

REMOTE SYSTEM MONITOR
FOR LINUX

Project Report submitted in partial fulfillment of the requirement for
the degree of

Bachelor of Technology.
in
COMPUTER SCIENCE AND ENGINEERING

under the Supervision of

Dr.-Yashwant Sing’h

o

By
Saransh (091270)

R Vet

Tanmmay Mahendru (091223)

to

ﬂ Jaypee University of Information and Technology j '

: Waknaghat, Solan — 173234, Himachal Pradesh |

i
g

oo

e R e

£ £ s e

=T

Certificate

This is to certify that project report entitled “Remote System Monitor for Linux”, submitted by
Saransh (091270) and Tanmmay Mahendru (091223) in partial fulfillment for the award of
degree of Bachelor of Technology in Electronics and Communication Engineering to Jaypee

University of Information Technology, Waknaghat, Solan has been carried out under my

supervision.

This work has not been submitted partially or fully to any other University or Institute for the

award of this or any other degree or diploma.

Date: Supervisor’s Name

Designation

i feded mw

T B TE T IS

T g

Acknowledgement

We express our sincere gratitude to our respected project supervisor Dr. Yashwant
Singh, Department of Computer Science And Engineering, Jaypee University of
Information Technology, Waknaghat under whose supervision and guidance this
work has been carried out. His whole hearted involvement, advice, support and
constant encouragement throughout, have been responsible for carrying out this
project work with confidence. We are also grateful to him for providing us with
required infrastructural facilities that have been highly beneficial to us in
undertaking the above mentioned project.

We are sincerely grateful to Brig. S.P. Ghrera, Professor and Head of Department
of Computer Science and Engineering, Jaypee University of Information
Technology, Waknaghat for providing all necessary facilities for the successful
completion of our project.

We would also like to thank the laboratory staff of Department of Computer
Science and Engineering for their timely help and assistance.

Date: Saransh (091270)
Tanmmay Mehandru (091223)

TEEDRR RO B TETRTES

S L

T

T g

Summary

With protocols such as VNC which provide an excellent graphic interface to the client because
of the bit map transfer over the network a huge bandwidth is required which we find seldom in
developing countries where 3G is still a new concept and therefore is quite costly. The same
problem exists with other technologies too apart from the portability issues, no matter how well
they perform on a high bandwidth network when it comes the using such technologies over a 2G

mobile network they all tend to collapse.

The utility will allow the user to manage processes on his system.as well as monitor the running
processes, all from a handheld device or even a browser running on a remote computer. The core
sentiment behind this approach is to minimize the data being transferred. This can be
accomplished by using a lightweight data interchange format called JSON (Javascript Object
Notation) for the transfer of only relevant data, unlike the X windows server, which transfers
large amount of bitmap image data across the network. The data being transferred on network
can further be reduced by using GZIP compression which is supported by most modern
browsers, both mobile and computer based. The user interface of the application will be based on

HTMLS and Cascading Style Sheets.

i
TABLE OF CONTENT
T T T LR Tt st cinsvanoissnsssa inson o] ki sasivamuindvs hans EunEh L0 sl KL Rmat 05 i b A A e ma s i ok T Vo [
P] O IV uivauss wosvisiossneshainyshyrnniibion suedh Reeus s sis s ass e sttt cemvasiadws oo BV NPT oAb s i
: T T L T O e PP e T o e SOOI RO e iii
l Chapter 1. INT RO DU T O N m i e e e e ey A el 1
i: 13 e N R A T R e T T T T T e e e L T e N R e T 1
E IRGENEsIS OF PrODIBM iiciiiiiinin iiiniisini i st s re o eires hems i s e s oo 1
IRSRErOBIem Statement i i i n G i i e e e e 2
PARC b e CHIVES e b L T G s Tt e e R A PO e Eee s b T e T 2
ARANMINUser EriendlyiFront End s e L T s T R 2
} : QPAEServer DevelopmEnt il diiin i i i i s asss e et sosvasaia s douh e 2
;_ 1.4.3. Low Bandwidth Communication...........coceeiiiieiiiiiiiiiiciii e 3
: ArdrdsProvide EXTra FUNCUIONANITIES (viviiiiiisinnsiisasissesrstitn, dirsaridin sosvonssivs visersysshss ssvisny 3
{E ST AddINg Grid Capabilties i e i i i sii i she s is b rers b o s ans on et eanadenbobnir it 3
% 1.5. Approach/Methodology USEd.c.oeveveeiriieimieeiii ettt 3
I, O e T e s et L T T R T L Y Pl T e e T L e 3
RGN Terattre SUNVeY il i A i B e O T P e o S L et s 3
@l " 1.6.2. Remote MONIROTINE SYStEM TOr LINUX G iiviiinin i sttt inss inatossntiiriorat s 3
. 1163 Deslgn-and Implementation. i i s i e reseases i 4
E 18614 Conclusion and FULUNe SCOPE.. viaivinriiiviomsiiiviisiiveiiie bt sstasssssinsnuns sdbve cimnitbas 4
E e T [Y R A T L R B R | B e e e e e ey e e 5
: I OdU et ON e e T e e e e 5
: 222Related Technologies mmminmian s S n AT T T AT e T e e 5
2221 X W I OW SYSTETN & risiar s sasivninssssosensssnnns d6tinn st s LR T e iAo s Fos A e e d e er TR 5
: 222 \irtUal Network CompULING it i i asiveasasiians s e shss vk s asdinna 6
i 2 233t N Xl ECHNO|OBY it binies i teirs ot o Slitndiin s e e e D R T B oD 7
iv
i

A SR WMW

2.2.4. Remote Desktop Protocol. ... s 8

92,5, Other ProtoCoIS.cccoiiseiiniseimsnasinisnimmesiisensn st nsissas st sssnssisssnsnens 9

9 3. EXISTING PrOQUCES c....vvvverianteae ittt sab s sns bbbt s bt 9

DR S UINIIE0 REMOTE tiiuiuessievisrvrsionivasssessvives s svensess orsvessssssisessesressontsasestssgsarrassvessas assagrsn 9

2.3.2. Remote System Monitor........ccocevmiiiininiiiiiii, Error! Bookmark not defined.

E R CaAMV W s e i i ey Error! Bookmark not defined.

AR S el NEETTACES i i indiivvirmisnisiesiaisasnsiosmnsasanssrassusorninssnsans Error! Bookmark not defined.

IBRSOftWare INterfaces. ..o Error! Bookmark not defined.

2.6. Communications Protocols...........cccociinians O et Error! Bookmark not defined.

D T COTNPULING (o ehsisavuisinensers shsssnsesvnnssssapssssiimininenssabansedise Error! Bookmark not defined.

2.8. Memory CONStraints ...c.cccovveviinieininiinseee e Error! Bookmark not defined.

2) LA T 2 e e o G o e e TP e AT e VT T e eh e Error! Bookmark not defined.

5 2.10. Product Functionality...........coooveninininincninnnininnn, Error! Bookmark not defined.

; 2.11. Assumption and Dependencycccceviiiiinieieniieens Error! Bookmark not defined.

Chapter 3. REMOTE MONITORING SYSTEM FOR LINUX.............. Error! Bookmark not defined.

BRI NTrodUCtion & i it s s s v Error! Bookmark not defined.

3.2. Agile Development Modelccceniiiininiininniinin, Error! Bookmark not defined.

IS R ()1 |6 G U S T e e e e e 18

BEMBUser Friendly Front ENd i st bl s A bt b 18

i BB RS ETVETr DEVEIODIME L tviitinistavtiasiiorsassisorsivissass foamsetsssvoriasaisess vonnberassatisssnvesoansinnioss 18

3.3.3. Low Bandwidth CommUNICAtioN........ccvivieieiiiiii s 18

g 3.3.4. Provide Extra FUNCHIONAIITIES ...c.oiiiiiiiiiiiiiiiiiiiis st esssine e s sssnenns 18

_i 3.3.5. Adding Grid Capabilities..........; .. 19

A I U e OVEI B W e e e e 19

3 o L W i A Y S e T T e T DA NI T TTRY Error! Bookmark not defined.

: 83571 COMMMMUNICAtION APIT T risinicrerasisorssservararersrsssissareaesns Error! Bookmark not defined.
]
%

’ Q.52 Network Sockets: . i miii i st inen Error! Bookmark not defined.
| 3.5.3. Non Blocking SOcketscccovvievieeninnininien Error! Bookmark not defined. :
AIEI I NStWork [0 Poll i vt s i, Error! Bookmark not defined.
§ IBLE T HTT P REGUES Tt evssvvans isrvemmssvrmersamsrisass basss popsessress R P T 27
: AI5163HTT P REGUEST LiSte N e i iaiis i i i s st e e e e 28
g
stbs s Raduest Handl e s s e T T 28
$ 3.5.8. Response Handlercivvvinnecniinineesiennenns Error! Bookmark not defined.
AIGIO B H [T P RS DO S € i iinsvesiunsvininss vixrvaniomasarhvord visessin Error! Bookmark not defined.
3.5.10. HTTP Response Generator.......ccccceeerieveiievesneninnen. Error! Bookmark not defined.
FF R ERC Ient ArchitectUre i s i st sansans Error! Bookmark not defined.
3.6.1. Graphical User Interfaceccoceiniiiiiiniiiinecniinienen Error! Bookmark not defined.
3.6.2. Interaction LiStENer.......ccccvveeniiiicnieecnieniisscnnicniniens Error! Bookmark not defined.
BIER A H [T P REQUESTIGENCratOl s frivsior, rsaiss it fras oot denis vt i o et 37
316:4= Network: Communication APl ciiiniianmamiiniiiannnmniinasanie 37
: 3.6.5. HTTP Response Listener......c.cecvvneeecieinnnnineciinenenen Error! Bookmark not defined.
3.6.6 Interaction GENErator.......ccccccceviviiiiiriiieieeecisiiinieeans Error! Bookmark not defined.
E, S/ ProdUct FUNCLIONS Lol v isasiiosiiisvouniissosants siianniss iasaosinssn Error! Bookmark not defined.
* B Rl Ser (CharaCt el ISt O T e o e e e Error! Bookmark not defined.
E B 08D ependencles o e e L i e e G e Error! Bookmark not defined.
. Chapter 4. DESIGN AND IMPLEMENTATIONcovvvvriverieieierennes Error! Bookmark not defined.
i A DESIEN ANDIVEIS 11 viveiviroisviiansessssrossosanivasssssss rosessnssioesi vuni Error! Bookmark not defined.
‘l 4.2.1. Data FIow ANalySiscccniiniiniieniniie s e Error! Bookmark not defined.
_ 4224 Use Case Diagram s s e e Error! Bookmark not defined.
;‘ 433 8) e INteraCtiON T e e e e Error! Bookmark not defined.
l 4.3, HTML Client Implementation........cccccevveeieveiinenrievereennenns Error! Bookmark not defined.
43T Functionalities ImMplemented o i oo o s e T 49
f

vi

4
J
¥

T e

T T T T AT T T T S W T CT S S S

] ST

e e e

AL GlIENT HTIMLS SEMANKICS -iivniirissnssbciinamsnssssisisanssssnsssmidisssaisabsssnsssissnsisasssispininssess 53
4.3.2. Search Autocomplete Functionality.........cccccoveinnin, Error! Bookmark not defined.
AT Ajax Loader ANIMAtioN ... ciimiesimsnssminssmisassosnsorisssnssssnisonsarsnssssrsnssrssrsssssssssnsenssssns 57

4.4, Host Server59
ArmEFinctionalities Implemented ... lhiiiidninadinnaiaaenii e, 76

4.5. Running a Gnome Calculator using Wire ..o, 78
Chapter 5. CONCLUSION AND FUTURE SCOPEccoovinnunnns Error! Bookmark not defined.
Chapter 6. REfErences...........coviimiinininmnnsinnisnssinnsesisisessnne Error! Bookmark not defined.

vii

| . l -.

