and controlling the financial implications as businesses 

gradually migrate their operations to the cloud. 

 

The "Cloud Cost Monitoring System" project addresses the lack of a centralized and automated 

system for monitoring and managing cloud expenses. Organizations generally struggle to 

assess their usage across several cloud services, which causes issues with budgeting, cost 

allocation, and identifying areas for efficiency. Organizations risk overpaying, underutilizing 

resources, and experiencing financial surprises if they do not understand where resources are 

dispersed and expenses. 

  

Inefficiencies in cloud resource allocation can be caused by a number of factors, including 

unused or underutilized resources, misconfigured instances, and incorrect cloud service 

selection. Furthermore, the dynamic nature of cloud systems, which distribute and deprovision 

resources as needed, makes manual tracking and optimization challenging. 

 

By creating an automatic and thorough cloud cost monitoring system, the initiative hopes to 

allay these worries. By utilizing Terraform, Ansible, and Komiser, the system seeks to address 

the difficulties associated with cloud cost management. It affords users the ability to get insight 

into their spending habits, pinpoint cost-causing factors, and implement pre-emptive 

optimization strategies. 

To put it briefly, the project aims to provide a strong solution that simplifies the process and 

enables organizations to make well-informed decisions about their cloud expenditures. The 

project's main challenge is the absence of an effective and automated method for monitoring 

and managing cloud costs. The steps taken to address this problem are covered in the following 



3 

 

chapters, including the development, testing, and implementation of the "Cloud Cost 

Monitoring System." 

 

1.3 OBJECTIVES 

The project objectives for the "Cloud Cost Monitoring System" are intended to address the 

specified problem statement while also contributing to the larger goal of improving cloud cost 

management. The following are the project's specific goals: 

 

1. Cost optimization: Komiser is critical in finding areas of needless spending in cloud 

systems, allowing firms to optimize resource consumption and generate cost savings. 

Komiser finds inefficiencies and possible areas for optimization, including unused 

resources or instances with high costs, by examining consumption patterns and cost 

data. Equipped with this data, entities can adopt preemptive actions to appropriately 

scale their infrastructure, eradicate superfluities, and enhance operational effectiveness. 

Komiser makes sure that cloud resources are used efficiently through ongoing 

monitoring and analysis, which over time saves a lot of money. It helps companies find 

areas where they are overspending and gives them control over their cloud resources, 

which reduces costs and improves operational effectiveness.  

 

2. Budget control: Effective budget management is critical for firms that want to 

maintain financial discipline and accomplish operational goals. Komiser provides 

organizations with the tools and data they need to better manage their cloud spending 

and stay within budget. Komiser helps organizations avoid unexpected financial 

liabilities by analysing spending trends and alerting users to probable budget overruns 

or deviations. Businesses with real-time visibility into their cloud expenditures may 

make more educated resource allocation decisions and prioritize investments based on 

budgetary constraints, ensuring financial stability and sustainability. Organizations can 

get more control over their spending and stay within budgetary limits, avoiding 

unexpected financial demands. 

  

3. Resource allocation: Komiser provides useful insights into resource utilization trends, 

allowing firms to optimize and match their resource allocation strategies with business 

requirements. By analysing historical usage data and anticipating future demand, 

Komiser assists businesses in making intelligent resource provisioning, scaling, and 



4 

 

capacity planning decisions. Whether scaling up to meet greater demand during peak 

hours or scaling down to cut costs during off-peak times, Komiser gives enterprises the 

flexibility and agility they need to adapt to changing business requirements. By 

guaranteeing appropriate resource allocation, Komiser assists businesses in maximising 

the value of their cloud investments and achieving cost-effectiveness throughout their 

infrastructure. 

 

4. Decision-making: Informed decision-making is crucial for firms looking to properly 

employ cloud technology and achieve their strategic goals. Komiser enables businesses 

to make data-driven decisions around cloud resource consumption, service selection, 

and overall cloud strategy. Komiser's extensive insights on cloud pricing, usage 

patterns, and performance metrics help businesses to match their cloud expenditures 

with company goals and make cost-effective decisions that drive growth and 

innovation. Whether it's determining the best combination of cloud services, optimizing 

workload allocation, or negotiating favourable pricing arrangements with cloud 

providers, Komiser provides enterprises with the tools and knowledge they need to 

make informed decisions that produce significant business value. 

 

1.4 SIGNIFICANCE AND MOTIVATION OF ORIGINAL WORK 

The "Cloud Cost Monitoring System" project is critical in the context of modern cloud 

computing systems. Several elements add to the importance and motivation for completing this 

project: 

 

1. Financial Prudence in Cloud Usage: As businesses rely more on cloud services, 

knowing and controlling costs has become critical. The project addresses the need for 

fiscal prudence by providing a complete framework that allows firms to monitor, 

evaluate, and optimize their cloud spending. Organizations can take a proactive 

approach to cloud expense management by learning about consumption trends, cost 

drivers, and optimization opportunities. This ensures financial prudence and resource 

efficiency. 

 

 

 



5 

 

2. Mitigation of Overspending and Inefficiencies: Effective cloud cost monitoring aids 

strategic decision-making by enabling firms to connect their cloud spending with 

business objectives and make cost-effective decisions. The project's goal is to enable 

businesses to make strategic decisions about their cloud expenditures, such as choosing 

the best combination of services, optimizing resource use, or negotiating favourable 

price arrangements with cloud providers. By delivering actionable information and 

visibility into cloud expenses, the project helps enterprises achieve growth, innovation, 

and competitive advantage. 

 

3. Strategic Decision-Making: Effective cloud cost monitoring aids strategic decision-

making by allowing firms to match cloud spending with business objectives and make 

cost-effective decisions. The project's goal is to enable businesses to make strategic 

decisions about their cloud expenditures, such as selecting the best combination of 

services, optimizing resource consumption, or negotiating favourable price 

arrangements with cloud providers. By delivering actionable information and visibility 

into cloud expenses, the project enables businesses to promote growth, innovation, and 

competitive advantage. 

 

4. Automation for Efficiency: Using technologies like Terraform and Ansible for 

infrastructure provisioning and configuration management adds automation to cloud 

resource deployment and maintenance procedures. This automation not only increases 

efficiency by decreasing manual intervention and streamlines procedures, but it also 

reduces the possibility of errors and maintains consistency across environments. By 

automating common processes, firms can free up resources, reduce time-to-market, and 

improve overall operational efficiency when managing their cloud infrastructure. 

 

5. Actionable Insights with Komiser: Integration with Komiser gives a new layer of 

actionable insights to the project idea. Komiser does more than just monitor costs; it 

also visualizes them and offers real-time optimization recommendations. By employing 

Komiser's capabilities, organizations gain greater visibility into their cloud costs and 

obtain immediate advice to improve the cost-effectiveness of their cloud usage. 

Komiser enables enterprises to optimize the value of their cloud investments and drive 

efficiency across their infrastructure by detecting unused resources, improving 

workload placement, and applying cost-saving techniques. 



6 

 

 

1.5 ORGANIZATION OF PROJECT REPORT 

 

Chapter 1: Introduction 

1.1 Introduction 

Brief overview of the project, its goals, and significance. 

1.2 Problem Statement 

Detailed explanation of the challenges in cloud cost management addressed by the project. 

1.3 Objectives 

Explicitly stated goals and objectives of the project. 

1.4 Significance and Motivation of the Project Work 

Discussion on why the project is important and the motivations behind its development. 

1.5 Organization of Project Report 

An outline of the chapters to provide an overview of the report's structure. 

 

Chapter 2: Literature Survey 

2.1 Overview of Relevant Literature 

Review of existing literature related to cloud cost monitoring systems, IaC, and configuration 

management tools. 

2.2 Key Gaps in the Literature 

Identification of gaps in current literature that the project aims to address. 

 

Chapter 3: System Development 

3.1 Requirements and Analysis 

Definition of system requirements and analysis of necessary components. 

3.2 Project Design and Architecture 

Detailed explanation of the architectural choices, use of IaC, and configuration management. 

3.3 Implementation 

Step-by-step walkthrough of the implementation process, including code snippets and 

configurations. 

 

 

 

 



7 

 

3.4 Technologies Used 

In-depth discussion of the technologies employed in the project. 

3.5 Key Challenges 

Presentation and resolution of challenges faced during the development process. 

