JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2024

B.Tech-VII Semester (CSE/BT/BI)

COURSE CODE (CREDITS): 22B1WPH731(3)

MAX. MARKS: 25

COURSE NAME: Computational Nanotechnology

COURSE INSTRUCTORS: Dr. Santu Baidya

MAX. TIME: 1 Hour 30 Minutes

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	CO	Marks
Q1	Write down total Hamiltonian for any material with N	CO-1	3+2
	electrons and Z number of atoms and explain each term.	Interpretation	
	What is Born-Oppenheimer Hamiltonian?	Sept.	Managara (Tab)
Q2	Using Taylor series expansion, find y at $x=0.1$, 0.2	CO-3	3
	correct to three significant digit given $\frac{dy}{dx} - 2y = 3e^x$,		
	y(0) = 0.		
Q3	What is Hartree approximation and Hartree product?	CO-5	2+3+2
	How does Hartree approximation solve many-electron		
	problem in materials? State the disadvantages of		
	Hartree approximation theory.		
Q4	What is N electron Slater determinant for many	CO-1	2+3
	electrons wave function in Hartree-Fock		
	approximation? Prove that Pauli exclusion principle and		
	fermion anti-symmetry properties hold true with Slater		
	determinant wave function.		
Q5	Write the numerical methods for solving eigenvalues	CO-3	2+3
a de	and eigenstates of a particle inside a 1d infinite		
	potential quantum well $V(x) = 0$; $0 \le x \le$		
	a and $V(x) = \infty$; elsewhere, where a is the width of	High states	A THE WILL BOX
4	the well. Write a python code to plot probability density	400000000000000000000000000000000000000	Silver and produced
	for a particle inside a quantum well.		