ety S B i it

e

T (e

g
i

List of Figures

1. Fig. 2.2.1 X Windows System el gl L o o T T e h e 6
2, Fig. 2.2.2 VNC N ACHION.c.ciiimiiirinssesiss sttt s b it b st st st dassssiis 7
3, Fig. 2.2.4. Remote Desktop Protocol SCreenshot.......iiininis s 8
4. Fig.2.3.1. e T o i e s S L S 1 R R T S S e 9
5. Fig. 2.3.2. Remote System M O O et e T L T b e e, 10
6. Fig.2.3.3. TeamViewer running on an Android DeVICe..........cccivivvmininininisinne s 11
RREID 3 2. Agile Development Model Process CYCIB. . ..o i iinmsinsussns eesunsisssssprassssssisins s 17
8. Fig3.4.1. Overview to Server A TG e e U e e e e e 20
9, Fig3.4.2. Overview to Client ArchiteCture. ..o 21
10. Fig 3.5.1. Activity Flow from User to Applications........ooviiiiicis 22
11, Fig 3.5.2. Communication APl Process Breakdown e m s aimab o sne L f ek e 23
12. Fig 3.5.3. Communication APl Component BreakdOWN.........cc.ciiiiiniiiins 24
13. Fig 3.5.4. Class Diagram of Server’s Network SOCKet ..o e, 25
PAREIEET515: Object Notation iN:J SO & i iin amman o i s iermorsiveviyimes oot i ies i toamssevive e oash v 1 30
(IEMEiE:3:5:6. Array NOTation iM JSON o cuii i sbaionssnssirsssvessssiiorivsisedssen ks iaess raso dareissss ves 30
T6%FEig:3:5.7, Value Notation in JSON.......ccviiiiiii il sttt s sstsss st sos sessst svassssuasassas 31
AUAEEE5 85t Ing:Notation I ISON S nnn i A i mar i s v s s 31
188FIg:3:5.9. Number NOtation i JSON...cc.civi it iidissaidssinihiissssna st ansisssisessior ssonsesssisssonerissssiasasas oy 2
QORBIORR6:1 HTIVILS IMaIN LOBD v ettt itanns cstss b as auess 5628 s s s oS8 st sem s b Said s S 5483 sentotonns 35
20. Fig. 3.6.2. Different Browser COMPariSON......uimiiiiinii e s e s s 36
21. Fig 4.2.1. Level 0 DFD showing the system and the actors........cviiiniciniini s 43
22. Fig 4.2.2. Level 1 DFD outlining the processes involved in the system.......c.cooiiiiinn 43
23. Fig 4.2.3. Use Case Diagram, outlining the USe Cases.........ccoviiiiiiciiiiiiniinici e 44
24. Fig 4.2.4. User Interaction Diagram, outlining the user activities.........oooiiiiien, 45
25. Fig 4.3.1. Design concept of client on a Desktop BrowSer ... 47
26. Fig 4.3.2. Design concept of client on a Mobile Browser.........cocoeveieinivcocnecicenn s s 48
27. Fig 4.3.3. Snapshot of start functionality (the popup tray with the input field)...........cccccocee, 49
28. Fig 4.3.4. Snapshot of the search autocomplete functionality..........ccccccoovivvcencieniniieiien, 52
29. Fig 4.3.5. Snapshot of the Client Webpage Header........c.cvriincieeeiicereiiecie e ceens 53
30. Fig 4.3.6. Snapshot of the Client Navigation Pane..........ccoccouciiiincicinni e smsisssessseins 54
31. Fig. 4.3.7. Snapshot of Search AutoComplete FUNCLIONEIITY....cocriiriiirims i eeseereesns 56
32. Fig 4.3.8. Loader that appears when communicating with the Server..........cevoviccieionnnns 57
BIEFIE=4.5:1: Snapshot of Wire App Page i s iasiimim i s e /8
34. Fig 4.5.2. Snapshot Of new App dropdOWN MENUL.....c..eiiiiisiinseresesis s s sssssensses s 79
SSMEIE 4513 Shapshot Of AUtOCOMpIEte I ACHION Gt it i Mot e toosioriss 79
BOHEIE'A 5 4- Snapshot Of RUNNINE aP DIICAION s iritisimianaumssmis st s st i ontspsssop s 80
RALIE 415 5 S ADSHOt OF ERECULION TESPONSE L5 bt retusssissiessisivmmsins teisssisisudiomeans SR H RO O Akes 80

viii

R

Chapter 1. INTRODUCTION

1.1. Introduction

Wire is a web based remote monitoring tool for the linux/unix based operating
system. It lets the user manage the running application on his machine and monitor
the overall status of the system resources. The same happens with the help of a web
based user interface which can be accessed on any browser with HTMLS5 support.

There has been a constant need to control one’s personal computer or to
reliably monitor the state of a program, from handheld devices like mobile phones or
tablet computers. With the existing technologies, the bandwidth consumption is too
much for a cellular network. The purpose of the project is to develop a server-client
based application which provides the required functionalities without the need of
transferring extraneous display information on the network so as to reduce the amount
of data transfer.

The project aims at providing functionalities on a handheld device to start a
program, kill a program, and monitor running programs and the machine as a whole.
Some of the long term goals aim at implementing functionalities like locking or
shutting down the machine remotely. After the completion of the project, it will
provide on the move solution to control a personal computer, securely and efficiently.
The resulting API will run on a neweraHPC server to allow for scaling up the utility

to monitor a computer grid.

1.2. Genesis of Problem

There has been a constant need to control one’s personal computer from handheld
devices like mobile phones or tablet computers. I have seen people sitting right back
with their machine, waiting for a program to exit so that they can start a new one.
With high end smart phones coming up, be it Android, iOS or the Windows platform,
developers have tried to successfully build very native remote desktop applications
for the handheld devices. They work great if the device is connected on a WiFi
Network or has a 3G connection, but the bandwidth consumption is still too much. In

developing countries like India, where the network providers are still trying to bring

™

g

Jreves

the 3G technology to masses, the cost of running a VNC application on a mobile
device is too high.

Besides, there was another reason. We all agreed on the point that it would be
really great if one could sit back on a sofa and control the desktop on a far ahead

table. And by controlling, we mean more than just media player.

1.3. Problem Statement

This project aims at designing user friendly, low bandwidth consuming
multifunctional software which can access a remote system through
internet/Wifi/Bluetooth when the user is mobile. User need not to carry around his
system now with gadgets like cell phone or tablet or anything that supports internet
connection and the capability to open a browser will do the work of accessing the
HTMLS5 based user friendly web site through which user can not only monitor his

system but also control it in a way that all the basic tasks are accomplished easily.

1.4. Objectives

The main motive behind this project is to provide users with software which can
communicate to a remote system over a low bandwidth network. We have divided this

objective into several smaller objectives which are as following:

1.4.1. User Kriendly Front End

We intend to design a web based front-end with user interface optimized for mobiles,

tablets and Personal Computers.

1.4.2. Server Development

We intend to develop a server which can communicate to a remote device and

implement functionalities like start an application, Kill, monitor running programs and

the machine as a whole.

1.4.3. Low Bandwidth Communication

As discussed earlier the main aim behind the project is to reduce the size of data

transfer on the mobile network.

1.4.4. Provide Extra Functionalities

In future functionalities like lock/shutdown, control the volume remotely, send special

; key signal to system functionality.

1.4.5. Adding Grid Capabilities

In the future after implementing basic functionalities in the software next step would

be to make it work on a grid i.e. for larger number of systems combined.

1.5. Approach/Methodology Used.

Most inter-process communication uses the client server model. It refers to the two
processes which will be communicating with each other. One of the two processes,
‘ the client, connects to the other process, the server, typically to make a request for
information. The client needs to know of the existence of and the address of the
server, but the server does not need to know the address of (or even the existence of)
the client prior to the connection being established. Once a connection is established,

both sides can send and receive information.

1.6. Organizational Thesis

1.6.1. Literature Survey

L"*' TR TR TR

In this chapter the study and research work that has been carried out in the past has

been summarized and conclusions has been derived for project work.

1.6.2. Remote Monitoring System for Linux

w i

A general overview with constraints, capabilities and performance related issues has
been discussed in this chapter

T =

1.6.3. Design and Implementation

Designing of the software and the implementation of major modules that have been
included in the project are listed under this chapter.

1.6.4. Conclusion and Future Scope

This chapter includes what a general summery of what has been done yet in the
project and what more can be done in the times to come in this field and project.

’ iwkm.n’:\ihﬁ“ s i, B e

Chapter 2. LITERATURE REVIEW

2.1. Introduction

The X Window System (or X11) has long supported the basic need of
graphical user interfaces (GUIs) and rich input device capabilities for networked
computers. X11 was published in 1987, and there is no doubt that it is doing a great
job when it comes to high speed network computers. The problem with X11 is that
when using X across a network, bandwidth limitations can hinder the use of bitmap-
intensive applications that require rapidly updating large portions of the screen with
low latency. Even a relatively small uncompressed 640x480x24bit 30fps video stream
can easily outstrip the bandwidth of a 100Mbit network for a single client. Virtual
Network Computing (VNC) or Xpra solve some issues with the earlier approaches.
But, to put it simply, the best performance is achieved only on thick clients with
relatively high speed network connections. The project is built around the goal to
achieve the kind of accessibility which VNC provides, and at the same time reduce
the amount of data transfer on the network. In developing countries like India, where
the network providers are still trying to bring the 3G technology to masses, the cost of

running a VNC application on a cellular network is too high.

2.2. Related Technologies

There are plenty of existing ways to access a computer remotely. Most of them
can be put under a few major categories. They are, X Window System, Virtual

Network Computing, NX, Remote Desktop Protocol and Cross Protocol.

2.2.1. X Window System

The X Window System (commonly known as X11, based on its current major version
being 11, or shortened to simply X, and sometimes informally X-Windows) is a
computer software system and network protocol that provides a basis for graphical
user interfaces (GUIs) and rich input device capability for networked computers. It
creates a hardware abstraction layer where software is written to use a generalized set
of commands, allowing for device independence and reuse of programs on. any

computer that implements X.

X is defined by a network protocol.1 X uses a client-server model which accepts
request for graphics display from client and displays it to the user, and receives user

input (keyboard, mouse) and transmits it to the client programs.

User's workstation

!

Network =

Remote machine

Fig. 2.2.1 X Windows System Architecture

2.2.2. Virtual Network Computing

VNC is an ultra-thin client system based on a simple display protocol that is platform-
independent. It achieves mobile computing without requiring the user to carry any
hardware.” In the virtual network computing (VNC) system, server machines supply
applications, data and an entire desktop environment that can be accessed from any
Internet-connected machine using a simple software Network Computer. The Virtual
Networking Computing (VNC) system is a thin-client system. Like all such systems,
it reduces the amount of state maintained at the user’s terminal. VNC viewers are
exceedingly thin because they store no unrecoverable state at the endpoint. This

contrasts with systems like X Windows, and allows arbitrary disconnection and

'R.W. Scheifler, J. Gettys, The X Window System, Digital Equipment Corporation and
MIT Project Athena, April, 1986.

&1 Richardson, Q. Stafford-Fraser, K. R. WOOD, A. HOPPER, Virtual Network Computing,
The Olivetti & Oracle Research Laboratory, February, 1998.

reconnection of the client with no effect on the session at the server. Since the client
can reconnect at a different location-—even on the other side of the planet—VNC
achieves mobile computing without requiring the user to carry computing hardware.”

That is the kind of accessibility we want to achieve as the final goal of the project.

1 oy il : 3 ;
parsonlicher : System Druckauftra | USB-SticifJ U}sket':a
Ordner: - | Openafiice.org Writer _ :

' Datei gearbexten Ansicht Einfogen Format Tabelle Exiras Fengtar i
X L cHe O as3 verra-die-0-su-y I

We}_ﬂ};gwgg & [Standard v| [TmeshewRomain »]{12 =] £ K U @; =m I

' L 233 A BB 7o B 8D A1 042) 13 4 s

. 3

« ‘) : Halloven einer VNC-Silzung

Winamp

T [100% EWNFGSTD AYF "

cmrap 1

Fig. 2.2.2 VNC in Action

2.2.3. NX Technology

NX compresses the X11 data to minimize the amount of data transmitted. NX takes
full advantage of modern hardware by caching all manner of data to make the session
as responsive as possible. For example the first time a menu is opened it may take a
few seconds, but on each subsequent opening the menu will appear almost instantly.
NX is faster than its predecessors, as it eliminates most of the X round-trips, while
dxpc and MLView only compress data. The two principal components of NX are

nxproxy and nxagent. nxproxy is derived from dxpc and is started on both the remote

® “Microsoft Windows NT ‘Hydra’ and Windows-Based Terminals," white paper available at
http://microsoft.com/ntserver/guide/hydrapapers.asp.

(client in X terminology) and the local (server in X terminology) machines simulating
an X server on the client and forwarding remote X protocol requests to the local X

Server.