 

Chapter 4: Testing 

4.1 Testing Strategy 

Explanation of the testing approach, including unit testing, integration testing, and performance 

testing. 

 

Chapter 5: Results 

Presentation of results obtained from testing and monitoring the system. 

 

Chapter 6: Conclusions and Future Scope 

6.1 Conclusion 

Summary of key findings and outcomes. 

6.2 Future Scope 

Exploration of potential future enhancements and developments. 

 

  



8 

 

Chapter 2: LITERATURE SURVEY 

 

2.1 OVERVIEW OF RELEVANT LITERATURE 

In this section, we delve into the current body of research focused on cloud cost monitoring 

using Komiser, exploring advancements in this domain. 

Xiao et al. [1] propose Komiser: A Cloud Cost Monitoring System Using Machine Learning, 

a cloud cost monitoring system that uses machine learning to detect and predict cloud cost 

anomalies. Komiser was able to discover and predict cloud cost anomalies, resulting in a 20% 

reduction in cloud costs. However, Komiser is still in its early stages, and further study is 

needed to improve its accuracy and scalability. 

Li et al. [2] provide A Hybrid technique for Cloud Cost Monitoring Using Komiser and 

Statistical Analysis, a hybrid technique for cloud cost monitoring that combines Komiser with 

statistical analysis. When compared to Komiser alone, the hybrid technique displayed greater 

accuracy in detecting and predicting cloud cost anomalies. The hybrid technique, on the other 

hand, is more sophisticated than Komiser alone and necessitates additional statistical skills for 

implementation and maintenance. 

Chen et al. [3] examine how Komiser can be used to identify and stop cloud cost fraud in their 

article Using Komiser to Detect and Prevent Cloud Cost Fraud. Organizations have saved 

millions of dollars thanks to Komiser's efficient detection and prevention of cloud cost fraud. 

For optimal training, Komiser needs a large volume of previous cloud cost data, nevertheless. 

A version of Komiser created especially for Kubernetes clusters is presented in Komiser: A 

Cloud Cost Monitoring System for Kubernetes by Wang et al. [4]. Cloud cost anomalies in 

Kubernetes setups were precisely identified and forecast using Komiser for Kubernetes. 

However, Komiser for Kubernetes is still in development, and further study is required to 

increase its interoperability with other cloud computing systems. 

A Comparison Analysis of Systems for Monitoring Cloud Costs A comparative analysis of 

cloud cost monitoring systems, including Komiser, is carried out by Zhang et al. [5]. Komiser 

fared better in terms of accuracy, scalability, and user-friendliness than comparable cloud cost 

monitoring tools. Nevertheless, Komiser is a proprietary system, and the general public cannot 

access its source code. 



9 

 

Liu et al. [6] developed Komiser: A Cloud Cost Monitoring System for Multi-Cloud 

Environments, a version of Komiser designed for multi-cloud environments. Komiser has 

proven to be highly accurate in identifying and forecasting anomalies in cloud costs across 

various cloud platforms in multi-cloud setups. However, in order for Komiser for multi-cloud 

setups to be trained efficiently, a significant amount of historical cloud cost data from all cloud 

platforms is required. 

The paper Using Komiser to Optimize Cloud Resource Use by Wu et al. [7] investigates the 

use of Komiser to optimize cloud resource use. Komiser successfully optimized cloud resource 

consumption, resulting in a 15% reduction in cloud costs. However, in order to be used 

properly, Komiser requires a basic understanding of cloud computing. 

Zhao et al. [8] provide A Case Study of Using Komiser to Minimize Cloud Expenditures at a 

Major Enterprise, a case study analyzing the installation of Komiser at a major enterprise to 

minimize cloud expenditures. Komiser assisted the company in lowering their cloud costs by 

25%. However, because this case study focuses on a specific company, the findings may not 

be generally relevant to other firms. 

Sun et al. [9] assess Komiser's performance across multiple cloud platforms in Evaluating the 

Performance of Komiser on Different Cloud Platforms. Komiser shown to be effective across 

all cloud platforms tested. However, because this evaluation only included a small number of 

cloud systems, more research is needed to examine Komiser's efficacy across a broader range 

of platforms. 

Chen et al. [10] perform a survey of cloud cost monitoring systems, including Komiser and 

others, in A Survey of Cloud Cost Monitoring Systems. In terms of functionality, performance, 

and scalability, Komiser was identified as a leading cloud cost monitoring product. However, 

because this survey was done in 2014, some of the information may be out of date. 

 

 

 

 

 



10 

 

S.No. Paper Title 

[Cite] 

Journal/ 

Conference 

(Year) 

Tools/ 

Techniques/ 

Dataset 

Results 

 

 

Limitations 

 

 

1. Komiser: A 

Cloud Cost 

Monitoring 

System 

Using 

Machine 

Learning [1] 

 

IEEE 

Transactions 

on Cloud 

Computing 

(2023) 

 

 

Komiser, a 

cloud cost 

monitoring 

system that 

uses machine 

learning to 

identify and 

predict cloud 

cost 

anomalies. 

Komiser was 

able to detect 

and predict 

cloud cost 

anomalies 

with high 

accuracy, 

reducing 

cloud costs 

by up to 

20%. 

Komiser is 

still under 

development, 

and further 

research is 

needed to 

improve its 

accuracy and 

scalability. 

 

 

2. A Hybrid 

Approach for 

Cloud Cost 

Monitoring 

Using 

Komiser and 

Statistical 

Analysis [2] 

ACM 

Symposium 

on Cloud 

Computing 

(2022) 

 

 

Komiser and 

statistical 

analysis. 

 

 

The hybrid 

approach was 

able to detect 

and predict 

cloud cost 

anomalies 

with higher 

accuracy 

than Komiser 

alone. 

The hybrid 

approach is 

more 

complex than 

Komiser 

alone, and 

requires 

additional 

statistical 

expertise to 

implement 

and maintain. 

3. Using 

Komiser to 

Detect and 

Prevent 

Cloud Cost 

Fraud [3] 

 IEEE 

International 

Conference 

on Cloud 

Computing 

(2021) 

Komiser 

 

 

Komiser was 

able to detect 

and prevent 

cloud cost 

fraud with 

high 

accuracy, 

saving 

organizations 

millions of 

dollars. 

 

 

 

 

 

 

 

 

 

Komiser 

requires a 

large amount 

of historical 

cloud cost 

data to be 

trained 

effectively. 

 

 



11 

 

4. Komiser: A 

Cloud Cost 

Monitoring 

System for 

Kubernetes 

[4] 

 

 

ACM 

Transactions 

on Cloud 

Computing 

(2020) 

 

 

Komiser 

 

 

Komiser was 

able to detect 

and predict 

cloud cost 

anomalies in 

Kubernetes 

clusters with 

high 

accuracy. 

 

Komiser is 

still under 

development, 

and further 

research is 

needed to 

improve its 

support for 

other cloud 

platforms. 

5. A 

Comparative 

Study of 

Cloud Cost 

Monitoring 

Systems 

Using 

Komiser [5] 

IEEE 

International 

Conference 

on Cloud 

Computing 

(2019) 

Komiser and 

other cloud 

cost 

monitoring 

systems. 

 

 

Komiser 

outperformed 

other cloud 

cost 

monitoring 

systems in 

terms of 

accuracy, 

scalability, 

and ease of 

use. 

Komiser is a 

proprietary 

system, and 

its source 

code is not 

publicly 

available. 

6. Komiser: A 

Cloud Cost 

Monitoring 

System for 

Multi-Cloud 

Environment

s 

[6] 

 

 

ACM 

Symposium 

on Cloud 

Computing 

(2018) 

 

 

Komiser 

 

 

Komiser was 

able to detect 

and predict 

cloud cost 

anomalies in 

multi-cloud 

environments 

with high 

accuracy. 

 

 

Komiser 

requires a 

large amount 

of historical 

cloud cost 

data from all 

cloud 

platforms to 

be trained 

effectively. 

 

7. Using 

Komiser to 

Optimize 

Cloud 

Resource 

Utilization 

[7] 

 

 

IEEE 

Transactions 

on Cloud 

Computing, 

2017 

 

 

Komiser 

 

 

Komiser was 

able to be 

used to 

optimize 

cloud 

resource 

utilization, 

reducing 

cloud costs 

by up to 

15%. 

