JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2024

B.Tech-I Semester (CSE/IT/ECE/CE)

COURSE CODE (CREDITS): 18B11MA111 (4)

MAX. MARKS: 25

COURSE NAME: ENGINEERING MATHEMATICS-I

COURSE INSTRUCTORS: MDS, PKP*, NKT, RKB

MAX. TIME: 1 Hour 30 Minutes

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems.

Q. No.	Question	CO	Marks
Q1	Check whether the following matrix is orthogonal or not $A = \frac{1}{9} \begin{bmatrix} -8 & 4 & 1 \\ 1 & 4 & -8 \\ 4 & 7 & 4 \end{bmatrix}$ Also, compute A^{-1} .	CO-1	3
Q2	Using row echelon form find the rank of following matrix: $ \begin{bmatrix} 1 & -5 & 2 & 0 \\ 4 & -1 & 0 & 12 \\ 0 & -2 & 4 & -8 \end{bmatrix} $	CO-1	3
Q3	$\begin{bmatrix} 4 & -1 & 0 & 12 \\ 0 & -2 & 4 & -8 \end{bmatrix}$ If $u = e^{xyz}$, find $\frac{\partial^3 u}{\partial x \partial y \partial z}$.	CO-2	3
Q4	Show that $\lim_{(x,y)\to(0,0)} \frac{y^2-x^2}{y^2+x^2}$ does not exists.	CO-2	3
Q5	Using chain rule compute $\partial f/\partial t$ given that $f(x, y, z) = xyz$, where $x = st, y = s + t, z = t$.	CO-2	3
Q6	Find the critical points of $f(x,y) = x^2 + y^2 - xy - 2x + y$ and obtain local maxima and minima.	CO-2	3.5
Q7	Using double integrals compute the volume of a sphere of radius "a" units.	CO-2	3.5
Q8	Find the equation of the line passing through the points $(1,2,3)$ and $(4,0,1)$.	CO-3	3