JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2024

B.Tech-V Semester (CE)

COURSE CODE (CREDITS): 18B11CE515(4)

MAX. MARKS: 25

COURSE NAME: Design of Concrete Structures

COURSE INSTRUCTORS: Dr. Tanmay Gupta

MAX. TIME: 1 Hour 30 Minutes

Note: (a) All questions are compulsory. (b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems. IS 456:2000 is allowed

Q.No	Question	CO	Marks
Q.1	At the limit state of collapse, an RC beam is subjected to flexural moment 200 kNm, shear force 20 kN, and torsional moment of 9 kNm. The beam is 300 mm wide and has a gross depth of 425 mm, with an effective cover of 25mm. Calculate its equivalent nominal shear stress?	CO-5	3
Q.2	Evaluate the development length in compression for a 20 mm diameter deformed bar of grade Fe 415 embedded in concrete of grade M 25, whose design bond stress is 1.40 N/mm ²	CO-3	3
Q.3	Find out the effective width of the simply supported flanged beam with $D_f = 100$ mm, $l_0 = 12000$ mm, $b_w = 350$ mm having $d = 500$ mm, Fe 415 steel grade and M 20 grade?	CO-2	2
Q.4	Prove that the doubly reinforced rectangular RCC beam section having $d = 600$ mm, reinforced with 6-25 T at bottom and 4-20 T at top, $b = 350$ mm, $d' = 60$ mm, Fe 415 steel grade and M 20 grade is over reinforced.	CO-2	4
Q.5	Determine the tensile steel of the cantilever beam shown below subjected to service-imposed load of 11.5 kN/m using M 20 and Fe 415, span 4m. Calculate short- and long-term deflections and check the requirements of IS 456 regarding the deflection.	CO-3	9
OHI COVOR	0000		setescherunal(sm
	550		
	Explain in detail with diagram four different cases of flanged beams (write all formulations too)? Why it is essential to categorize in order to solve flanged beams?	CO-2	4