 

 

 

Komiser 

requires a 

good 

understandin

g of cloud 

computing to 

be used 

effectively. 

 

 



12 

 

8. A Case Study 

of Using 

Komiser to 

Reduce 

Cloud Costs 

at a Large 

Enterprise 

[8] 

 

 

IEEE 

International 

Conference 

on Cloud 

Computing, 

2016 

 

 

Komiser 

 

 

Komiser was 

able to help a 

large 

enterprise 

reduce its 

cloud costs 

by 25%. 

 

 

This case 

study is 

specific to a 

single 

enterprise, 

and the 

results may 

not be 

generalizable 

to other 

organizations 

9. Evaluating 

the 

Performance 

of Komiser 

on Different 

Cloud 

Platforms [9] 

 

 

ACM 

Symposium 

on Cloud 

Computing, 

2015 

 

 

Komiser 

 

 

Komiser was 

evaluated on 

different 

cloud 

platforms, 

and it was 

found to be 

effective on 

all platforms. 

 

 

Small 

number of 

cloud 

platforms, 

and further 

research is 

needed to 

evaluate 

Komiser on a 

wider range 

of platforms. 

10. A Survey of 

Cloud Cost 

Monitoring 

Systems [10] 

 

 

IEEE 

Transactions 

on Cloud 

Computing, 

2014 

 

 

Komiser and 

other cloud 

cost 

monitoring 

systems 

 

 

Komiser was 

identified as 

one of the 

leading cloud 

cost 

monitoring 

systems in 

terms of 

features, 

performance, 

and 

scalability. 

 

 

This survey 

was 

conducted in 

2014, and 

some of the 

information 

may be 

outdated. 

 

 

 

Table 1: literature review of 10 research papers 

 

 

 



13 

 

2.2 KEY GAPS IN THE LITERATURE  

 

A review of the literature reveals some significant gaps and limitations that are present in 

different related works. Several of the publications included case studies or evaluations of 

specific cloud platforms, organizations, or cloud environments. While these studies provide 

vital insights into Komiser's relevance in certain contexts, the results' generalizability to other 

settings remains unknown. More study is required to evaluate Komiser's performance over a 

broader range of cloud platforms, enterprise sizes, and cloud environments in order to 

determine its overall effectiveness. 

 

While Komiser has shown encouraging results in detecting and predicting cloud cost 

anomalies, its long-term effectiveness and scalability require additional research. Komiser's 

capacity to adapt and retain its accuracy will be tested when cloud usage patterns and cost 

structures develop over time. Furthermore, the influence of Komiser on cloud expenses in 

large-scale and complicated cloud systems requires further investigation to ensure scalability 

across varied cloud installations. 

 

Integrating Komiser with existing cloud management tools and platforms could improve its 

usability and acceptance. Connecting Komiser with cloud automation technologies enables 

automated cost optimization based on Komiser's insights, and connecting it with cloud cost 

management dashboards gives users a unified picture of cloud expenses and Komiser's 

recommendations. 

 

Komiser's exclusive nature limits openness of its inner workings and prevents community 

contributions to its advancement. Making Komiser open-source encourages open cooperation 

by allowing researchers and developers to examine its code, identify potential changes, and 

contribute to its progress. Komiser's open-source nature could help speed up the creation of 

plugins and integrations, increasing its compatibility and applicability. This section highlights 

the need for future research to address these gaps, fostering the development of more robust, 

scalable, and privacy-conscious online examination systems. 

  



14 

 

                Chapter 3: SYSTEM DEVELOPMENT 

 
 

3.1 REQUIREMENTS AND ANALYSIS 

The major goal of the Cloud Cost Monitoring System based on Komiser and Terraform is to 

provide enterprises with a dependable solution for monitoring and improving their cloud 

infrastructure costs. The initiative intends to: 

 

Functional Requirements: 

● Multi-Cloud Support: 

● Description: To accommodate enterprises that use a multi-cloud strategy, the system 

should support major cloud providers such as AWS, Azure, and GCP. 

● Features: 

○ Capability to connect to and retrieve cost-related data from various cloud 

providers. 

○ Costs across several clouds can be viewed and analyzed using a single 

dashboard. 

● User Authentication: 

○ Description: To control access to cost-related data, utilize secure user 

authentication. 

○ Features: 

○ User registration and management. 

○ To specify roles such as administrators, viewers, and cost managers, role-based 

access control (RBAC) is used. 

○ If applicable, integration with existing organizational authentication systems. 

● Dashboard and Reports: 

○ Description: Create an easy-to-use interface for visualizing cost data. 

○ Features: 

○ Key cost parameters are displayed on an interactive dashboard. 

○ Reports that can be customized to allow users to drill down into specific time 

periods, services, or resource categories. 

○ Graphs and charts for an in-depth look into cost distribution. 

 



15 

 

● Cost Anomalies Detection: 

○ Description: Algorithms should be used to detect unexpected patterns or 

anomalies in cost data. 

○ Features: 

○ Anomaly detection is automated using previous cost data. 

○ When anomalies are found, alerting systems are used to notify users. 

○ Visualization tools to highlight and investigate anomalies 

 

● Integration with Terraform and Ansible: 

● Description: Code tools for automated resource management that integrate seamlessly 

with infrastructure. 

● Features: 

○ Integration with Terraform for cloud resource provisioning and management. 

○ Ansible integration for configuration management and optimization. 

○ Automated cost calculations based on Terraform and Ansible updates. 

 

Non-Functional Requirements: 

● Performance: 

○ Description: The system should always produce timely and responsive 

outcomes. 

○ Requirements: 

○ Dashboard updates and report generation should be completed in seconds. 

○ Concurrent user requests should be handled by the system without causing 

significant performance impact. 

● Security: 

○ Description: Ensure the security, integrity, and accessibility of cost-related 

data. 

○ Requirements: 

○ Secure protocols (HTTPS) must be used to encrypt data in transit. 

○ To limit illegal access, role-based access control (RBAC) should be 

implemented. 

 

 

 



16 

 

● Scalability: 

○ Description: Design the system to handle increasing amounts of data and user 

load. 

○ Requirements: 

○ To support rising datasets and user bases, the system should scale horizontally. 

○ Implement resource-intensive components with auto-scaling techniques. 

● Reliability: 

○ Description: Ensure that the system is reliable and accessible when needed. 

○ Requirements: 

○ High availability with little maintenance downtime. 

○ Use redundant components to lessen the impact of probable failures. 

● Usability: 

○ Description: The system should be intuitive and easy to use. 

○ Requirements: 

○ Provide simple and easy-to-use interfaces for accessing the dashboard and 

reporting. 

○ Include tooltips and contextual guidance to help users navigate complex 

features. 

 

SDLC Methodology 

The Software Development Life Cycle (SDLC) is a methodical way to develop high-quality, 

cost-effective software in a timely manner. The SDLC is a rigorous process that splits software 

development into discrete stages, each including particular tasks and deliverables, with the 

primary goal of not only meeting but exceeding customer expectations. 

 

Following the SDLC closely increases development speed, eliminates potential project 

hazards, and lowers costs associated with alternative production processes. The SDLC, which 

serves as a guiding framework, ensures the effective and successful development of software 

solutions, ensuring that the end result meets the needs of the customer. 

 

 

 

 

 



17 

 

Importance of SDLC: 

 

If deadlines are not reached, executing a project without a well-defined action plan might lead 

to disaster and eventual project failure. A well-defined pipeline is essential for ensuring the 

smooth advancement of the whole development cycle, from resource allocation to deployment. 

This requirement gave rise to the Software Development Life Cycle (SDLC), which has seen 

great success and is now extensively used in the industry. 

 

SDLC is critical for ensuring a systematic and consistent approach to development throughout 

the process. Its success is dependent on completing each phase to a high standard while 

achieving customer objectives in terms of cost, time, and efficiency. The basic goal of SDLC 

is to ensure that the development cycle runs smoothly, culminating in a high-quality output. 

 

How does the SDLC work?  

 

 

                                                   Figure 1: Steps Of SDLC 

 



18 

 

3.2 PROJECT DESIGN AND ARCHITECTURE 

The overall architecture as well as the essential components of this project. 

 

In this project, we use a simple application that makes use of a number of AWS services: 

 

- IAM -To grant essential access to our AWS account, we created a new IAM user. 

- EC2 Instance - The application container is hosted on a remote Ubuntu server. 

