JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2024

B.Tech-V Semester (ECE)

COURSE CODE(CREDITS): 18B11EC511 (4)

MAX. MARKS: 15

COURSE NAME: PRINCIPLES OF DIGITAL SIGNAL PROCESSING

COURSE INSTRUCTORS:

MAX. TIME: 1 Hour

Note: (a) All questions are compulsory.

- (b) Marks are indicated against each question in square brackets.
- (c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems
- Q1. Consider the system: $y[n] = T[x[n]] = x[n^2]$
- (a) Determine if the system is time invariant.
- (b) Assume that the signal, x[n] is applied to the system is: $x[n] = \begin{cases} 1, 0 \le n \le 3 \\ 0, elsewhere \end{cases}$
- (i) Determine and sketch the signal y[n] = T[x[n]].
- (ii) Sketch the signal y2[n] = y[n-2].
- (iii) Determine and sketch the signal x2[n] = x[n-2]
- (iv) Sketch the signal y3[n] = T[x2[n]]
- (v) Compare and write conclusions about the signals y2[n] and y3[n].
- (c) If the impulse response to the given system is: h[n] = (n+1) u[n], then determine the system output, y[n] for the input, x[n] given above.

$$[0.5 + 5X0.5 + 3 = 6]CO1$$

Q2. Determine if the following system is (a) Stable, (b) Causal, (c) Time Invariant (d) Linear

$$y[n] = x[n] + nx[n+1]$$

[4X1.5 = 6]CO1

- Q3. Explain how the following properties of LTI system can help in reducing the computation time for determining the output of the system for any given input:
- (a) Commutative Property.
- (b) Associative Property.
- (c) Distributive Property.

[3]CO4