2.2.4. Remote Desktop Protocol

Remote Desktop Protocol (RDP) is a proprietary protocol developed by Microsoft,
which provides a user with a graphical interface to another computer. It is based on,
and is an extension of, the T-120 family of protocol standards. A multichannel
capable protocol allows for separate virtual channels for carrying presentation data,
serial device communication, licensing information and highly encrypted data
(keyboard, mouse activity). Sole purpose to implement RDP for connectivity purposes
within Windows NT Terminal Server was that it provides a very extensible base from
which to build many more capabilitiecs. RDP was developed to be entirely
independent of its underlying transport stack, in this case TCP/IP. This means that we
can add other transport drivers for other network protocols as customers needs for
them grow, with little or no significant changes to the foundational parts of the

protocol. These are key elements to the performance and extendibility of RDP. 4

Remote Desktop Connection

al IDE plag | Local Resources | P«ogams:a Expenencai

Logon seltings

| Type the name of the compuler, o choose a computer from
the drop-down hist.

Contiotes [nrie o [

User name: 5Uselnu;arrxa ‘

i

Domain: | Domain
[[]5ave my password
Connection setlings
B0, O ¥ u
| Save curent setlings, of open saved connection
s

[mﬁ_:?!i%-wf L:@;;QQ‘I};:«JL,AJ

{Comeat J |, Concel . | [, Help

Fig. 2.2.4. Remote Desktop Protocol Screenshot

i Understanding the Remote Desktop Protocol, “Microsoft Windows NT Server 4.0, Terminal
Server Edition” available at http://support.microsoft.com/kb/186607.

2.2.5. Other Protocols

There are many other proprietary as well as open source protocols that performs that
task of providing the graphical interface remotely. Macintosh has its own Apple
Remote Desktop which gives complete access to the computers in a network running

Remote Desktop Server.

2.3. Existing Products

There are products in the market which provide functionalities we are trying to put

together, but each one of them has some drawbacks and some advantages.

2.3.1. Unified Remote

Unified Remote is an app that lets you control your entire Windows computer from
your Android device. In short, it turns your device into a WiFi or Bluetooth remote
control for all the programs on your computer. It is easily the most feature-filled PC
remote available. With our app you can control a wide range of applications,
including simple mouse and keyboard, media players, and other external hardware

that can be connected to your computer.

Fig. 2.3.1. Unified Remote.

2.3.2. Remote System Monitor

Remote System Monitor is an Android or BlackBerry software which allows to get
advanced system and hardware information from your windows computers on your
Android or BlackBerry devices over the network. Remote System Monitor allows to
retrieve system information including graphic card information even if nobody is
logged on the computer. You can use it to check your home cinema (HTPC), media
centre, servers or desktop state. It is particularly useful to check your system state
while playing games, allowing you to know if the computer is overheating, how your
system deal with temperature and fan speed and how your games are using your

computer resources (CPU, GPU, memory, etc..).

A teD intel core 2 Quad as600

Type Load Temp Mhz
BusSpeed /o nMa | 0/a 266
| b e il 33.0°C 2400

TR

AMD Radeon HD 6900 Series

§ Corei 11V

b

Fig. 2.3.2. Remote System Monitor

10

2.3.3. TeamViewer

TeamViewer is a proprietary computer software package for remote control, desktop
sharing, online meetings, web conferencing and file transfer between computers. The
software operates with the Microsoft Windows, OS X, Linux, iOS, Android, and
Windows RT operating systems. It is possible to access a machine running
TeamViewer with a web browser.While the main focus of the application is remote

control of computers, collaboration and presentation features are included.

Fig. 2.3.3. TeamViewer running on an Android Device.

2.4. User Interfaces

The User Interface Design activity defines the front-end interface in which user will

interact with the information system. There are two laws of user interface design.

First Law: A computer shall not harm your work or, through inactivity, allow

your work to come to harm.

Second Law: A computer shall not waste your time or require you to do more

work than 1s strictly necessary.

The user interface should mainly be user centered and as simple as possible so
as to make the user feel comfortable when using it. Simple tasks should never require

complex procedures, and complex tasks should get tailored to the human hand and

11

mind. People of all ages and cultures should feel firmly in control, and never be
overwhelmed by too many choices or irrelevant flash. When designing an interface it
should be kept in mind to use buttons which convey the meaning behind the button
casily and the user do not get confused between options. Also using soothing colors to
design the interface attract more users. Transitions should be fast and clear; layout and
typography should be crisp and meaningful. It is preferable to have App icons that are
works of art in their own right. Just like a well-made tool, the app should strive to
combine beauty, simplicity and purpose to create a magical experience that is
effortless and powerful. When people use the app for the first time, they should

intuitively grasp the most important features.

2.5. Software Interfaces

A piece of software provides access to computer resources (such as memory, CPU,
storage, etc.) by its underlying computer system; the availability of these resources to
other software can have major ramifications—sometimes disastrous ones—for its
functionality and stability. A key principle of design is to prohibit access to all
resources by default, allowing access only through well-defined entry points, i.e.

interfaces.

The types of access that interfaces provide between software components can
include: constants, data types, types of procedures, exception specifications and
method signatures. In some instances, it may be useful to define public variables as
part of the interface. It often also specifies the functionality of those procedures and
methods, either by comments or (in some experimental languages) by formal logical

assertions and preconditions.

2.6. Communications Protocols

A protocol should have a formal description. It may include signaling, authentication

and error detection and correction capabilities.

A protocol definition defines the syntax, semantics, and synchronization of
communication; the specified behavior is typically independent of how it is to be

implemented. A protocol can therefore be implemented as hardware or software.

12

Communications protocols have to be agreed upon by the parties involved. To reach

agreement a protocol may be developed into a technical standard.

Communicating systems use well-defined formats for exchanging messages.
Each message has an exact meaning intended to provoke a defined response of the
receiver. A protocol therefore describes the syntax, semantics, and synchronization of

communication.

2.7. Grid Computing

Grid computing is the federation of computer resources from multiple locations to
reach a common goal. The grid can be thought of as a distributed system with non-
interactive workloads that involve a large number of files. What distinguishes grid
computing from conventional high performance computing systems such as cluster
computing is that grids tend to be more loosely coupled, heterogeneous, and
geographically dispersed. Although a single grid can be dedicated to a particular
application, commonly a grid is used for a variety of purposes. Grids are often
constructed with general-purpose grid middleware software libraries.

Grid size varies a considerable amount. Grids are a form of distributed computing
whereby a “super virtual computer” is composed of many networked loosely coupled
computers acting together to perform large tasks. For certain applications,
“distributed” or “grid” computing, can be seen as a special type of parallel computing
that relies on complete computers (with onboard CPUs, storage, power supplies,
network interfaces, etc.) connected to a network (private, public or the Internet) by a
conventional network interface, such as Ethernet. This is in contrast to the traditional
notion of a supercomputer, which has many processors connected by a local high-

speed computer bus.

2.8. Memory Constraints

In electronic digital computers, there are different limitations on the usable memory
address space. Even if a microprocessor supports, for example, 32-bit addressing, the
integrated circuit package may only allow external access to a lower number of

address bits, restricting the memory that can be installed. In modern personal

13

computers, some limits are due to the design of processor, others due to the design of
chipsets, BIOS and other hardware and related electrical limitations. Operating system
and application software on a hardware platform may not have the capacity to use the

full address space physically available.

For performance reasons, all the parallel address lines of an address bus must
be valid at the same time, otherwise access to memory would be delayed and
performance would be seriously reduced. Integrated circuit packages may have a limit
on the number of pins available to provide the memory bus. Different versions of a
CPU architecture, in different-sized IC packages, can be designed, trading off reduced
package size for reduced pin count and address space. A trade-off might be made
between address pins and other functions, restricting the memory physically available
to an architecture even if it inherently has a higher capacity. On the other hand,
segmented or bank switching designs provide more memory address space than is

available in an internal memory address register.

2.9. Reliability

Software reliability plays an important role in assuring the quality of a software. To
ensure software reliability, the software is tested thoroughly during the testing phase.
The time invested in the testing phase or the optimal software release time depends on
the level of reliability to be achieved. There are two different concepts related to

software reliability, viz., testing reliability and operational reliability.

2.10. Product Functionality

In information technology, functionality is the sum or any aspect of what a product,
such as a software application or computing device, can do for a user. A product's
functionality is used by marketers to identify product features and enables a user to
have a set of capabilities. Functionality may or may not be easy to use but for a

product to be successful the functionalities should meet the demand of the user.

2.11. Assumption and Dependency

14

Assumptions are circumstances that you are assuming to be true in order for the
project to be successful. But to make the situation clear the product should be made in

such a way that in later stages it does not create conflicts.

The best way to describe dependencies is to talk about work-breakdown
structures (WBS). WBS is a way to breakdown larger tasks into smaller ones. When
you are planning a project, you use this breakdown and add resources and cost. You
link tasks together that shows that in order for one to happen, the first has to occur.
It’s the same with dependencies.

Dependencies are relationships between requirements. A linkage that shows that one

requirement is dependent on another.

15

Chapter 3. REMOTE MONITORING SYSTEM
FOR LINUX

3.1. Introduction

Remote Monitoring System for Linux will allow the user to manage processes on his
system as well as monitor the running processes, all from a handheld device or even a
prowser running on a remote computer. The core sentiment behind this approach is to
minimize the data being transferred. This can be accomplished by using a lightweight
data interchange format called JSON (Javascript Object Notation) for the transfer of
only rtzlevant data, unlike the X windows server, which transfers large amount of
bitmap image data across the network. The data being transferred on network can
further be reduced by using GZIP compression which is supported by most modern
browsers, both mobile and computer based. The user interface of the application will

be based on HTMLS and Cascading Style Sheets.

3.2. Agile Development Model

Agile software development is a group of software development methods based on
iterative and incremental development, where requirements and solutions evolve
through collaboration between self-organizing, cross-functional teams. It promotes
adaptive planning, evolutionary development and delivery, a time-boxed iterative
approach, and encourages rapid and flexible response to change. It is a conceptual

framework that promotes foreseen interactions throughout the development cycle.

AGILE DEVELOPMENT

adaptability
s : transparency

Agility is... 5 . & simplicity

N chartes

- STRATEGY .

: eatimatisn : E Uity
GOl 8 RELEASE e

ot

"‘ZXQ@;TERATION Fefeoepity "%"%}%

CONTINUOUS

FO0 i)

» Working 7
S e e A SORWALS 5 !

1 & £ ¥ Dl Sy
velonity o g o

p
b

burnup

ACCELERATE DELIVERY

Fig. 3.2. Agile Development Model Process Cycle g

Agile methods break tasks into small increments with minimal planning and do not

directly involve long-term planning. Iterations are short time frames (timeboxes) that
typically last from one to four weeks. Each iteration involves a cross functional team

working in all functions: planning, requirements analysis, design, coding, unit testing,

———and-acceptance testing. At the end-of the-iteration-a-working product is demonstrated
to stakeholders. This minimizes overall risk and allows the project to adapt to changes
quickly. An iteration might not add enough functionality to warrant a market release,
but the goal is to have an available release (with minimal bugs) at the end of each
iteration.[10] Multiple iterations might be required to release a product or new

features.

17

Team composition in an agile project is usually cross-functional and self-
organizing, without consideration for any existing corporate hierarchy or the
corporate roles of team members. Team members normally take responsibility for
tasks that deliver the functionality an iteration requires. They decide individually how

to meet an iteration's requirements.

Large-scale agile software development remains an active research area. Agile
development has been widely seen as being more suitable for certain types of

environment, including small teams of experts.

3.3. Objectives

The main motive behind this project is to provide users with software which can
communicate to a remote system over a low bandwidth network. We have divided this

objective into several smaller objectives which are as following:

3.3.1. User Friendly Front End

We intend to design a web based front-end with user interface optimized for mobiles,

tablets and Personal Computers.

3.3.2. Server Development

We intend to develop a server which can communicate to a remote device and
implement functionalities like start an application, kill, monitor running programs and

the machine as a whole.

3.3.3. Low Bandwidth Communication

As discussed earlier the main aim behind the project is to reduce the size of data

transfer on the mobile network.

3.3.4. Provide Extra Functionalities

In future functionalities like lock/shutdown, control the volume remotely, send special

key signal to system functionality.

18

L onneT N SR 3 A

3.3.5. Adding Grid Capabilities

In the future after implementing basic functionalities in the software next step would

be to make it work on a grid i.e. for larger number of systems combined.

3.4. Architecture Overview

Most interprocess communication uses the client server model. It refers to the two
processes which will be communicating with each other. One of the two processes,
the client, connects to the other process, the server, typically to make a request for
information. The client needs to know of the existence of and the address of the
server, but the server does not need to know the address of (or even the existence of)
the client prior to the connection being established. Once a connection is established,

both sides can send and receive information.