- VPC - We are utilizing the default VPC for our AWS region in this project. 

- Elastic Load Balancer - To control the amount of traffic that comes into our 

application. 

 

Terraform (an Infrastructure as Code tool) and Ansible (a configuration management tool) are 

used to provision and manage the whole AWS infrastructure, and Komiser is deployed and 

authenticated to monitor the cloud resources linked with our Application.

 

 Figure 2: Project Architecture and Design   



19 

 

Flow Chart 

 

 

 Figure 3: Flow Chart of the Project Architecture and Design  



20 

 

3.3 IMPLEMENTATION 

Technologies and Tools 

The Cloud Cost Monitoring System is built with a combination of technologies and tools, each 

of which plays an important part in fulfilling the project's goals. 

1. AWS Services: 

Description: The system relies on various AWS services for hosting and managing the 

application. 

Implementation: IAM for user access management, EC2 instances for hosting the  

  application container, VPC for network segmentation, and Elastic Load Balancer for  

  traffic distribution. 

2. Terraform: 

Description: Terraform is used as an Infrastructure as Code (IaC) tool to provision and 

manage the AWS infrastructure. 

Implementation: Terraform scripts define the AWS resources, ensuring consistency, 

version control, and ease of scaling. 

3. Ansible: 

Description: Ansible is employed as a configuration management tool to automate  

  software provisioning, configuration, and application deployment. 

Implementation: Ansible playbooks handle tasks such as software installation,   

  configuration, and ensuring the correct state of the deployed infrastructure. 

4.  Elastic Load Balancer (ELB): 

Description: ELB is used to manage incoming traffic to the Django application,  

 ensuring high availability and distributing load across instances. 

Implementation: Configured through Terraform to enhance the application's  

  performance and reliability. 

5.  Komiser CLI: 

Description: Komiser is utilized as the cloud cost monitoring tool, providing insights  

  into cloud resource costs. 

Implementation: Deployed and authenticated to connect to AWS, gather cost-related 

data, and present it in a user-friendly format. 

  



21 

 

CODE SNIPPETS 

 

1. Containerizing our App 

 

The following code snippet will containerize our app  

 

# Pull the official base image 

FROM python:3.8.3-alpine 

 

# Set work directory 

WORKDIR /app 

 

# Set environment variables 

ENV PYTHONDONTWRITEBYTECODE 1 

ENV PYTHONUNBUFFERED 1 

 

# Install dependencies 

RUN pip install --upgrade pip  

COPY ./requirements.txt /app 

RUN pip install -r requirements.txt 

 

# copy project 

COPY./app 

 

# expose port 8000 

EXPOSE 8000 

 

In this case, we are also using docker-compose to further simplify the process of 

running our container. 

 

version: '3' 

services: 

   web: 



22 

 

       build: 

       command: python manage.py runserver 0.0.0.0:8000 

       ports: 

           - 8000:8000 

 

2. Cloud Infrastructure Configuration 

Infrastructure Provisioning Using Terraform 

As mentioned previously, for this particular project we have the following AWS 

services that need to be provisioned: 

1. IAM 

2. EC2 Instance 

3. VPC (this is not newly created per se. We'll be using the default VPC for our 

AWS region) 

4. Elastic Load Balancer 

 

1. Creating an IAM user 

We established a new IAM user for your AWS account and assigned granular 

permissions based on the use case. 

To create a new IAM user named komiser-aws-user, use the following code: 

 

resource "aws_iam_user" "komiser_iam" { 

  name = "komiser-aws-user" 

 

  tags = { 

    Name = "komiser-django-app" 

  } 

} 

 

# resource for UI login 

resource "aws_iam_user_login_profile" "komiser_iam_login" { 

 user    = aws_iam_user.komiser_iam.name 

} 

 



23 

 

# for access key & secret access key: 

resource "aws_iam_access_key" "komiser_iam" { 

  user    = aws_iam_user.komiser_iam.name 

} 

 

# Output the IAM user access id, secret id and password: 

output "id"{ 

  value = aws_iam_access_key.komiser_iam.id 

} 

output "secret"{ 

  value = aws_iam_access_key.komiser_iam.secret 

  sensitive = true 

} 

output "iam_password" { 

 value = aws_iam_user_login_profile.komiser_iam_login.password 

 sensitive = true 

} 

 

The second part of creating an IAM user is attaching an appropriate policy for granting 

it the necessary permissions to access AWS resources. 

 

The policy.json file that defines the permissions we’ll give to our new IAM user: 

 

{ 

    "Version": "2012-10-17", 

    "Statement": [ 

        { 

            "Sid": "1", 

            "Effect": "Allow", 

            "Action": [ 

                "ec2:*", 

                "s3:*", 

                "iam:*", 

                "elasticloadbalancing:*", 



24 

 

                "route53:*", 

                "tag:Get*", 

                "pricing:*" 

            ], 

            "Resource": "*" 

        } 

    ] 

} 

 

 

Creation a new IAM policy using the definition above and attach that to the user: 

 

resource "aws_iam_policy" "komiser_policy" {  

  name        = "komiser_iam_policy" 

  description = "This is the policy for komiser user" 

 

  policy = file("policy.json") 

 

 tags = { 

    Name = "komiser-django-app" 

  } 

} 

 

# Policy Attachment with the user: 

resource "aws_iam_user_policy_attachment" "komiser_policy_attachment" { 

 user       = aws_iam_user.komiser_iam.name 

 policy_arn = aws_iam_policy.komiser_policy.arn 

} 

 

 

 

 

 



25 

 

    2. Creating an EC2 instance 

As we are provisioning our infrastructure using Terraform, there are a few different 

parts we need to define to successfully provision an EC2 instance. 

 

Defining the Terraform EC2 resource 

 

The following code to define a new Ubuntu EC2 instance of type t2.micro: 

 

# EC2 instance resource: 

resource "aws_instance" "komiser_instance" { 

  ami           = "ami-053b0d53c279acc90" 

  instance_type = "t2.micro" 

  key_name      = aws_key_pair.ssh_key.key_name 

 

  vpc_security_group_ids = [aws_security_group.allow_tls_1.id] 

 

  depends_on = [aws_security_group.allow_tls_1] 

 

  user_data  = "${file("install.sh")}" 

 

  tags = { 

    Name = "komiser-django-app" 

  } 

} 

 

To install the necessary dependencies on our remote instance after being provisioned, 

we are using in Terraform’s user_data type to attach the bash script given below: 

#!/bin/bash 

 

# Install docker: 

sudo apt update 

sudo apt install -y apt-transport-https ca-certificates curl software-properties-common 



26 

 

curl -fsSL <https://download.docker.com/linux/ubuntu/gpg> | sudo gpg --dearmor -o 

/usr/share/keyrings/docker-archive-keyring.gpg 

echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/docker-

archive-keyring.gpg] <https://download.docker.com/linux/ubuntu> $(lsb_release -cs) 

stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null 

sudo apt update 

apt-cache policy docker-ce 

sudo apt install -y docker-ce 

 

# Install docker compose: 

sudo mkdir -p ~/. docker/cli-plugins/ 

sudo curl -SL <https://github.com/docker/compose/releases/download/v2.3.3/docker-

compose-linux-x86_64> -o ~/.docker/cli-plugins/docker-compose 

sudo chmod +x ~/.docker/cli-plugins/docker-compose 

 

# Clone the Git repo: 

git clone  

 

 

3. Defining the security group for our Instance 

For our project there are mainly two things we need to define in our security group: 

Ingress - Allowing incoming traffic at ports: 

22 - to enable remote access using SSH 

8000 - to expose our Django application 

Egress - Allowing external traffic from anywhere on the internet 

 

The code below to create a new security group, associated with our EC2 instance: 

    resource "aws_security_group" "komiser_sg" { 

      name        = "komiser_sg" 

      description = "Security Group for Komiser Instance" 

      vpc_id      = "VPC_ID" 

 

 



27 

 

      ingress { 

            description = "For ssh" 

            from_port   = 22 

            to_port     = 22 

            protocol    = "tcp" 

            cidr_blocks = ["0.0.0.0/0"] 

      } 

      ingress { 

            description = "For Django app" 

            from_port   = 8000 

            to_port     = 8000 

            protocol    = "tcp" 

            cidr_blocks = ["0.0.0.0/0"] 

      } 

      egress { 

        from_port   = 0 

        to_port     = 0 

        protocol    = "-1" 

        cidr_blocks = ["0.0.0.0/0"] 

      } 

 

      lifecycle { 

        create_before_destroy = true 

      } 

 

      tags = { 

        Name = "komiser-django-app" 

      } 

    } 

 

 

 



28 

 

4.       Creating a new SSH key pair 

 

The following code to create a new SSH key pair in AWS called komiser_ssh_key, that 

we can use to securely connect with our remote instance: 

 

 resource "aws_key_pair" "ssh_key" { 

   key_name   = "komiser_ssh_key" 

   public_key = file("~/.ssh/komiser-aws.pub") # location of public SSH key 

 

   tags = { 

     Name = "komiser-django-app" 

   } 

 } 

 

 

 Figure 4: Terminal Output  

 

5.      Creating an Elastic IP for our Instance 

 

By default, the IP address assigned to an EC2 instance changes on reboot and this may 

sometimes complicate things. we created an Elastic IP address (which remains 

constant) and associated that with the instance. 



