Jaypee University of Information Technology, Waknaghat

TEST-2 Examination - October 2024

B.Tech - VII Semester (ALL)

Course Code/Credits: 22B1WMA731/3

Max. Marks: 25

Course Title: Linear Algebra for Data Science & Machine Learning

Course Instructor: RAD

Max. Time: 90 mins

Note: (a) ALL questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required.

		o make	3/10/10/10
Q.No	Question	CO	Marks
Q1	Which of the following is a <i>subspace</i> of \mathbb{R}^3 ? Justify your answer.	CO-1	4
	(a) $\mathbf{W}_1 = \{(x_1, x_2, 1) \mid x_1, x_2 \in \mathbb{R}\}$		
	(b) $\mathbf{W}_2 = \{(x_1, x_1 + x_3, x_3) \mid x_1, x_3 \in \mathbb{R}\}$		R SIZES
Q2	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be linear transformation:	CO-1	4
	$\mathbf{T}\left[\left(\begin{array}{c}1\\2\end{array}\right)\right] \ = \ \left(\begin{array}{c}1\\2\end{array}\right); \mathbf{T}\left[\left(\begin{array}{c}2\\3\end{array}\right)\right] \ = \ \left(\begin{array}{c}3\\6\end{array}\right)$		
	(a) Compute $T\left[\begin{pmatrix} 3 \\ 6 \end{pmatrix}\right]$.		
	(b) Find a non-zero vector \mathbf{v} such that $\mathbf{T}(\mathbf{v}) = 0$.		
Q3	Consider the vectors from \mathbb{R}^3 :	CO-1	4
	$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, v_3 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$		
	(a) Determine if the set $\{v_1, v_2, v_3\}$ is linearly independent.	Market Mark	nited assess
	(b) Find a linearly dependence relation among v_1, v_2, v_3 .		
Q4	The linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^3$ is represented by matrix:	CO-1	5
	$\mathbf{A} = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$		
	(a) Find the kernel of the linear transformation T.		
	(b) Write down the basis for the nullspace of A.		
	(c) Give the values of rank(T) and rank(A).		

Q.No	Question	CO	Marks
Q5	Determine the <i>column space</i> of the following 3×4 matrix: $\mathbf{B} = \begin{bmatrix} 1 & -10 & -24 & -42 \\ 1 & -8 & -18 & -32 \\ -2 & 20 & 51 & 87 \end{bmatrix}$	CO-1	4
		00.0	
Q6	Let W be a subspace of \mathbb{R}^n and \mathbf{W}^{\perp} denote its <i>orthogonal complement</i> . Suppose that \mathbf{W}_1 is a subspace of \mathbb{R}^n such that if $\mathbf{x} \in \mathbf{W}_1$, then $\mathbf{x}^{\mathbf{T}}\mathbf{u} = 0$ for all $\mathbf{u} \in \mathbf{W}^{\perp}$:	CO-2	2
	(a) $\dim(\mathbf{W}_1^{\perp}) \leq \dim(\mathbf{W}^{\perp})$	<i>(</i> *\	
	(b) $\dim(\mathbf{W}_1^{\perp}) \leq \dim(\mathbf{W})$	0	100
	(c) $\dim(\mathbf{W}_1^{\perp}) \geq \dim(\mathbf{W}^{\perp})$		
	$(\mathrm{d}) \ \dim(W_1^\perp) \geq \dim(W)$		100
	Which of the above statement is true? Justify your answer.		And House,
Q7	In a manufacturing process, a robotic arm is designed to place objects onto a conveyor belt. The arm moves in 3D space, and the conveyor belt lies on the xy -plane that is represented by the subspace W spanned by the vectors $(1,0,0)^T$ and $(0,1,0)^T$. The current position of the robotic arm is given by the vector $\mathbf{v} = (3,4,5)^T$.	CO-2	2
	(a) Find the <i>orthogonal projection</i> of the robotic arm's position vector v onto <i>xy</i> -plane.	et scene	To the second
	(b) What does $Proj_{\mathbf{W}}(\mathbf{v})$ represent?		

* * * * * * * * *