The product being a typical client-server communication model, consists of

two major components, the rost server and the remote htip client.

19

|
!
|
|
!
|

Raquest from Client

Response to Client

...

Communication AP|

l Request Data

HTTP Request
Listener

HTTP

Request Handler

Headers and JSON

, Command Data

System Command

Response Data T

HTTP Response
Generator

HTTP Headers and JSON
Response Data

Response
Handler

System Response T

Operating System

and forwards it to the client.

Fig 3.4.1. Overview to Server Architecture.

The server is responsible for accepting requests from the client, validating the
requests, and executing the command on the operating system over which it is

running. (Fig. 4) The server, also, accepts the response data from the operating system

20

D TS ST R—rI—

Request to Server Response from Server

........

Network Communication AP

HTTP Request HTTP Response

HTTP Request HTTP Response
Generator Listener

I JSON Command Data JSON Response Data
Y

Interaction Interaction
Listener Generator

f
Action Event Graphic Event l

Graphical User Interface

Intercation Intercation

User :

Fig 3.4.2. Overview to Client Architecture.

The HTML based client, presents a clean graphical user interface to the
human. The GUI lets the user interact with the system to run the various commands
he wants to execute on the remotely placed host machine. The interaction with the
GUI are converted into the server understandable protocol by the underlying
Javascript based Network Communication API (Fig. 5), and send over the network, to

——the host server:

The communication over the network takes place using the standard HTTP 1.1
protocol. The commands selected by the user are converted into JSON Data format,

and appended to the HTTP Request Body. The request is then sent to the server.

The server accepts the HTTP request coming from the client, and decodes the

JSON Data to extract the system command that needs to be executed on the operating

system. The respon
converted into JSON written to the client network stream as an HTTP Response.

se received by the server from the operating system is again

3.5. Server Architecture
The working of the host server can be broken down into smaller components and

processes that are going on.

| I

External Interface

N

JSON CONVERTER
INTERNAL COMMAND EXECUTOR :

i R I

PROCESS PROCESS PROCESS
EXECUTOR EXECUTOR EXECUTOR

_________ v 4 . 4

APPLICATION APPLICATION APPLICATION

Fig 3.5.1. Activity Flow from User to Applications.

3.5.1. Communication API

Communication over the web takes place with the help of HTTP, a general request-
Iesponse protocol in the client-server computing model. A communication API (or
Application Programming Interface) would provide encapsulated tools and functions
t0 communicate over a network.

22

The API would provide the following functionalities:
a Poll for request.

b Send Response.

Communication API

Network Poll

Send Response

Fig 3.5.2. Communication API Process Breakdown.

The above functionalities are just the abstract functions that the API will

provide for the ease of use. The functionalities will need to implemented with the help ;

of non-blocking sockets and system poll functionality.

The server will continuously poll to check if there's any request coming from
client or not and when the request is received, the server handles the request and
writes the response given by the operating system to the executed command, back to
the client. The execution over the server may take time which will make it
unresponsive to other clients. Therefore, a non-blocking connection needs to be setup

™ between the two. This takes the responsiveness of the system as a whole to another

level,

23

Communication API

. <<uses>> <<uses=>

Network Sockets Network 10 Poll

<<implements>>

) 4

Non-Blocking
Sockets

Fig 3.5.3. Communication API Component Breakdown.

3.5.2. Network Sockets

A network socket is an endpoint of an inter-process communication flow across a
computer network. Today, most communication between computers is based on the

Internet Protocol; therefore most network sockets are Internet sockets.

A socket API is an application programming interface (API), usually provided
by the operating system, that allows application programs to control and use network

sockets. Internet socket APls are usually based on the Berkeley sockets standard.

A socket address is the combination of an IP address and a port number, much
like one end of a telephone connection is the combination of a phone number and a
particular extension. Based on this address, internet sockets deliver incoming data

packets to the appropriate application process or thread.

The system calls for establishing a connection are somewhat different for the
client and the server, but both involve the basic construct of a socket. The two
—Pproeesses-cstablish their own socket: An Internct socket is characterized by a unique

combination of the following:

24

—

Local socket address: Local 1P address and port number.

2 Remote socket address: Only for established TCP sockets. As discussed in the
client-server section below, this is necessary since a TCP server may serve
several clients concurrently. The server creates one socket for each client, and
these sockets share the same local socket address.

3 Protocbl: A transport protocol (e.g., TCP, UDP, raw IP, or others). TCP port

53 and UDP port 53 are consequently different, distinct sockets.

TCP Sockets (or virtual ports) are used in TCP (and UDP) communication to
identify unique end-to-end connections. They are called 'virtual ports' because a single
physical connector can serve multiple connections. Each side of a socket connection
uses its own port number, which does not change during the life of that connection.
The pbrt.number and IP address together uniquely identify an endpoint. Together, two

endpoints are considered a 'socket'. This makes TCP sockets the best option of our

use.

Server Side Socket

+ |PAddress : String
+Port: Integer

+ Connect{ port}: bool
+ Create { }: boal
+Bind {}): bool
+Listen (}: baal

+ Accept(}: bool

+ Read (}: bool
+Write () bool

Fig 3.5.4. Class Diagram of Server’s Network Socket.

25

e e —————— .

nvolved in establishing a socket on the server side are as follows:

The steps i
1 Create a socket with the socket() system call.

2 Bind the socket to an address using the bind() system call. For a server socket
on the Internet, an address consists of a port number on the host machine.

3 Listen for connections with the listen() system call.
Accept a connection with the accept() system call. This call typically blocks
until a client connects with the server.

5 Send and receive data.

3.5.3. Non Blocking Sockets

By default, TCP sockets are in "blocking" mode. For example, when you call recv() to
read from a stream, control isn't returned to your program until at least one byte of
data is read from the remote site. This process of waiting for data to appear is referred
to as "Blocking". The same is true for the write() API, the connect() API, etc. When

you run them, the connection "blocks" until the operation is complete.

When placed in non-blocking mode, the program never waits for an operation
to complete. This is an invaluable tool to switch between many different connected
sockets, and ensure that none of them cause the program to "lock up." So, the server
can handle multiple http clients simultaneously. The problem with this approach is
that the program cannot know which client is responding to the data it sent earlier.

The solution was to make the server poll the network for response from the client.

3.5.4. Network 10 Poll

'Polling' is the continuous checking of other programs or devices by one program or
device to see what state they are in, usually to see whether they are still connected or

want to communicate.

Network polling is controlled by poll policies. Poll policies consist of the following:
1 Poll-definitions, which define the data to retrieve.
2 Poll scope, consisting of the devices to poll. The scope can also be modified at
a poll definition level to filter based on device class and interface.

3 Polling interval and other poll properties.

26

3.5.5. HI'TP Request

An HTTP request message from a client to a server includes, within the first line of

that message,

and the protocol version in use.

the method to be applied to the resource, the identifier of the resource,

Request = Request-Line *((general-header
| request-header)CRLF)
CRLF [message-body]

The request/response message consists of the following things.

1 Request line, such as GET /logo.gif HTTP/1.1 or
status line, such as HTTP/1.1 200 OK.

Headers

An empty line.

Optional HTTP message body data.

a A W N

The request/status line and headers must all end with <CR><LF> (that is, a
carriage return followed by a line feed). The empty line must consist of only
<CR><LF> and no other whitespace.

6 The optional HTTP message body data.

The first line of a typical HTTP request would look something like
GET index.html HTTP/1.1

This is called the request line of a HTTP Request. The request line is followed
by HTTP header fields. They are components of the message header of requests and
feésponses in the Hypertext Transfer Protocol (HTTP). They define the operating

Parameters of an HTTP transaction.

The header fields are transmitted after the request or response line, the first
line of a message. Header fields are colon-separated name-value pairs in clear-text

String format, terminated by a carriage return (CR) and line feed (LF) character

27

SRS —————

sequence. The end of the header fields is indicated by an empty field, resulting in the

transmission of two consecutive CR-LF pairs. Long lines can be folded into multiple

lines; continuation lines are indicated by presence of space (SP) or horizontal tab ‘

(HT) as first character on next line. |

A few standard HTTP headers are as follows:
| Accept
| Accept-Charset

|
| Accept-Encoding
| Accept-Language

| From
| Host

| User-Agent

HTTP Body Data is the data bytes transmitted in an HTTP transaction
message immediately following the headers if there is any. It contains any data that

needs to be required by the server to entertain the request.

3.5.6. HT'TP Request Listener

.HTTP Request Listener is a functionality running on the host machine, that accepts ;
the data read by the communication socket. It breaks down the raw socket data into
HTTP Request Headers and HTTP Body. The headers are decide the operating
parameters of the request while the body contains the information required to handle
the request. The data is then encapsulated into a structure and passed on to the request

handler for further execution.

3.5.7. Request Handler

_The request handler accepts the HTTP Data Structure from the Request Listener and
strips out the JSON Data from the HTTP Body. The HTTP Body contains commands
that need to be executed in the form of JSON (Javascript Object Notation), which
helps in structuring the information as well as reduce the data size, and the time spent

in handling the request.

28

A sample HTTP Body content would look like the following:

“command” : {
Htypefs Mstart-app?,;
YHAdEme” T T Ei e fox”Y
“arguments”: |
“www.google.com”,

“www.facebook.com”

The handler will use the json structure to generate the system command and
execute i1t on the operating system using the system() functionality. For example, the
above json command would start a new firefox instance (if not already running), and
| open the urls www.google.com and www.facebook.com. The corresponding system

command will look like l

system (“firefox www.google.com www.facebook.com” |

0
r

The above statement will execute the command supplied in the quotes on the |
operating system and return a success status. If the command was successful, the
response given by the application will be piped to the response handler for further

processing and transmission back to the client.

A. Javascript Object Notation (JSON) Data

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy
for humans to read and write. It is easy for machines to parse and generate. It is based

on a subset of the JavaScript Programming Language, Standard ECMA-262 3rd

Edition - December 1999. JSON is a text format that is completely language

independent but uses conventions that are familiar to programmers of the C-family of

29

Janguages, including C, C++, Ci#, Java, JavaScript, Perl, Python, and many others.

These properties make JSON an ideal data-interchange language.

JSON is built on two structures:
1 A collection of name/value pairs. In various languages, this is realized as an

object, record, struct, dictionary, hash table, keyed list, or associative array.
2 An ordered list of values. In most languages, this is realized as an array,

vector, list, or sequence.

These are universal data structures. Virtually all modern programming languages
support them in one form or another. It makes sense that a data format that is

interchangeable with programming languages also be based on these structures.

1 An object is an unordered set of name/value pairs. An object begins with {

(left brace) and ends with } (right brace). Each name is followed by : (colon)

and the name/value pairs are separated by , (comma).

Fig 3.5.5.0bject Notation in JSON P!

2 An array is an ordered collection of values. An array begins with [(left

bracket) and ends with] (right bracket). Values are separated by , (comma).

Fig 3.5.6. Array Notation in JSON P!

30

3 A value can be a string in double quotes, or a number, or true or false or null,

or an object or an array. These structures can be nested.

value

number

object

array

false

null

Fig 3.5.7. Value Notation in JSON [

4 A string is a sequence of zero or more Unicode characters, wrapped in double
quotes, using backslash escapes. A character is represented as a single ‘ |

character string. A string is very much like a C or Java string. |

Any UNICODE character except
" or \ or control character

quotation mark

reverse solidus

solidus

backspace

formfeed

4 hexadecimal digits
Fig 3.5.8. String Notation in JSON !

31

5 A number is very much like a C or Java number, except that the octal and

hexadecimal formats are not used.

number

Fig 3.5.9. Number Notation in JSON ¥

3.5.8. Response Handler

The system response contains data given by any application that was executed by the
user. Response handler accepts this response and encapsulates it into the JSON
structure that can be understood by the client. The JSON Response is then forwarded

the HTTP Response Generator for generating a valid HTTP Response and

forwarding it to the communication socket for sending it over to the client.

3.5.9. HT'TP Response

After receiving and interpreting a request message, a server responds with an HTTP

response message. A typical HTTP Response look like

Response = Status-Line

* ((general-header

| response-header

| entity-header) CRLF)
CRLF

[message-becdy]

i | : 32

The first line of a Response message is the Status-Line, consisting of the
rotocol version followed by a numeric status code and its associated textual phrase,
p

with each element separated by SP characters. No CR or LF is allowed except in the

final CRLF sequence.