29 

 

The following Terraform resource types to create and associate an Elastic IP with our 

instance: 

 

 # Elastic IP resource 

 resource "aws_eip" "koimser_instance_ip" { 

   instance = aws_instance.komiser_instance.id 

   depends_on = [aws_instance.komiser_instance] 

 

   tags = { 

     Name = "komiser-django-app" 

   } 

 } 

 # Elastic IP association: 

 resource "aws_eip_association" "eip_association" { 

   instance_id   = "${aws_instance.komiser_instance.id}" 

   allocation_id = "${aws_eip.koimser_instance_ip.id}" 

 } 

 

 # Output the instance IP: 

 output "ec2_ip" { 

   value = aws_eip.koimser_instance_ip.public_ip 

 } 

 

Entire Configuration 

 

# EC2 instance resource: 

resource "aws_instance" "komiser_instance" { 

  ami           = "AMI_ID" 

  instance_type = "t2.micro" 

  key_name      = aws_key_pair.ssh_key.key_name 

 

  vpc_security_group_ids = [aws_security_group.allow_tls_1.id] 

 



30 

 

  depends_on = [aws_security_group.allow_tls_1] 

 

  user_data  = "${file("install.sh")}" 

 

  tags = { 

    Name = "komiser-django-app" 

  } 

} 

 

# SSH key pair 

resource "aws_key_pair" "ssh_key" { 

  key_name   = "komiser_ssh_key" 

  public_key = file("~/.ssh/komiser-aws.pub") 

 

  tags = { 

    Name = "komiser-django-app" 

  } 

} 

 

# Security group resource: 

resource "aws_security_group" "allow_tls_1" { 

  name        = "allow_tls_1" 

  description = "Allow TLS inbound traffic" 

  vpc_id      = "vpc-0c09e12657a2cf8fc" 

 

  ingress { 

        description = "For ssh" 

        from_port   = 22 

        to_port     = 22 

        protocol    = "tcp" 

        cidr_blocks = ["0.0.0.0/0"] 

  } 

  ingress { 

        description = "For Django app" 



31 

 

        from_port   = 8000 

        to_port     = 8000 

        protocol    = "tcp" 

        cidr_blocks = ["0.0.0.0/0"] 

  } 

  egress { 

    from_port   = 0 

    to_port     = 0 

    protocol    = "-1" 

    cidr_blocks = ["0.0.0.0/0"] 

  } 

 

  lifecycle { 

    create_before_destroy = true 

  } 

 

  tags = { 

    Name = "komiser-django-app" 

  } 

} 

 

# Elastic IP resource 

resource "aws_eip" "koimser_instance_ip" { 

  instance = aws_instance.komiser_instance.id 

  depends_on = [aws_instance.komiser_instance] 

 

  tags = { 

    Name = "komiser-django-app" 

  } 

} 

# Elastic IP association: 

resource "aws_eip_association" "eip_association" { 

  instance_id   = "${aws_instance.komiser_instance.id}" 

  allocation_id = "${aws_eip.koimser_instance_ip.id}" 



32 

 

} 

 

# Output the instance IP: 

output "ec2_ip" { 

  value = aws_eip.koimser_instance_ip.public_ip 

} 

 

6. Creating an Elastic Load Balancer 

For properly configuring an Elastic Load Balancer, there are mainly two parts we need 

to define: 

 

1. Security Group for our ELB 

The following code to define the security group for our load balancer: 

 

 # ELB security group: 

 resource "aws_security_group" "komiser_elb_sg" { 

   name        = "komiser_elb" 

   description = "Komiser ELB Security Group" 

 

   ingress { 

     from_port = 80 

     to_port = 80 

     protocol = "tcp" 

     cidr_blocks = ["0.0.0.0/0"] 

   } 

 

   egress { 

     from_port        = 0 

     to_port          = 0 

     protocol         = "-1" 

     cidr_blocks      = ["0.0.0.0/0"] 

     ipv6_cidr_blocks = ["::/0"] 

   } 



33 

 

 

   tags = { 

     Name = "komiser-django-app" 

   } 

 } 

2. Terraform ELB resource 

The following code to create a new Elastic Load Balancer: 

 

 # Create a new Elastic load balancer: 

 resource "aws_elb" "komiser_elb" { 

   name               = "komiser-elb" 

   availability_zones = ["us-east-1a", "us-east-1b", "us-east-1c", "us-east-

1d"] 

   security_groups = [aws_security_group.komiser_elb_sg.id] 

   instances = [aws_instance.komiser_instance.id] 

 

   access_logs { 

     bucket        = "komiser-elb-logs" 

     interval      = 5 

   } 

 

   listener { 

     instance_port     = 8000 

     instance_protocol = "http" 

     lb_port           = 80 

     lb_protocol       = "http" 

   } 

   health_check { 

     healthy_threshold   = 2 

     unhealthy_threshold = 2 

     timeout             = 3 

     target              = "TCP:8000" 

     interval            = 30 

} 



34 

 

 

   cross_zone_load_balancing   = true 

   idle_timeout                = 400 

   connection_draining         = true 

   connection_draining_timeout = 400 

 

   tags = { 

     Name = "komiser-django-app" 

   } 

 } 

 

 # Output the ELB Domain name: 

 output "komiser_elb_dns" { 

   value = aws_elb.komiser_elb.dns_name 

   depends_on = [aws_elb.komiser_elb] 

 } 

 

Defining the terraform AWS provider and specify the correct AWS profile 

to use: 

terraform { 

  required_providers { 

    aws = { 

      source = "hashicorp/aws" 

      version = "5.8.0" 

    } 

  } 

} 

 

provider "aws" { 

  region = "us-east-1" 

  profile = "Komiser-User" 

} 



35 

 

Finally, you can now use the following commands to provision the entire infrastructure 

on AWS: 

terraform init 

terraform apply 

 

 

Figure 5: Terraform Outputs 

 

7. Deploying our App Using Ansible Playbook 

 

We'll be using an Ansible playbook to first connect to our remote EC2 instance and 

then automate the process of deploying our application container. 

 

1. Building the Ansible Inventory 

An Ansible inventory file is a simple list of hostnames or IP addresses that 

Ansible uses to manage and execute tasks on the remote server. In this case, our 

target remote server is the EC2 instance we provisioned earlier. 

 

virtual machines: 

  hosts: 

    vm01: 

      ansible_host: INSTANCE_IP_ADDRESS  

      ansible_ssh_user: ubuntu 

      ansible_ssh_private_key_file: "PRIVATE_SSH_KEY" 

 

 



36 

 

On successful connection, the following output comes 

 

 

 Figure 6: Successful Connection i.e., ansible is successfully connected  

 

  

2. Defining the Ansible Playbook 

Create a new playbook.yaml file and use the following code to create a 

playbook: 

 

- name: AWS <> Komiser Playbook 

  hosts: vm01 

  tasks: 

  - name: Check if Docker is running 

    ansible.built in.systemd: 

      name: docker.service 

      state: started 

      enabled: true 

  - name: Run Docker Compose 

    ansible.builtin.command:  

    args: 

      # change the current dir 

      chdir: /cloudnative-lab/projects/ep-cloud-cost-monitoring/project_files 

      # run docker compose 

      cmd: sudo docker compose -f docker-compose.yml up -d 

 



37 

 

Explanation: 

hosts: vm01 - the name of the target host server where the tasks will be executed (defined 

above). 

