JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -2 EXAMINATION- 2024

B.Tech-V Semester (CSE/IT/BI/BT)

COURSE CODE (CREDITS): 20B1WCI531 (02)

MAX. MARKS: 25

COURSE NAME: Foundation of Data Science and Visualization

COURSE INSTRUCTORS: RBT, RKI

MAX. TIME: 1 Hour 30 Minutes

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required

for solving problems

ر. No			Qu	estion			CO	Marks
Q1	 a) The possible values of the correlation coefficient lies between and b) If f(x) = 12x⁴-2x³+9x²+5, then the first order necessary condition for either maxima or minima of f(x) is c) The restrictions on the possible values of the solution to the optimization problem are called d) Correlation between number of customers and sales (in rupees) is 0.8. Does the correlation change if the sale is measured in thousand of rupees? e) Coefficient of correlation between X and Y is 0.3. Their covariance is 9. The variance of X is 16. Find the standard deviation of Y series is 					COI	1 * 5	
Q2	 a) Explain weighted least square method with an example. OR Explain gradient descent in detail. b) The net profit is about 10% of the sales. The scatter plot between sales and profit can be thought of as a line (True/ False). 							4+1
Q3	a) A college professor believes that if the grade for internal examination is high in a class, the grade for external examination will also be high. A random sample of 10 students in that class was selected, and the data is given below. Fit a linear curve to the data.							3+2
	that class was	s selected, and Internal Exam	External Exam	Internal Exam	External Exam	to the data.		
4		15	49	16	52		300	
	***	18	58	24	62		1000	
BESTELL		24	58	11	30		September 1	decommone
		22	60	24	59		100	
		19	63	16	49			
		Exp	lain polynomia	OR al regression i	n detail.			

	Ī				•				•	٦
(1000)	b) Lis	t the assumptions i	n the regres	sion ana	lysis.					
Q4	inc inj	crease of blood pres ection will be, in g	is administered to each of the 12 patients resulted in the following sessure: $5, 2, 8, -1, 3, 0, 6, -2, 1, 5, 0, 4$. Can it be concluded that the general, accompanied by an increase in blood pressure? (Test at 5 % It test for $(v = 11) = t_{0.10}$ for two-tailed test for $(v = 11) = 1.80$).						3+2	
	b) Ex lan of content	experienced flight ading is typically for a faulty landing include that verbal pads to raise them?	instructors bllowed by a is typically braise tends or is some or	have classification to lower ther explanation	aimed landing od by a r perfor lanation	that praise to on the next in improved mance level in possible?	for an exceptionally fur attempt, whereas criticis landing. Should we the s, whereas verbal criticis	m tus m		
Q5	 a) A sample of 100 bulbs of brand A gave a mean lifetime of 1200 h, with an SD of 70 h, while another sample of 120 bulb of brand B gave a mean lifetime of 1150 h, with a SD of 85 h. Can we conclude that brand A bulbs are superior to brand B? (Test at 5 % LOS). The critical values for some standard LOS are given in the following table both for Two-tailed and one-tailed tests. 							CO4	2.5 + 2.5	(
		Nature of test	1% (0.01)	2% (0.		OS 5% (0.05)	10% (0.1)			
		Two-tailed	$ \mathbf{z}\alpha = 2.58$	$ z\alpha =2.$		$ \mathbf{z}\alpha = 1.96$	$ \mathbf{z}\alpha = 1.645$			
		Right-tailed	$z\alpha = 2.33$	$z\alpha = 2$		$z\alpha = 1.645$	$z\alpha = 1.28$			
		Left-tailed	$z\alpha = -2.33$	$z\alpha = -2$.055	$z\alpha = -1.645$	$z\alpha = -1.28$			
	veri that	ify this claim, a stu	dy of 20 ran water uses o	domly s of these 2	elected 20 hom	homes was	is 350 gallons a day. To instigated with the result bllows. Do the data			
			340	344	362	375				
			356	386	354	364				
11 11 12 12			332	402	340	355				3
										1
			362	322	372	324				1