JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2024

B.Tech. - V Semester (CE)

COURSE CODE(CREDITS): 18B11CE514 (3)

MAX. MARKS: 25

COURSE NAME: FOUNDATION ENGINEERING

COURSE INSTRUCTORS: Saurabh Rawat

MAX. TIME: 1 Hour 30 Minutes

Note: (a) All questions are compulsory.

(b) Marks are indicated against each question in square brackets.

(c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q. No	Question	CO	Marks
Q1	Referring to Fig. 1, compute the settlement that would result if the load intensity	CO-1	[8]
	is equal to safe bearing capacity of the soil allowed to act on the footing with a	CO-2	
	factor of safety of 3. The natural Ground Water Table is at the ground surface.	CO-3	
	Assume load spread of 2V:1H.		
	Ground Water Table Ground Surface		
	Clay properties: $u_L = 30\%$ 1.5 m		
	G = 2.7 $W = 40%$		
	$c = 0.5 \text{ kg/cm}^2$ $\varphi = 0^\circ$ $B = 2.0 \text{ m}$	n Mirwoniene	From Schallennin
	$N_c = 6.9$		
	Sand	il Marcon reside	
	Fig. 1	ed estamation	
Q2	With reference to the Standard Penetration Test (SPT):	CO-3	[2+1+3
	a) Enlist the soil parameters which can be determined using SPT.		= 6]

E-partito	b) Define the term 'set' and SPT N – value.		
	c) Explain the corrections applied for obtaining the correct SPT N – value.		
Q3	The soil at a building site consists of medium sand with $\gamma = 18 \text{ kN/m}^3$, $c' = 0$, φ'	CO-2	[6]
	= 32° and water table is at 3 m below the ground surface. A 2.5 m square footing	CO-3	
	is to be placed at 1.5 m below the ground surface. Compute the safe bearing		
	capacity of the footing. [For $\varphi = 32^{\circ}$, $N_q = 20.3$ and $N_y = 19.7$]		
Q4	A square footing located at a depth 1.5 m from the ground surface carries a	CO-2	[5]
	column load of 150 kN. The soil is submerged having an effective unit weight of	CO-3	
	1.1 kN/m ³ and an angle of shearing resistance of 30°. Find the size of footing		
	using Terzaghi's Theory for FoS = 3. For $\varphi = 30^{\circ}$, $N_q = 10$ and $N_{\gamma} = 6.0$		