A http response would look something like this.

HTTP/1.1 200 OK
Date: Sun, 10 Oct 2010 23:26:07 GMT

Server: Apache/2.2.8 (Ubuntu) mod ssl/2.2.8

OpenSSL/0.9.8g ;
Tast-Modified: Sun, 26 Sep 2010 22:04:35 GMT

Accept-Ranges: bytes
Content-Length: 13
Connection: close
Content-Type: text/html

Hello world!

Content-Type specifies the Internet media type of the data conveyed by the

HTTP message, while Content-Length indicates its length in bytes. The HTTP/1.1
webserver publishes its ability to respond to requests for certain byte ranges of the
document by setting the header Accept-Ranges: bytes. This is useful, if the client
gds to have only certain portions of a resource sent by the server, which is called

e serving. When Connection: close is sent in a header, it means that the web server

will elose the TCP connection immediately after the transfer of this response.

Most of the header lines are optional. When Content-Length is missing the
é_,_,.‘l.'ength is determined in other ways. Chunked transfer encoding uses a chunk size of 0
- to mark the end of the content, Identity encoding without Content-Length reads

content until the socket is closed. A Content-Encoding like gzip can be used to

compress the transmitted data.

The string “Hello world!” is part of the http response body. The response body
can contain any information that can be used by the client and server to communicate
the required data. The http client shall send instructions to the server as http request

body, and the server shall respond to it with data in the response body.

3.5.10. HTTP Response Generator

The HTTP Response Generator, accepts the raw JSON Response Data from the
response handler and encapsulates into a valid HTTP 1.1 type Response. It adds the
* valid HTTP Headers required by the HTTP Response, succeeded by the HTTP Body
which contains the JSON Data. The finished HTTP Response data is piped to the I

communication socket for writing it back to the client network stream as a response to

the request it made. ;

3.6. Client Architecture

\
The client is based on the HTMLS5 Application model. HTMLS5 and CSS3 provide i
beautiful and user friendly, yet a very simplistic user interface for interacting with the
user. The underlying Javascript API is responsible for handling user interactions with

the application and sending the commands over to the network.

3.6.1. Graphical User Interface

A GUI should strive to combine beauty, simplicity and purpose to create a magical i

experience that is effortless and powerful. When people use the app for the first time, |

they should intuitively grasp the most important features. The web technology today

makes it possible to create rich and interactive user interfaces using HTMLS5, CSS3 i

and Javascript. HTML5 and CSS3, there are some interesting features born of the |
mbination of these two languages, like more powerful and interactive applications,

and a usability that is more focused on the user.
A. Why HTMLS and CSS3? ll

The reason to choose HTMLS is the versatility it offers and the at the same time keeps :
the resources very low. HTML5 is making the web platform more powerful in a

number of different areas. HTML5‘s new features allows for developers to manage

data, draw-and reproduce video and audio, with more semantic elements. It also has a
N€W canvas which makes it easier to integrate video elements. It introduces many
cutting-edge features that allows to create apps and websites with the functionality,
Speed, performance, and experience of desktop applications. But unlike desktop
applications, apps built on the web platform can reach a much broader audience using

a wider array of devices. High-performance features like 3D CSS, turbocharge web

it
34 - \

35,10, HTTP Response Generator

The HTTP Response Generator, accepts the raw JSON Response Data from the
response handler and encapsulates into a valid HTTP 1.1 type Response. It adds the
* valid HTTP Headers required by the HTTP Response, succeeded by the HTTP Body
which contains the JSON Data. The finished HTTP Response data is piped to the
communication socket for writing it back to the client network stream as a response to

the request it made.

3.6. Client Architecture

The client is based on the HTML5 Application model. HTMLS5 and CSS3 provide
beautiful and user friendly, yet a very simplistic user interface for interacting with the
user. The underlying Javascript API is responsible for handling user interactions with

the application and sending the commands over to the network.

3.6.1. Graphical User Interface

A GUI should strive to combine beauty, simplicity and purpose to create a magical
experience that is effortless and powerful. When people use the app for the first time,]
they should intuitively grasp the most important features. The web technology today |
makes it possible to create rich and interactive user interfaces using HTML5, CSS3
and Javascript. HTML5 and CSS3, there are some interesting features born of the

mbination of these two languages, like more powerful and interactive applications,

and a usability that is more focused on the user.
A. Why HTMLS5 and CSS3?

~ The reason to choose HTMLS is the versatility it offers and the at the same time kéeps
the resources very low. HTMLS5 is making the web platform more powerful in a
number of different areas. HTMLS5's new features allows for developers to manage
data, draw and reproduce-video-and audio, with more semantic elements. It also has a
new canvas which makes it easier to integrate video elements. It introduces many
cutting-edge features that allows to create apps and websites with the functionality,
speed, performance, and experience of desktop applications. But unlike desktop
applications, apps built on the web platform can reach a much broader audience using
a wider array of devices. High-performance features like 3D CSS, turbocharge web

34

- apps with amazing 3D graphics and special effects. Graphical APIs and technologies

let us create a compelling and immersive experience for your users and audience. To

putit simply, HTML5 accelerates the pace of innovation.

Fig. 3.6.1. HTML5 Main Logo

!
& CSS3, on the other hand, is all about design. It offers new possibilities of |
decoration with less markup language and less dependency on Javascript. A higher \
~ level of control allows you to change the colour of the text selection so that it matches
_ the rest of the site’s colour, make rounded box corners, drop-down menus, animated
buttons, multiple backgrounds, web APIs and use font-face technology, among other
features. It also allows the use of typographies that are not installed in the operating

system. With the introduction of CSS3 it has never been easier to create rich and

beautiful sites and applications in HTML. There are many new technologies and
extensions to CSS3 including: 2D Transformations, Transitions, 3D Transforms and

WebFonts to name just a few.

35

0 0O

Mini Mobile
CS§3 30 Transforms = 12+ e e o Ty e R e
(553 Transforms = 44 4+ 4+ 11+ 9+ 6+ 24 oy o
(553 Animation = AR S L Y L i 10 S N L S
€S53 Transitions = 4+ 44 b e T I 6+ 3+ T 10+

Fig. 3.6.2. Difterent Browser Comparison

Lo

HTMLS5 and CSS3 are supported by Google’s Chrome, Mozilla Firefox,

Opera, Safari and Internet Explorer.

3.6.2. Interaction Listener

Al the different visitors actions that a web page can respdnd to are called events or

interactions. An event represents the precise moment when something happens.

An interaction listener, listens to the events fired by the user interface, and
performs a task corresponding to the context of the graphic element. For example,
when the button to start a new process is pressed, it brings up a new popup window [

with a input field to accept the name of the application that user wants to run.

JjQuery is tailor-made to respond to events in an HTML page. Event methods

2’ . grigger or attach a function to an event handler for the selected elements. jQuery Event
\ 3 Handling really allows the developer to separate content and behaviour, that is, the
developer can define your content's structure first and only later take care of the

specific behaviour.

The term "fires" is often used with events. Example: "The keypress event fires

the moment you press a key".

Here are some common DOM events: 1

j | ! 36 0

&€ @ & 0 O

& R Mini Mobile
€S53 30 Transforms 12+ 10+ 4+ S 10 6+ 3+ e o
(553 Transforms * 4+ 4+ 4+ 11+ 9+ 6+ 3+ — 11+
€S53 Animation = A% TBE 4% N0 HIDV 6 4 — 0 121
CSS3 Transitions = 4+ 4+ 44114410 6+ 3+ e O

Fig. 3.6.2. Different Browser Comparison

HTML5 and CSS3 are supported by Google’s Chrome, Mozilla Firefox,

Opera, Safari and Internet Explorer.

3.6.2. Interaction Listener

All the different visitors actions that a web page can respond to are called events or

interactions. An event represents the precise moment when something happens.

An interaction listener, listens to the events fired by the user interface, and

performs a task corresponding to the context of the graphic element. For example,

when the button to start a new process is pressed, it brings up a new popup window I

with a input field to accept the name of the application that user wants to run. i

jQuery is tailor-made to respond to events in an HTML page. Event methods

) Qtrigger or attach a function to an event handler for the selected elements. jQuery Event
&

Handling really allows the developer to separate content and behaviour, that is, the

developer can define your content's structure first and only later take care of the

specific behaviour.

The term "fires" is often used with events. Example: "The keypress event fires

the moment you press a key".

Here are some common DOM events:

36

_%Click Keypress ‘Submit :Load‘ 4

Dblclick Keydown . ;Change ‘Resize =
‘Mouseenter iKeyup . %Focus .;Scroll
‘Mouseleave Blur . éUnioad

Table. 3.6.1. DOM Events

3.6.3. HT'TP Request Generator

The HTTP Request Generator accepts the data generated by the interaction listener,
and uses the information provided by the user to generate JSON Commands. The
JSON command is then sent over to the Communication APIL The network

communication api then sends the information to the server for the execution.

To put it simply, the HTTP Request Generator acts like a interface between
the user interface and the corresponding server understandable command. The
interaction is converted into a JSON Request Data structure which contains the

command that needs to be executed by the operating system. ﬁ

3.6.4. Network Communication API

There’s an army of associated JavaScript APIs. Among the ranks are a few new
O ptechnologies that open up how we communicate between client and server and across
“documents. XHR & XHR2 with CORS is the most common and simplistic method to

communicate between server and an html based client.

All event handlers (with the exception of XHR) receive an event object

containing a data property. This property includes the data sent as part of the message.

The event model (again with the exception of XHR) is mostly based around

onmessage and postMessage or send. For example:

// in the recipient code
recipient.onmessage = function (event) {

console.log('received message: ' + event.data);

37

// from the sender code

Lo recipient.postMessage (Bih. there'); Ty or
recipient.send ('hi there');

This is just a common model and isn’t the exactly the same among all these

technologies. The two key similarities are that they use:
1 A sending method (postMessage or send) on the recipient object, and

2 An event handler that listens for the message event and receives an event
object containing a data property.
Very importantly, most browsers only support sending strings from sender to

recipient, so we often need to JSON stringify and parse if we want to send anything

other than a string.
A. XIHIR & XHR2 with CORS

XHR can be both synchronous and asynchronous. XHR is the only API that
(purposely) supports synchronous requests, meaning the execution of code will block

.until the callback fires.

There’s nothing particularly new about XHR, but in XHR2 we can handle
uploads, and there’s a progress event to tell you how the upload or download is

getting on.

The super shiny new toy in XHR2 is its support for Cross-Origin Resource
Sharing (CORS). This means you can make an XHR request across domains, but only

if the server you’re connecting to allows it.

The request is as you’d expect from XHR:

var client = new XMLHttpRequest();
client.onreadystatechange = function () {

if (this.readyState == 4 && this.status == 200) {

38

alert ('Application Started:
this.responseText);

}
}i
client.open('GET', '/wire'):

client.send();

If our server responds with a CORS header, however, we can put our XHR

responder on another server.

When the following code is run in a browser that supports XHR2, the cross
domain request succeeds!
var client = new XMLHttpRequest();
client.onreadystatechange = function () {
if (this.readyState == 4 && this.status ==_200} {

alert ('The most awesome-est person to follow:
+ this.responseText);

}
}i
clfent . open (LGETY, = fwire'};

client.send();

" XHR usage is pretty common already, but XHR2 with CORS is a winner over
JSON-P, particularly as you have finer control over the request, can handle timeouts,

and can handle errors correctly.

Support for XHR & XHR2 with CORS

- ® XHR support is pretty solid nowadays (even though IE6 uses ActiveXObject
- to get it going)

e XHR2 with CORS: Safari & Mobile Safari, Firefox 3.5, Chrome and IE8 (via

XDomainRequest)

C. postMessage

This API is older, but it’s very useful if you want to get around the XHR
same-origin rules. If you have an <iframe> document that can accept onmessage

events from your origin (i.e., your site), then you can communicate across domains

(and origins).

For example, a page that accepts an onmessage event might contain code such

as this:
window.onmessage = function (event) {
if (event.origin == 'mytrustedsite.com') {
alert (!my trusted site said: ' '+ event.data):
}
}i

This gives you the ability to send strings across two mutually trusted domains.
(Remember that you can use JSON.stringify and JSON.parse to convert to an object

to and from string format.)
D. Support for postMessage

1 Chrome
2 Safari

3 Opera

4 Firefox

9-1E8

40

3.6.5. HT'TP Response Listener

The HTTP Response Listener accepts the response data given by the server and
analysis the HTTP data to strip out the JSON based response data. The JSON
response is then passed on to the interaction generator to make changes to the

graphical user interface.