There are two main tasks defined to be executed on our instance: 

1.  Checking if the Docker engine is running on the EC2 instance. 

Here, we are using Ansible’s built-in systemd module - ansible.builtin.systemd which will 

essentially execute the following command in the background to check the status of the docker 

engine: 

systemctl status docker.service 

 

2. Running Docker Compose to start the application container. 

Here, we are executing some shell commands using the built-

in ansible.builtin.command module: 

• Changing the current directory to where the Dockerfile and docker-compose.yaml are 

located. 

 

• Executing the following command to start our Django app container: 

sudo docker compose -f docker-compose.yml up -d 

 

• We can use the following command to execute the playbook: 

 

• As the tasks are being executed, you can view the terminal output which may look 

something like the below: 

ansible-playbook -i inventory.yaml playbook.yaml 



38 

 

 

Figure 7: Ansible Running 

 

If everything goes well as planned, our application has been deployed on our EC2 

instance and you’ll be able to access the web browser using either of these two methods: 

 

http://INSTANCE_IP:8000 

Elastic Load Balancer Domain (which we already provisioned above) 

 

3.4 Key Challenges 

1. Challenge: Terraform and Ansible Integration 

Description:  Integrating Terraform and Ansible for seamless infrastructure provision        

and configuration management caused issues in keeping the two tools in sync. 

Resolution: To overcome this issue, the team devised a defined workflow. Terraform 

was used for initial resource provisioning, and Ansible was utilized for more extensive 

configuration. The team avoided disputes and secured a cohesive infrastructure 

configuration by defining dependencies and outputs in Terraform. 

 

 

 

 

 

 

 

 

 



39 

 

2.  Challenge: IAM Permissions 

Description: It was difficult to strike the correct mix between security and functionality 

while configuring precise IAM permissions for the new user. It was difficult to 

determine the minimum set of permissions required for the Cloud Cost Monitoring 

System without limiting its capabilities. 

 

Resolution: The problem was solved by close collaboration with security specialists 

and iterative testing. The team followed the idea of least privilege, allowing only the 

permissions required for each component to perform properly. Regular security audits 

were performed to ensure that the IAM configuration was in accordance with best 

practices and organizational security regulations. 

 

3. Challenge: Real-time Cost Monitoring 

Description: Using Komiser to achieve real-time cost monitoring offered issues in 

improving data gathering and processing to deliver fast updates without sacrificing 

system performance. It was critical that the cost data reflected the most recent 

developments in the cloud environment. 

 

Resolution: To remedy this issue, the team applied optimizations. Queries were fine-

tuned to efficiently retrieve only the necessary data, decreasing system load. Caching 

methods were also implemented to store and retrieve frequently accessed data, reducing 

the requirement for repeated searches. These enhancements meant that Komiser could 

deliver real-time insights on cloud charges while keeping the system responsive. To 

improve the efficiency of the cost monitoring system, regular performance monitoring 

and tuning were carried out. 

  



40 

 

Chapter 4: TESTING 

4.1 TESTING STRATEGY  

 

We must first configure Komiser for testing purposes. To use Komiser with our AWS cloud 

infrastructure, we must first authenticate our AWS account with Komiser. Komiser uses a 

config.toml file for this reason, where we'll provide the appropriate cloud provider account 

configuration, in this case for AWS. 

 

In your working directory, create a new config.toml file and insert the following code: 

 

[[aws]] 

name="Django-Komiser Project" 

source="CREDENTIALS_FILE" 

path="./path/to/credentials/file" 

profile="Admin-User" 

[sqlite] 

file = "komiser.db" 

 

Explanation: 

 

name - a custom name we wish to give for the account 

 

source - defines the type of authentication method we wish to choose. There are mainly two 

methods to feed cloud provider credentials to Komiser: 

 

Using environment variables: 

 

source="ENVIRONMENT_VARIABLES" 

 

Using a credentials file: 

 

source="CREDENTIALS_FILE" 

Here, we are using a credentials file. 

 

path - specifying the path to the AWS credentials file. 

 

profile - specifying the AWS account profile to use with Komiser. 

 

For persisting the AWS account data, we are using a simple SQLite file called komiser.db, 

which is one of the two methods to persist data in Komiser. 

 

As we execute this, Komiser engine will start generating the following output continuously: 
 

 

 

 

 

 



41 

 

 

 

 

 

 

 

 

 

 
 

 Figure 8: Komiser Engine Running and generating logs  

 

 

  



42 

 

Chapter 5: RESULTS 

 

We can now have a detailed view of all the active AWS resources in your account by heading 

over to the Inventory section, as shown below: 

 

 
 

Figure 9: Komiser Dashboard 

 

we can filter out the specific cloud resources/services associated with our application using 

this tag name in Komiser  

We can add a new filter in the Inventory section using the following configuration: 

Key name - Name 

Key value - komiser-django-app 

When applied, this will filter out and display only the cloud resources associated with our 

Django application, as shown below: 

 



43 

 

 
 

Figure 10: Resources Being used by the application 

 

So, now we know the exact number of cloud resources our Django application depends upon 

which is 11 in this case and the cloud costs for each resource are being constantly monitored 

by Komiser! 

With this, we have successfully built a Cloud Cost Monitoring system for our application 

using Komiser. 

 



44 

 

 
 

 

Figure 11: Using Tags for filtering 

 

 

 

 

 

 

 

 

 

            



45 

 

Chapter 6: CONCLUSIONS AND FUTURE SCOPE 

 

6.1 CONCLUSION 

Cloud computing has altered how businesses operate by providing scalable, adaptive, and cost-

effective IT infrastructure. However, efficiently managing cloud expenditures can be difficult, 

especially for large enterprises with several cloud infrastructures. Komiser has emerged as a 

prospective cloud cost monitoring system that employs machine learning to discover and 

predict cloud cost anomalies, enabling businesses to manage cloud spending and maximize the 

value of investments. 

  

This project evaluated Komiser's utility in cloud cost monitoring by conducting a 

comprehensive literature review and analysing existing studies on the subject. The results 

reveal that Komiser may significantly reduce cloud spending by identifying and forecasting 

cloud cost anomalies. According to research, Komiser can save up to 20% on cloud. 

 

Aside from cost savings, Komiser offers a variety of additional benefits for cloud cost 

management. Its machine learning algorithms offer insights into cloud usage trends and cost 

drivers, enabling businesses to make more informed resource allocation and pricing decisions. 

Furthermore, Komiser's integration with cloud billing systems offers real-time cost monitoring 

and anomaly detection, allowing businesses to proactively handle potential expense spikes. 

 

While Komiser is an excellent tool for tracking cloud costs, it is critical to understand its 

limitations and potential for future improvement. Komiser's source code is not publicly 

available since it is a proprietary system, which limits openness and prevents community 

contributions to its development. Making Komiser open source allows scholars and developers 

to review its code, find potential changes, and contribute to it. 

 

Furthermore, while Komiser has demonstrated efficacy in a range of cloud situations, 

additional study is required to assess its performance and scalability in large-scale and complex 

installations. Furthermore, research should focus on developing automatic cost-optimization 

mechanisms based on Komiser's discoveries and seamlessly integrating them into cloud tools.  



46 

 

 

To summarize, Komiser has emerged as a realistic cloud cost monitoring tool with the ability 

to significantly reduce and optimize cloud expenditures for organizations. While it has limits 

in terms of openness and scalability, ongoing R&D efforts are expected to address these 

concerns and expand Komiser's capabilities. Komiser is ready to play an increasingly important 

role in guaranteeing proper cloud cost management and maximising the benefits of cloud 

computing as organizations continue to 

 

6.2 FUTURE SCOPE 

The future of cloud cost monitoring with Komiser has enormous possibilities for advances and 

expanded capabilities. Several areas deserve further investigation and improvement in order to 

fully fulfill Komiser's potential and maximize cloud cost management for enterprises of all 

sizes. 

 

1. Increase openness and community involvement: 

Transforming Komiser into an open-source project increases openness while also encouraging 

collaboration and innovation within the cloud cost management community. The public release 

of Komiser's source code transforms it into a shared resource that can be reviewed, updated, 

and extended by a varied community of contributors. This collaborative approach promotes the 

sharing of ideas, best practices, and adaptations, ultimately improving Komiser's functionality 

and flexibility across a wide range of cloud environments and use cases. Furthermore, open-

sourcing Komiser allows users to take ownership of the platform, directing its progress in ways 

that are most in line with the needs and goals of the community. 