3.6.60. Interaction Generator

The interaction generator displays the received information in the form of popups and
display boxes. The response given by the executed application is displayed back to the
user once the process has been completed. This lets the user know that the task he

wanted to do has been successfully completed.

3.7. Product Functions

The product functionality is split between two components, the server and the
external interface which works as a user front end. The server handles the requests
coming from the client and responds to it by ﬁroviding the appropriate data. It acts as
an interface between the client and the operating system. The external interface works
as a window to the operating system, and allows the user to manage and monitor the

machine by collaborating with the server to fetch the required data.

3.8. User Characteristics

The end user of the project will be any user who would want to operate his/her
operating system remotely from a handheld device. The handheld device will run a

HTML based user interface to the user’s personal computer.

3.9. Dependencies

The project is build on top of a fully functional High Performance Cluster,
neweraHPC, designed to work exclusively on TCP/IP protocol layer with extensible
plug-in support. Unlike other grid platforms it has a standard library including base
functions and a small client program to distribute tasks to node machines. It achieves
zero memory leaks even in the worst scenarios, and has a HTTP server integrated to

support the seamless communication required by the HTML front end.

41

RN

bbbl il i

i e b e S M i e B 51

Ney oSN

#alamdala

e

i il

i Bl b bislis

13
=

)
=
I

DI e

i

Chapter 4. DESIGN AND IMPLEMENTATION

4.1. Introduction

In this chapter we discuss the design and how the functionalities are implemented in
our project. For every project the designing and planning of a project plays a major
role in shaping out the final overview of the project and if the implementation is done
according to the design the project turns out to be in good shape else there is a
possibility of bug detection at later stages.

4.2. Design Analysis

If the broader topic of product development "blends the perspective of marketing,
design, and manufacturing into a single approach to product development," then
design is the act of taking the marketing information and creating the design of the
product to be manufactured. Systems design is therefore the process of defining and

developing systems to satisfy specified requirements of the user.

4.2.1. Data Flow Analysis

A data flow diagram (DFD) is a graphical representation of the "flow" of data through
an information system, modeling its process aspects. Often they are a preliminary step
used to create an overview of the system which can later be elaborated. DFDs can also

be used for the visualization of data processing (structured design).

A DFD shows what kinds of information will be input to and output from the
system, where the data will come from and go to, and where the data will be stored. It
does not show information about the timing of processes, or information about

whether processes will operate in sequence or in parallel.

Level 0

The Level 0 Data Flow Diagram, outlines the system and the individual actors that are

going to interact with the system. It also outlines the major information that will be

transferred between the actors and the system.

42

Request for
System

Remote Monitoring Request for

Information System Data
/ \k“*—mm__m__ T i
System
Operating Information Response
System User

Fig 4.2.1. Level 0 DFD showing the system and the actors.

Level 1
With Level 1, we get into the details of the system and list the processes that will be
involved in the functionality of the system. It helps us to outlme the functionalities

that need to be implemented and the data that will be required to execute the

Client
Interface

Response

JSON JSON
Response Request

JSON Data

Server JSON
Process Interpretor

4

Response
from OS

Command System
Response Command

Operating
System

Sl

i

Fig 4.2.2. Level 1 DFD outlining the processes involved in the system.

e o

4.2.2. Use Case Diagram

The Use case diagram is used to define the core elements and processes that make up
a system. The key elements are termed as "actors" and the processes are called "use
cases." The Use case diagram shows which actors interact with each use case. This

definition defines what a use case diagram is primarily made up of—actors and use

cases.

A use case diagram should capture the functional system components. It
embosses the business processes within the system. While you traverse your system,
you will learn significant system attributes that you model in the use case diagram.
Because use case diagrams are simple in nature, they are free of technical jargon, use
case diagrams are a great way to storyboard flows with users. Use case diagrams have
another critical role. Use case diagrams define the system requirements being

modeled and help write the scenarios later used in testing.

epi fof

e
Add[Task /~ Ko Task)

. i

Receive |
Task

iy X
7 Al @
3 Qo
SO
ﬁ,,...f"'"""“""“‘”"’”‘“-w-\&_ \(\ Sﬂﬂ{j
&%) 0 End Task > Interpret
R s = Task
2 % B
&, O
%
v : we ask
Monitor s EApC cervel
Resources Sme fot >~ —
R Execute e
Task
‘\”mwm,ﬂ"w»

Fig 4.2.3. Use Case Diagram, outlining the use cases.

Rpaues —

Server

Operating
System

P S—

-

It is important to outline the actors that will interact with the system and the
actions that the actors will perform on the system. This involves activities like starting

a new task, ending a task, or monitoring the system resources.

The server is also an actor that will interact with the system. So is the
operating system. The server will poll for the request coming from the clients, and

execute the commands on the operating system.

4.2.3. User Interaction

The interaction overview diagram is similar to the activity diagram both visualizing a
sequence of activities. The difference is that the individual activity in the interaction
overview diagram is pictured as a frame, which can contain interaction - or sequence
diagrams. These interaction/sequence diagrams are constructed with building blocks

like: sequence, communication, interaction overview and timing diagram.

:Client Front :Server :JSON
End Process Interpreter

- 4
; i\t:i> Task input :
/\ JSON Request)
User
JEON Data
System
1 Command
i Command
’1{ Response
H : .
| Response from
i 0s
51 - JSCON
¥ Response
i Response

Fig 4.2.4. User Interaction Diagram, outlining the user activities.

45

The nodes in the diagram connect these sequence diagrams, which can be

o in a specific order. With these elements the interaction overview diagram can be

plac

used to "deconstruct a complex scenario that would otherwise require multiple if-

then-else paths to be illustrated as a single sequence diagram".

Except for the activity nodes the other notation elements for interaction
overview diagrams are the same as for activity diagrams, such as initial, final,
decision, merge, fork and join nodes. The two new elements in the interaction

overview diagrams are the "interaction occurrences" and "interaction elements".

4.3. HTML Client Implementation

Client has been implemented in HTML5 with CSS3 over it to give it a graceful look
and feel. The user interface is user centred and as simple as possible so as to make the
user feel comfortable when using it. “Simple tasks should never require complex
procedures, and complex tasks should get tailored to the human hand and mind.”

Keeping that in mind, the task has been divided into simple activities.

Transitions are fast and clear; layout and typography are crisp and meaningful.

It is preferable to have App icons that are works of art in their own right.

The design concept of the client keeps in mind the information that the user
will need to know the most and the options that will be accessed most frequently.
Also, the design needs to be responsive enough so that it can be accessed on a mobile
phone, a tablet or on a browser. Just like a well-made tool, the design strives to
combine beauty, simplicity and purpose to create a magical experience that is
effortless and powerful. When people use the app for the first time, they will be able

to intuitively grasp the most important features.

46

e e A e =

St wm

mecren

.

e

Active Processes

PID" User Application %CPU - %Memory
1752 varun unity-panel-ser 15 ‘ 04
1580 varun dbus-daemon 10 0.1
1635 varun unity-2d-panel 8 0.6
965 root Xorg ; 12

Processor

CPUL " Ak v CPU

B £

Fig 4.3.1. Design concept of client on a Desktop Browser.

T

47

Search ° . Programs

Active Processes

Application = .. 7%Memory

unity-panel-ser 04
dbus-daemon - 0.1
unity-2d-panel 0.6
Xorg : 1.2

Processor

CPU 1

Fig 4.3.2. Design concept of client on a Mobile Browser.

48

4.3.1. Functionalities Implemented

A. Start Application

The start application has been implemented in javascript. When the start application

button is clicked on the screen, it brings down a small tray which has input field for
entering the command and a Go button which fires the event to the javascript

Interaction Listener. The command in then encapsulated into a JSON structure and

handed over to the Communication API for sending it to the server.

BN > _6¥ ¥

e

Fig 4.3.3. Snapshot of start functionality (the popup tray with the input field).

The jQuery or Javascript Code that is responsible for the Ul interactions is as follows:

function registerAppStarter(e){

if($(e).is("#newapp") &&

($("#start-app-container").css("display”) == "block” | |
e $("#search-container").css("display") == "block") && flag){
if($('#start-app-container').css("display")=="block"){
flag = true;
$('#start-app-container').trigger("click");
return;
}

49

else{
$(".popup_container").trigger("click", function(){
flag = false;
$("#newapp_button").trigger("click");

})s

return;

}

}

$("#start-app-container™).fadeIn(0);

var marginTop = $(“#start—app—popup“).height() -
$("header").height(); ‘
$("#start-app-popup").css("margin-top", -marginTop);
$("nav").css("-webkit-filter", "grayscale(0.7) blur2px)*);
$("#start-app-p0pup”).animate({"marginTop“:"e",
"opacity":"show"},

"slow", "easeOutExpo", function(){
$("#command-name") . focus();

1

$('#start-app—container').click(function() {

B W £ .

A=A

var marginTop = $("#start-app-popup").height() -
$("header").height();
$("#start-app-p0pup").animate({"marginTop":-marginTop,
"opacity":"hide"}, 600, "easeOutQuad”, function(){

$(#start-app-container').fadeOut(0);
$("nav").css("—webkit—Filter","grayscale(e) blur(@px)")
1)

1

$('.popup').click(function(event){
event.stopPropagation();

E

The code that sends the data to the server is as follows:

var json = 'start-app:' + command;
var url = location.href;
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange = function(){
if(xmlhttp.readyState == 4 && xmlhttp.status ==
200){
$("#command-name-submit").next("#response").html("Execution
Successfull");
$("#command-name").val("");
$("#command-name") . focus();

$(“#loader").FadeOut(zea);

}
xmlhttp.open("POST", url, true);

xmlhttp.send(json);

B. Search Programs

The search program functionality allows the user to use the autocomplete option to
select the command they want to execute. This way, the user doesn’t actually need to
memorize all the commands he uses. When the user starts typing, a drop down brings

up all the related commands.

51

L —

T
=]

gnome

{

gnomeucaléuiator
gnome-character-map
gnome;éodec-_instalt

é gndrne?controbcentéf
gnome-desktop-item-edit
gnome-file-share-properties

| gnome-font-viewer

Sk Tookel SRR S L S S e S LR S e R SR

Fig 4.3.4. Snapshot of the search autocomplete functionality.

The javascript interaction listener responsible for bringing up the autocomplete

functionality is as follows:
function loadAutocomplete(){

if(autocomplete_ flag == true) return;
$("#loader").fadeIn(200);
var json = 'list-apps,’;
var url = location.href;
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange = function(){
if(xmlhttp.readyState == 4 & & xmlhttp.status ==
200){
var apps = xmlhttp.responseText.split(",");
$("#command-name") .autocomplete({
source: apps
1)
$("#loader").fadeOut(200);
autocomplete_flag = false;

}
xmlhttp.open("POST", url, true);

xmlhttp.send(json);

52

4.3.2. Client HTML.5 Semantics

The top header is built upon the HTML <header> tag.

Fig 4.3.5. Snapshot of the Client Webpage Header.

<header>
<div class="button-left"></div>
<div class="button-right">

<img src="images/starttask-icon.png"
border="0" />

</div>
<div style="width:85%;margin:auto;margin-top:0.18em;font-
size:2em;color:#FFF;text-shadow:1px 1px 1px
rgba(0,0,0,0.3);">Wire</div>

</header>

The left navigation pane of the client has been built upon the nav tag of the HTMLS5

library.

53

A SR . T A

| 3

Programs -,

<nav>

<div class="app-button-container">

<div class="app-button" id="search_button">
<div class="app-icon">

</div>

<div class="app-name">Search</div>

</div>

<div class="app-button blue2">

<div class="app-icon">

Fig 4.3.6. Snapshot of the Client Navigation Pane.

54

PR -

- T

et ki e i b

e bkl s bl R s s i s R i B b

v.,,,..a..xmma ik ' o

</div>

¢<div class="app-name">Start</div>

</div>

<div class="app-button blue2">

<div class="app-icon">

¢

</div>

¢div class="app-name">Programs</div>

</div>

<div class="app-button red">

<div class="app-icon"><img src="images/endtask-icon.png”
/></div>

<div class="app-name">Kill</div> </div></div>

</nav>

<div class="popup_container" id="start-app-container®>

<div class="popup" id="start-app-popup"”>

<div class="container">

<input type="text" id="command-name" placeholder="command
apel, arg2, ..l /2

<input type="submit" value="Go" id="command-name-submit" />
<div class="response" id="response"></div>

</div>

</div>

</div>

<div class="popup_container" id="search-container">

<div class="popup" id="search-popup"”>

<div class="container">

<input type="text" id="search" placeholder="command name" />

<input type="submit" value="Search” id="search-submit"” />

A Thhor S, W s

55

<div class="response" id="response"></div>
¢/div>
¢/div>

¢/div>

4,3.2. Search Autocomplete Functionality

Fig. 4.3.7. Snapshot of Search AutoComplete Functionality.