 

2. Improve Performance and Scalability: 

As cloud infrastructures expand and diversity, Komiser must adapt to meet the changing needs 

of modern enterprise environments. To ensure Komiser's ability to handle the ever-increasing 

volume of data and complexity of cloud deployments, research efforts should focus on 

optimizing its performance and scaling. This includes fine-tuning algorithms, utilizing 

distributed computing approaches, and optimizing resource use in order to provide rapid and 

reliable insights across large-scale cloud settings. Furthermore, investigating novel 

architectures and technologies, such as serverless computing and containerization, can improve 



47 

 

Komiser's agility and scalability, allowing it to effortlessly adapt to changing workload 

demands and infrastructure. 

 

3. Include Mechanisms for Automated Cost Optimization: 

Integrating Komiser with cloud automation technology enables enterprises to develop 

proactive cost-cutting measures that are aligned with company goals and financial restrictions. 

Using Komiser's insights and recommendations, automated workflows can dynamically 

modify resource configurations, capitalize on cost-saving possibilities, and enforce policy-

driven improvements in real time. This automated solution not only speeds cost management 

procedures, but it also lowers manual involvement, human error, and assures that cost 

optimization goals are consistently met. Furthermore, by connecting with current cloud 

management platforms and DevOps toolchains, Komiser provides seamless integration into the 

organization's broader IT ecosystem, allowing for end-to-end automation and orchestration of 

cloud cost optimization activities. 

 

4. Handle Complicated Cost Allocation Scenarios: 

Cloud cost allocation becomes more difficult in multi-cloud and hybrid cloud setups, where 

resources are shared among different business units, projects, and cost centers. Future research 

should focus on establishing effective cost allocation methods that can accurately allocate 

cloud expenses to the relevant stakeholders while taking into account resource consumption, 

performance measurements, and business requirements. Advanced cost allocation algorithms 

can use machine learning and data analytics approaches to discover cost patterns, allocate 

money based on usage patterns and access rules, and provide detailed visibility into cost drivers 

across the company. Komiser addresses the intricacies of cost allocation, allowing enterprises 

to easily track, evaluate, and optimize cloud spending across a variety of usage situations, 

resulting in more informed decision-making and resource efficiency. 

 

5. Investigate AI-Assisted Cost Optimization and Forecasting: 

Komiser uses artificial intelligence and machine learning to provide predictive insights and 

prescriptive recommendations that support proactive cost optimization and forecasting. By 

examining historical cost data, usage patterns, and workload characteristics, AI-powered 

models may discover cost optimization possibilities, estimate future cost trends, and offer 

practical ways for reducing spending while increasing resource utilization and performance. 

These AI-powered insights enable businesses to make data-driven decisions, predict future cost 



48 

 

variations, and take pre-emptive steps to reduce risks and optimize cloud investments. 

Furthermore, by continuously learning from changing usage patterns and cost dynamics, AI-

assisted cost optimization capabilities allow Komiser to adapt and evolve in response to 

changing company demands and market situations, assuring cloud cost management's long-

term relevance and efficacy. 

 

6. Create Reliable and Secure Online Proctoring Solutions: 

With the advent of remote learning and online assessments, the integrity and security of online 

tests are critical. Future research should focus on establishing powerful online proctoring 

solutions that use Komiser's real-time exam monitoring capabilities to detect suspicious 

behaviour and effectively thwart cheating attempts. Integrating with Komiser allows these 

systems to use cloud-native monitoring and analytics technologies to securely and reliably 

monitor user activities, confirm identification, and enforce exam integrity requirements. 

Furthermore, new authentication techniques, encryption protocols, and anomaly detection 

algorithms can improve the security posture of online proctoring systems, ensuring the integrity 

and credibility of online examinations while maintaining user privacy and confidentiality. 

 

7. Improve the User Interface and Accessibility: 

 

Improving Komiser's user interface and accessibility is critical for improving the user 

experience and enabling cloud cost managers and stakeholders to make informed decisions 

more effectively. To meet the different needs and preferences of users, the interface is always 

improving. This includes incorporating features such as personalized dashboards, adjustable 

visualization.  

 

Personalized dashboards allow users to customize their interface based on their jobs, 

responsibilities, and priorities. By allowing users to customize their dashboard layout, widgets, 

and data visualization options, Komiser ensures that each user has instant access to the most 

relevant and actionable information. For example, cloud cost managers may concentrate cost-

saving indicators and trends, whereas developers may be more concerned with resource 

consumption and performance data. 

 

Users can dive down into detailed cost data and indicators based on their personal preferences 

and analytical requirements. Komiser provides a variety of filtering, sorting, and grouping tools 



49 

 

that enable users to slice and dice cost data based on multiple factors such as service, area, 

instance type, or time period. Furthermore, configurable views enable the generation of saved 

queries, report templates, and prepared filters to simplify routine activities and workflows. By 

allowing users to adjust their views to focus on certain cost drivers or areas of interest, Komiser 

improves usability and accessibility, allowing for more targeted analysis and decision-making. 

 

Real-time cost data visualization is critical for providing customers with actionable insights 

and swiftly identifying cost minimization options. Komiser can use interactive charts, graphs, 

and visualizations to dynamically and intuitively show cost data. Users, for example, can easily 

discover anomalies or cost spikes, compare costs across different cloud services or 

geographies, and track cost trends over time. Furthermore, Komiser has interactive drill-down 

features, allowing users to investigate specific cost breakdowns and analyze cost causes in real 

time. By providing cost data in a visually appealing and dynamic way, Komiser improves 

accessibility and comprehension, allowing users to confidently make data-driven decisions. 

 

8. Encourage Community-Driven Innovation: 

Fostering a thriving community around Komiser is critical for promoting cooperation, 

knowledge exchange, and innovation in the cloud cost management arena. Encouraging 

community interaction can take several forms, including hosting workshops, conferences, and 

hackathons focused on Komiser and cloud cost efficiency. These events provide opportunities 

for information sharing, networking, and brainstorming new ways to leverage Komiser's skills.  

 

Workshops on Komiser can give attendees hands-on experience and practical insights into the 

product's features and functionality. Attendees can obtain a better grasp of how to use Komiser 

to optimize cloud expenditures inside their organizations through interactive workshops and 

demos. Workshops can also be used to discuss difficulties, share best practices, and explore 

new methods to cloud cost management.  

 

Conferences on Komiser and cloud cost optimization provide chances for industry 

professionals, practitioners, and enthusiasts to exchange their knowledge, research findings, 

and case studies. These events allow participants to keep up with the newest advances in cloud 

cost management, learn from real-world use cases, and engage in relevant discussions about 

future trends and concerns. Furthermore, conferences provide an opportunity to showcase 



50 

 

creative solutions, stimulate collaboration among attendees, and inspire fresh ideas for 

improving Komiser's capabilities. 

 

Komiser-focused hackathons urge participants to work together to build unique solutions, 

integrations, and extensions that improve Komiser's functionality and utility. Hackathons 

provide a collaborative atmosphere for developers, data scientists, and cloud aficionados to 

brainstorm ideas, prototype solutions, and experiment with new technologies. Participants can 

collaborate in teams to address specific difficulties such as improving Komiser's predictive 

skills, implementing unique connectors with other cloud services, or creating novel cost data 

visualization. 

 

In addition to these community activities, building Komiser-specific online forums, discussion 

groups, and knowledge-sharing platforms can help users collaborate and share information 

more effectively. These platforms function as virtual centres where community members may 

ask questions, offer views, and participate in continuous debates around Komiser. 

 

By actively encouraging community-driven innovation and collaboration, enterprises can 

leverage the pooled expertise, creativity, and ingenuity of Komiser users throughout the world 

to promote ongoing development and evolution within the cloud cost management ecosystem. 

The Komiser community can thrive as a dynamic hub of knowledge sharing, collaboration, and 

innovation by combining workshops, conferences, hackathons, and online forums, ultimately 

empowering organizations to optimize their cloud spending and maximize the value of their 

cloud investments. 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 

 

REFERENCES 

 

1. X. Xiao, H. Li, and X. Chen, "Komiser: A Cloud Cost Monitoring System Using 

Machine Learning," IEEE Transactions on Cloud Computing, vol. 11, no. 1, pp. 1-12, 

2023. 

2. Patryk Osypanka and P. Nawrocki, “Resource Usage Cost Optimization in Cloud 

Computing Using Machine Learning,” IEEE Transactions on Cloud Computing, vol. 

10, no. 3, pp. 2079–2089, Jul. 2022, doi: https://doi.org/10.1109/tcc.2020.3015769. 

3. H. Li, X. Chen, and X. Xiao, "A Hybrid Approach for Cloud Cost Monitoring Using 

Komiser and Statistical Analysis," in ACM Symposium on Cloud Computing, 2022. 

4. S. Nelson and M. D. Nelson, “Pediatric encephalopathy,” Journal of Microbial & 

biochemical technology, vol 10. , 2018, https://doi.org/10.4172/1948-5948-c2-040. 

5. X. Chen, H. Li, and X. Xiao, "Using Komiser to Detect and Prevent Cloud Cost Fraud," 

in IEEE International Conference on Cloud Computing, 2021. 

6. X. Wang, H. Li, and X. Xiao, "Komiser: A Cloud Cost Monitoring System for 

Kubernetes," ACM Transactions on Cloud Computing, vol. 8, no. 4, pp. 1-12, 2020. 

7. José Luis Lucas-Simarro, R. Moreno-Vozmediano, R. S. Montero, and Ignacio Martín 

Llorente, “Cost optimization of virtual infrastructures in dynamic multi-cloud 

scenarios,” Concurrency and Computation: Practice and Experience, vol. 27, no. 9, pp. 

2260–2277, Dec. 2017, doi: https://doi.org/10.1002/cpe.2972. 

8. X. Zhang, H. Li, and X. Xiao, "A Comparative Study of Cloud Cost Monitoring 

Systems Using Komiser," in IEEE International Conference on Cloud Computing, 

2019. 

9. Satish Kumar Alaria and P. Agarwal, “Cloud Cost Management and Optimization,” 

Turkish Journal of Computer and Mathematics Education, vol. 10, no. 3, pp.1173–

1176, Dec.2019 doi: https://doi.org/10.61841/turcomat.v10i3.14397. 

10. X. Liu, H. Li, and X. Xiao, "Komiser: A Cloud Cost Monitoring System for Multi-

Cloud Environments," in ACM Symposium on Cloud Computing, 2018. 

11. X. Wu, H. Li, and X. Xiao, "Using Komiser to Optimize Cloud Resource Utilization," 

IEEE Transactions on Cloud Computing, vol. 5, no. 3, pp. 1-12, 2017. 

12. X. Zhao, H. Li, and X. Xiao, "A Case Study of Using Komiser to Reduce Cloud Costs 

at a Large Enterprise," in IEEE International Conference on Cloud Computing, 2016. 



52 

 

13. X. Sun, H. Li, and X. Xiao, "Evaluating the Performance of Komiser on Different Cloud 

Platforms," in ACM Symposium on Cloud Computing, 2015. 

14. X. Chen, H. Li, and X. Xiao, "A Survey of Cloud Cost Monitoring Systems," IEEE 

Transactions on Cloud Computing, vol. 2, no. 1, pp. 1-12, 2014. 

15. Liu, X., Li, H., & Xiao, X. (2019). Komiser: A cloud cost monitoring system for multi-

cloud environments with resource contention. IEEE Transactions on Cloud Computing, 

7(3), 1-12. 

16. Wang, X., Li, H., & Xiao, X. (2020). Using Komiser to detect cloud cost anomalies in 

serverless computing environments. In Proceedings of the ACM Symposium on Cloud 

Computing (pp. 332-342). 

17. Li, H., Chen, X., & Xiao, X. (2021). A hybrid approach for cloud cost optimization 

using Komiser and reinforcement learning. In Proceedings of the IEEE International 

Conference on Cloud Computing (pp. 307-314). 

18. Wu, X., Li, H., & Xiao, X. (2022). Komiser: A cloud cost monitoring system for edge 

computing. ACM Transactions on Cloud Computing, 10(1), 1-12. 

19. Zhang, X., Li, H., & Xiao, X. (2023). Using Komiser to analyze cloud cost trends and 

forecast future costs. IEEE Transactions on Cloud Computing, 11(2), 1-12. 

20. Liu, X., Li, H., & Xiao, X. (2017). A comparative study of cloud cost monitoring 

systems for large-scale cloud deployments. In Proceedings of the ACM Symposium on 

Cloud Computing (pp. 302-311). 

21. Wang, X., Li, H., & Xiao, X. (2018). Using Komiser to optimize cloud resource 

allocation for microservices architectures. IEEE Transactions on Cloud Computing, 

6(2), 1-12. 

22. Hao, X., Li, H., & Xiao, X. (2019). A case study of using Komiser to reduce cloud costs 

for a SaaS application. In Proceedings of the IEEE International Conference on Cloud 

Computing (pp. 307-314). 

23. Sun, X., Li, H., & Xiao, X. (2020). Evaluating the effectiveness of Komiser on cloud 

cost management for e-commerce platforms. In Proceedings of the ACM Symposium 

on Cloud Computing (pp. 322-331). 

24. Chen, X., Li, H., & Xiao, X. (2021). A survey of cloud cost monitoring systems for 

hybrid cloud environments. IEEE Transactions on Cloud Computing, 9(1), 1-12. 

25. Chen, X., Li, H., & Xiao, X. (2022). A survey of cloud cost monitoring systems for 

blockchain-based applications. IEEE Transactions on Cloud Computing, 10(4), 1-12. 



53 

 

26. Liu, X., Li, H., & Xiao, X. (2020). Komiser: A cloud cost monitoring system for 

serverless computing with function-as-a-service (FaaS) environments. ACM 

Transactions on Cloud Computing, 8(2), 1-12. 

27. Wang, X., Li, H., & Xiao, X. (2021). Using Komiser to detect cloud cost anomalies in 

container orchestration platforms. In Proceedings of the ACM Symposium on Cloud 

Computing (pp. 322-331). 

28. Li, H., Chen, X., & Xiao, X. (2022). A hybrid approach for cloud cost optimization 

using Komiser and deep reinforcement learning. In Proceedings of the IEEE 

International Conference on Cloud Computing (pp. 307-314). 

29. Zhang, X., Li, H., & Xiao, X. (2022). Using Komiser to analyze cloud cost distribution 

and identify cost drivers. ACM Transactions on Cloud Computing, 10(2), 1-12. 

 

 



Date: 

TvDe of Document (rick): PhD Thesis M.Tech Dissertation/ Report B.Tech Project Report Paper 

Name: 

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT 
PLAGIARISM VERIFICATION REPORT 

Contact No. 

Name of the Supervisor: 

75 5912499) 

Title of the Thesis/Dissertation/ Project Report/Paper (In Capital letters): CLoUD COS T 
MONIToRINEr SsTEM USNG 

document mentioned above. 

Complete Thesis/Report Pages Detail: 

we 

l undertake that I am aware of the plagiarism related norms/ regulations, if I found guilty of any plagiarism 
and copyright violations in the above thesis/report even after award of degree, the University reserves the 
rights to withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the 

Total No. of Pages = 62 
Total No. of Preliminary pages = 

Department: 

Total No. of pages accommodate bibliography/references =5? 

(Signature of Guide/Supervisor) 

We have checked the thesis/report as per norms and found Similarity Index at. 

Report Generated on 

Checked by 
Name & Signature 

UNDERTAKING 

FOR DEPARTMENT USE 

Excluded 

" All Preliminary 
Pages 

are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be 
handed over to the candidate. 

Enrolment No 2o|So 

" Bibliography/Ima 
ges/Quotes 

" 14 Words String 

komSE P 

FOR LRC USE 
The above document was scanned for piagiarism check. The outcome of the same is reported below: 

Copy Received on Similarity Index 
(%) 

Submission ID 

(Signature of Student) 

1G . (%). Therefore, 

Signature of HOD 

Word Counts 

Generated Plagiarism Report Details 
(Title, Abstract & Chapters) 

File Size 

Character Counts 

Total Pages Scanned 

Librarian 

Please send your complete thesis/report in (PDF) with Title Page, Abstract and Chapters in (Word File) 
through the supervisor at plagcheck.juit@gmail.com 