A AT IR T

function loadAutocomplete(){
if(autocomplete_flag == true) return;
$("#loader").fadeIn(200);
var json = 'list-apps,’;
var url = location.href;
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange = function(){

if(xmlhttp.readyState == 4 && xmlhttp.status ==
200){

var apps = xmlhttp.responseText.split(",");
$("t#command-name").autocomplete ({
source: apps

1)
$("#loader").fadeOut(200);

56

autocomplete_flag = false;

}
xmlhttp.open("POST", url, true);

xmlhttp.send(json);

4.3.4. Ajax Loader Animation

The Ajax Loader has been implemented using the CSS3 animation frames. HTML5
and CSS3 provides powerful combination to implement animations as nice and

beautiful as were implemented using Flash in the earlier days.

connecting

Fig 4.3.8. Loader that appears when communicating with the server.

<div id="loader">

_e <div class="text">connecting</div>
<div class="circle"></div>

<div class="circlel"></div>

</div>

«Circle {

background-color: rgba(0,0,0,0);
border:5px solid rgba(@,183,229,0.9);
opacity:.9;

border-right:5px solid rgba(@,0,0,0);
border-left:5px solid rgba{0,0,0,0);
border-radius:50px;

box-shadow: @ @ 35px #2187e7;
width:50px;

height:50px;

margin:@ auto;
-moz-animation:spinPulse 1s infinite ease-in-out;
-webkit-animation:spinPulse 1s infinite linear;
’ | | |
.circlel { |
background-color: rgba(e,0,0,0);
border:5px solid rgba(0,183,229,0.9);

opacity:.c;

border-left:5px solid rgba(e,0,0,0);
border-right:5px solid rgba(e,0,0,0);
border-radius:50px;

box-shadow: © © 15px #2187e7;
width:30px;

height:30px;

margin:@ auto;
position:relative; ‘
top:-50px;
-moz-animation:spinoffPulse 1ls infinite linear;
-webkit-animation:spinoffPulse 1s infinite linear;
}
@-webkit-keyframes spinPulse {
0% {
-webkit-transform:rotate(160deg);
opacity:9; box-shadow:@ @ 1lpx #2187e7;

58

}
50% { -webkit-transform:rotate(145deg); opacity:1;}

100% { -webkit-transform:rotate(-320deg); opacity:0;

}

}
@-webkit-keyframes spinoffPulse {

0% { -webkit-transform:rotate(@deg); }
100% { -webkit-transform:rotate(36@deg); }
}
@-webkit-keyframes glow {
0% { text-shadow:0 © 30px #2187e7, -1px -1px black;

}
50% { text-shadow:@ © 45px #2187e7, -1px -1px black;
}
100% { text-shadow:® © 30px #2187e7, -1px -1px
black; } .
} |
!
4.4. Host Server ;

The server is build on top of a fully functional High Performance Cluster,
neweraHPC, designed to work exclusively on TCP/IP protocol layer with extensible
plug-in support. Unlike other grid platforms it has a standard library including base
functions and a small client program to distribute tasks to node machines. It achieves
zero memory leaks even in the worst scenarios, and has a HTTP server integrated to

support the seamless communication required by the HTML front end.

The server accepts GET and POST requests from the client, analyzes the
JSON data present in the request and uses it to generate system command that needs

fo be executed on the operating system.

#include <iostream>

#include <fstream>

59

._'1; ‘.
B-1 ’:

#include <sys/stat.h>
#include <stdlib.h>

#ifdef HAVE_CONFIG_H
#include <config.h>

#endif

#include <include/network.h>
#include <include/general.h>

#include <include/web_ui.h>

using namespace std;

namespace neweraHPC

{
; const char *request_type_strings[] =
{ g
"HTTP_INVALID", ¢
3 "HTTP_REQUEST GET", !
"HTTP_REQUEST_POST", g
"HTTP_RESPONSE_GET",
"HTTP_RESPONSE_POST"
s

rbtree_t *http_handlers;

void sig_action(int);

nhpc_status_t http_handler_register(const char

*handler_string, fnc_ptr_nhpc_t handler_function)
! |
fnc_ptr_nhpc_t *func_trigger_local = new fnc_ptr_nhpc_t; i
|

(*func_trigger_local) = handler_function;

60

nhpc_status_t rv = http_handlers-

>insert(func_trigger_local, handler_string);

return rv;

void http_init()

{
LOG_INFO("Initialize http handler");
http_handlers = new rbtree_t(NHPC_RBTREE_STR);

void http_init(nhpc_socket_t *sock)

{
http_data_t *http_data;

nhpc_status_t nrv read_headers(sock->headers, .

&http_data);
e ‘ http_data->sock = sock;
if(nrv == NHPC_SUCCESS)

{
LOG_INFO("HTTP Request type:

"<<request_type_strings[http_data->request_type]);
http_request(http_data);

delete_http_header(http_data);
delete http_data;

char* listApps()
i

FILE *fpipe;

- ' 61

char line[50];

char data[99999];

1INt ci=Rass:

if (!(fpipe = (FILE*)popen("cat compgen.out","r")))
{

LOG_INFO("Problems with pipe");

return NHPC_FAIL;
}

while (fgets(line, sizeof line, fpipe))

{
i =0
while(line[i] != '\n")
{
//cout<<line[i];
data[c++] = line[i]; {
A4+
}
E ; data[c++] = ',"; i
1 }
3 = data[c] = '\@’;

return data;

{ char* listProcess()
{
FILE *fpipel,
E | char stri[50], data[99999];
: int c=-1, i;
if(!(fpipel=(FILE*)popen("ps -a","r"))) |
: |

A ST g POl

perror("Problem with pipe");

else
{
while(fgets(strl,sizeof stri >Fpipel)!= NULL)
{
//printf("%s",str1);
if(c == -1){
cC = 0;
continue;
}
i=="@a;
while(stril[i] 1= \a")
{
data[c++] = stri[i];
i++;
}
gatal et a=rt wt
}
[/datalc] = *\o':
}
pclose(fpipel);

return data;

int 1istAppsJSON(nhpc_json_t *json)
{

FILE *fpipeil;

char stri[50], data[99999];

int. ¢=-1, i; =
if(!(fpipel=(FILE*)popen("cat compgen.out”,"r")))
{

perror("Problem with pipe");

return NHPC_FAIL;

else

json->add_element(JSON_ARRAY, "apps", NULL);
while(fgets(strl,sizeof strl ,fpipel)!= NULL)

{

if(strlen(strl) <= 1) continue;
i=0;
while(stri[i] != "\n")
{
strl[i]= strd[di];
it+;
}
strdi[a]ies iNa
json->add_element(JSON_OBJECT);
json->add_element (JSON_STRING, "name", stril);
json->close_element();
}
json->close_element();
/fdatalc] = "\e';
}
pclose(fpipel);
json->close_element();
return NHPC_SUCCESS;

int listProcessJSON(nhpc_json_t *json)
{

EILE: *fpipels

char stril[500];

int ¢c==1, 1i;
if(!(fpipel=(FILE*)popen(“ps u | sort -n","r")))
{

~ >strings[e]);
ﬂ”&strings[l]);

>strings[2]);

'E}strings[B]);

“i3strings[6]);

'£>strings[8]);

perror("Problem with pipe");

{

return NHPC_FATIL;

json->add_element (JSON_ARRAY, "process", NULL);
while(fgets(strl,sizeof strl ,fpipel)!= NULL)

if(c==-1){ c=0; continue;}
J/ppintf(¥sY;strl);
i=0;
while(stri[i] != '\n")
{
stri[i] = stri[i];
i++;
}
stnl[i]v=s b\asi
cout<<strlc<endl;
json->add_element (JSON_OBJECT);
string t *s;

s = nhpc_substr(stri, * 1)

json->add_element (ISON_STRING, =SER=,
json->add_element (JSON_STRING, Ehid,
json->add_element (JSON_STRING, eplly
json->add_element (JSON_STRING, "mem",
json->add_element (JSON_STRING, “tEy

json->add_element(JSON_STRING, istarty;

65

json->add_element (JSON_STRING, "time", S-

sstrings[9]);

json->add_element(JSON_STRING, "“command", s-

- >strings[10]);

//json->add_element(JSON_STRING, "ps", strl);
json->close_element();
i
json->close_element();
[fdatalc]lz=\aY;
}
pclose(fpipel);
json->close_element();

return NHPC_SUCCESS;

/* output test code*/

int outputProcess]SON(nhpc_json_t *json,char *command)
{

EILE *fplpel;

char stri[5ee0];

intec== el s

if(!(fpipel=(FILE*)popen(command,"r")))

{
perror("Problem with pipe");
return NHPC_FAIL;
) : “
else
{

json->add_element (JSON_ARRAY, "process", NULL);
while(fgets(strl,sizeof strl ,fpipel)!= NULL)
{

66

e N

e ——

>strings[@]);

}

if(c==-1){ c=0; continue;}
[f/opintf (B %ststrl);
1e=i@}
while(str1[i] != "\n")
{
strtll===stri[1];
A5
}
sthl[]R=t\e s
cout<<stric<endl;
json->add_element(JSON_OBJECT);
string_t *s;
geaanhpGesubstr(stnlyi\ns)s
json->add_element(JISON_STRING,

"output",

S_

//json->add_element(JSON_STRING, "ps", strl);

json->close_element();

json->close_element();
fldatale]i=iaNgrs

}

pclose(fpipel);

json->close_element();

return NHPC_ SUCCESS;

void http_request(http_data_t *http_data)

{

nhpc_socket_t *sock = http_data->sock;

if((http_data->request_type) == HTTP_REQUEST_GET

(http_data->request_type) == HTTP_REQUEST_POST)

{
if(((http_data->request_type) == HTTP_REQUEST_POST)
NHPC_SUCCESS)
{

if(sock->has_partial_content)

{

cout<<"Partial content:" << sock-

spartial_content << endl;

char type[20], command[100];
//memcpy (command, ©, 100);

_ int comma = strlen(sock->partial_content)
strlen(strstr(sock->partial_content, ","));
int i, len = strlen(sock->partial_content);

cout<<"Delimiter Position: "<<comma<<endl;

for(i = 9; i < comma; i++){
type[i] = sock->partial_content[i];

}
type[i] = \@";

9;

comma+l; i < len; i++){

int c

for(i
command[c++] = sock->partial_content[i];

}

command[c] = '\@';

cout<<"type: "<<type<<endl;
cout<<"command:

"<<command<<", "<<strlen(command)<<endl;

2

68

.

char* response = "";
if(strstr(type, "list-apps")){
nhpc_json_t *apps = new nhpc_json_t;
1istAppsISON(apps);
//response = listApps();

//cout<<"list:"<<response;
nhpc_strcpy(&http_data-
scustom_response_data, apps->get_stream());
}
/*if(strstr(type, "kill-app")){
//char *comm="kill -9 *;
//sprintf("%s %s",comm,command);
int code = system(comm);
nhpc_strcpy(&http_data—>cust0m_response“data,
nhpc_itostr(code));
}E/

b S ¢

if(strstr(type, "start-app")){

int code = system(command);

A W L

nhpc_strcpy(&http_data-
scustom_response_data, nhpc_itostr(code));
}

if(strstr(type, "shutdown-ps")){

int code = system("shutdown -h now");

nhpc_strcpy(&http_data->custom_response_data,
nhpc_itostr(code));

}

if(strstr(type, "search-app")){

char *comm="man ";

sprintf("%s %s",comm,command);

int code = system(comm);

nhpc_strcpy(&http_data->custom_response_data,
nhpc_itostr(code));

}

69

if(strstr(type, "list-ps")){
nhpc_json_t *process = new nhpc_json_t;
listProcessJSON(process);
//response = listProcess();
//cout<<"process:"<<response;
nhpc_strcpy(&http_data-
>custom_response_data, process->get_stream());
}
if(strstr(type, "programs-app")){
nhpc_json_t *process = new nhpc_json_t;
outputProcessJSON(process,command) ;
nhpc_strcpy(&http_data->custom_response_data,
process->get_stream());

}

//cout<<sock->partial contenlt<<endl;

string_t *tmp_str = nhpc_substr(http_data->request_page,
I/I);

char *app_name = tmp_str->strings[0];

LOG_INFO("Checking for: " << app_name);

fnc ptrinhpe .t *tunc _trigger local (fnc_ptr_nhpc_t
*)http_handlers->search(app_name);
if(func_trigger_local != NULL)
{
LOG_INFO("Found http handler: " << app_name);

nhpc_status_t nrv = (*func_trigger_local)(http_data);

nhpc_string_delete(tmp_str);

70

char *file_path = NULL;
file_path = nhpc_strconcat(HTTP_ROOT, http_data-

>request_page);

nhpc_size t file_size;

nhpc_status_t nrv;

if(!(http_data->custom_response_data))

nrv = nhpc_file_size(file_path, &file_size);
else
nrv = NHPC FILE;

if(nrv == NHPC_FILE_NOT_FOUND)
{

const char “*mssg = "HTTP/1.1 404 Content Not
Found\r\n\r\nContent Not Found\r\n";

nhpc_size_t size = strlen(mssg);

socket_send(sock, (char *)mssg, &size);

}
else if(nrv == NHPC DIRECTORY)

{
const——char._*mssg_ =" "HITP/1.1 404 " Content Not

Found\r\n\r\nServer Doesn't Know How To Handle Directory\r\n";

nhpc_size_t size = strlen(mssg);

] socket_send(sock, (char *)mssg, &size);
F 3 }
1
; else
— - ‘

j nhpc_headers_t *headers = new nhpc_headers_t;
headers->insert("HTTP/1.1 200 OK");

if(!(http_data->custom_response_data))

71

cout << "waiting for file" << endl;
FILE *fp = fopen(file_path, "r");

b char *file size str = nhpc_itostr(file_size);
headers->insert("Content-Length", file_size_str);

/* Deciding mime types */
if(nhpc_strcmp(file_path, "*.json"))
k. headers->insert("Content-Type:
application/json");
else if(nhpc_strcmp(file_path, "*.js"))
headers->insert("Content-Type:
application/javascript");
else if(nhpc_strcmp(file_path, "*.css"))

headers->insert("Content-Type: text/css");

headers->write(sock);

delete headers;

nhpc_string_delete(file_size_str);
nhpc_status_t nrv;

char buffer[10000];

nhpc_size_t len;

do
{
'E; bzero(buffer, sizeof(buffer));
3 len = fread(buffer, 1, sizeof(buffer), fp);

72

nrv = socket sendmsg(sock, buffer, &len);
twhile(!feof(fp) && errno != EPIPE);

fclose(fp);
}

else
{
nhpc_size_t len = strlen(http_data-
>custom_response_data);
headers->insert("Content-Length",
nhpc_itostr(len));
headers->insert("Connection: Keep-Alive");
headers->insert("Content-Type: application/json");
headers->insert("Keep-Alive: timeout=5, max=100");
headers->write(sock);
delete headers;
socket _sendmsg(sock, http_data-

>custom_response_data, &len); |

} :

nhpc_string delete(file_path);

}

else if((http_data->request_type) == HTTP_INVALID)

{

const char *mssg = SHTTR /1.1 403 Invalid

Request\r\n\r\nInvalid request\r\n";
nhpc_size t size = strlen(mssg);
socket_send(sock, (char *)mssg, &size);

}

nhpc_status_t http_get_file(const char **file path,
Rhpé: . socketarsset shci o=t Han - tapgatefilar-=const char
*host_addr)
{
nhpc_create tmp file or_dir(file_path, "/tmp/neweraHPC",
NHPC_FILE);

const char *command = nhpc_strconcat("GET y
target_file, " HTTP/1.1");

nhpc_headers_t *headers = new nhpc_headers t;

headers->insert(command);

headers->insert("User-Agent: neweraHPC");

headers->insert("Host", host_addr);

headers->write(sock);

delete headers;

nhpc_string delete((char *)command);

FILE *fp = fopen(*file_path, "w+");
nhpc_status_t nrv; {
nhpc_size_t size;

nhpc_size_t size_downloaded = 9;

nhpc_size t file size;

char buffer([10000];

nhpc_size_t header_size = 0;

do
{ |
bzero(buffer, sizeof(buffer)); |
size = sizeof(buffer);

header_size = 9; |

do

74

nrv = socket_recv(sock, buffer, &size);
}while(nrv != NHPC_SUCCESS && nrv != NHPC_EOF);

if(sock->have_headers == false)

{

nrv = nhpc_analyze_stream(sock, buffer, &size,

&header_size);
if(nrv == NHPC_SUCCESS)
{

http_content_length(sock->headers, &file_size);
nhpc_display_headers(sock);

fwrite((buffer + header_size), 1, (size - header_size),

tp);
size downloaded += (size - header_size);
}while(nrv != NHPC_EOF && size downloaded != file_size);
cout<<"Size Downloaded: "<<size downloaded<<endl;
: g fclose(fp);
% return nrv;
}

void http response(nhpc_socket_t *sock)

{

15

};

4.4.1. Functionalities Implemented

A. Command Interpreter

The command interpreter strips out the information about the type of command it
needs to perform from the HTTP Data that is receives from the client. It then uses that
command type to perform the corresponding operation. sock->partial _content gives the

HTTP Request Body from the client request that has been accepted.

char type[20], command[100];
int comma = strlen(sock->partial_content) -

strlen(strstr(sock->partial_content, ","));
int i, len = strlen(sock->partial_content);
cout<<"Delimiter Position: "<<comma<<endl;

for(i = 9; i < comma; i++){

type[i] = sock->partial_content[i];
}
type[i] = '\@‘;

int ¢ = 0@;

comma+l; i < len; i++){

]

for(i
command[c++] = sock->partial_content[i];

}

command[c] = '\@';

cout<<"type: "<<type<<endl;

cout<<"command: "<<command<<endl;

76

B. Autocomplete Request Heandler

When the server receives the request for listing the applications that are installed on
the user machine, it looks up the installed applications using the compgen package
installed on the linux operating system. It then encapsulates the application list into a

JSON Response Structure and sends it back to the client.

char* list_apps()
{

FILE *fpipe;

char line[50];
char data[99999];
1Nt ‘ei=50, 1

if (!(fpipe = (FILE*)popen("cat compgen.out"”,"r"))

{
LOG_INFO("Problems with pipe");

return NHPC_FAIL;
} {

while (fgets(line, sizeof line, fpipe))
{
52203
while(line[i] != "\n")
{
//cout<<line[i];
data[c++] = line[i];
it++;
}
data[c++] = ', ';
}
data iG] esek\ 0

return data;

77

C. Application Start Handler

When the server receives a request to start a new application, it strips out the
information about the application that needs to be started and the arguments that will

be passed to the application during execution time.
The command is provided by the command interpreter.
if(strstr(type, "start=app")){
int code = system(command);

nhpc_strcpy(&http_data->custom_response_data,
nhpc_itostr(code));

The application start handler then copies the response code returned by the
application execution to the response data which sent back to the client by the

communication api.

4.5. Running a Gnome Calculator using Wire

Step 1: Open the Wire App

T -

(<]

@0 4 Qw®
Fig. 4.5.1. Snapshot of Wire App Page.

78

Step 2: Start a new Application

L

o s s
Snapshot Of new App

Fig4.5.2. dropd6w11 menu.

Step 3: Type in the command name

gnome-calculator

R O e

Fig 4.5.3. Snapshot Of AutoComplete in action

Step 4: The Application is started

',',Ca_ -ulator
alculator Mode Help :

Fig 4.5.4. Snapshot Of Running application

Step 5: System Response

Chapter 5. CONCLUSION AND FUTURE SCOPE

So as discussed in our section 2.2 the X Window System (or X11) has long supported
the basic need of graphical user interfaces (GUIs) and rich input device capabilities
for networked computers. X11 was published in 1987, and there is no doubt that it is
doing a great job when it comes to high speed network computers. The problem with
X11 is that when using X across a network, bandwidth limitations can hinder the use
of bitmap-intensive applications that require rapidly updating large portions of the
screen with low latency. Even a relatively small uncompressed 640x480x24bit 30fps
video stream can easily outstrip the bandwidth of a 100Mbit network for a single
client. Another approach called NX Technology attempts to improve the performance
to the point that it can be used over a slow link. Others like Virtual Network
Computing (VNC) or Xpra solve some issues with the earlier approaches. But, to put
it simply, the best performance is achieved only on thick clients with relatively high

speed network connections.

At the same time, there has been a constant need to control one’s personal
computer or to reliably monitor the state of a program, from handheld devices like
mobile phones or tablet computers. With high end smartphones coming up, be it
Android, i0S or the Windows platform, developers have tried to successfully build
very native VNC applications for the handheld devices. They work great if the device
is connected on a WiFi Network or has a 3G connection, but the bandwidth
consumption is still too much. In developing countries like India, where the network
providers are still trying to bring the 3G technology to masses, the cost of running a

VNC application on a mobile device is too high.

The utility will allow the user to manage processes on his system as well as
monitor the running processes, all from a handheld device or even a browser running

on a remote computer. The core sentiment behind this approach is to minimize the

- data being transferred. This can be accomplished by using a lightweight data

interchange format called JSON (Javascript Object Notation) for the transfer of only
relevant data, unlike the X windows server, which transfers large amount of bitmap
Image data across the network. The data being transferred on network can further be

reduced by using GZIP compression which is supported by most modern browsers,

81

both mobile and computer based. The user interface of the application will be based

on HTMLS and Cascading Style Sheets.

i Technology Bandwidth Graphics Display Message passed using Portable
X Windows [High Yes Bit Map Form No
System
Virtual High Yes Bit Map Form Yes
Network
Computing
(VNC)
NX Medium Yes Encrypted SSH Sessions Yes
Technology
+ Remote Medium Yes T-120 Yes
- Desktop
F X
c F Protocol (RDP)
e [RSML Low No JSON Yes

TABLE 5.1. : Comparison between protocols

From the table shown above we can see the major differences between the protocols

that exist and is being recommended. RSML although cannot display the graphic
interface at the user end but still can be used for networks where high bandwidth is
not an option. Also the portability clause is easily matched using RSML because of a

lightweight front end.

With protocols such as VNC which provide an excellent graphic interface to the client
because of the bit map transfer over the network a huge bandwidth is required which
we find seldom in developing countries where 3G is still a new concept and therefore
is quite costly. The same problem exists with other technologies too apart from the
portability issues, no matter how well they perform on a high bandwidth network
when it comes the using such technologies over a 2G mobile network they all tend to

collapse.

82

Chapter 6. References

[1] R. W. Scheifler, J. Gettys, The X Window System, Digital Equipment
Corporation and MIT Project Athena, April, 1986.

[2] T. Richardson, Q. Stafford-Fraser, K. R. WOOD, A. HOPPER, Virtual
Network Computing, The Olivetti & Oracle Research Laboratory, February, 1998.

[3] https://market.android.com/ as accessed in August, 2012.

(4] http://www.w3schools.com/ajax as accessed in August, 2012,

[5] http://www json.org/ as accessed in August, 2012.

[6] http://json-p.org/ as accessed in August, 2012.

[7] http://stackoverflow.com/questions/14511 0/c-performance-vs-java-c as
accessed in August, 2012.

[8] http://www.teamviewer.com/images/pdf/Teamviewer_Secm'ityStatcment.pdf
last updated in May, 2012.

[9] http://html5demos.com/ and http://www.w3.org/html/logo/ as accessed in
September,2012.

[10] http://www.echow.com/ list_7408003 vnc-bandwidth-requirements.html as
accessed in September, 2012.

[11] http://www.w3.org/Protocols/rfc261 6/rfc2616-sec6.html

[12] http://www.w3.org/Protocols/rfc261 6/rfc2616-sec5.html

[13] http://www.w3.org/Protocols/rfc2616/rfc261 6-secd.html

[14] http://www.w3.org/TR/css3-animations/

[15] http://www.w3 schools.com/html/html5_intro.asp

[16] http://www.cgisecurity.com/lib/XmIHTTPRequest. shtml

[17] http://html5 doctor.com/methods-of-communication/

[18] http://www.w3.org/TR/XMLHttpRequest/

[19] http://www.w3schools.com/xml/xml_http.asp

[20] htlp:/fwww.w3Schoois.com/ajax/ajaxixmlhttprequest_send.asp

[21] Agile Software Development, Software Engineering (9th Edition) by lan

Sommerville

83

[22] Design and Implementation, Software Engineering (9th Edition) by Ian

Sommerville

84

