=

o

i e s

R R e

Jaypee University of Informatlon Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num. $P25033 Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

& Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately

brought to the notice of the Librarian in writing.

ST

Learning Resource Centre

llll)llllllllllllﬂ/lllllllllllll/lllllllllll

gy

DESIGN OF A HIGH SPEED UART

By
_ DEEPAK KUMAR-051002
LAXMIKANT UPADHYAY-051018
RITESH PANDEY-051100

MAY-2009
Submitted in partial fulfillment of the Degree of

Baéhelors of Technology
DEPARTMENT OF E.C.E.

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT

CERTIFICATE

This is to certify that the work entitled, “Design of a High Speed UART ” submitted by Deepak
Kumar (051002), Laxmikant Upadhyay(051018) and Ritesh Pandey (051100) in fulfillment for

the award of degree of Bachelor of Technology in Electronics and Communication of Jaypee
University of Information Technology has been carried out under my supervision. This work has
not been submitted partially or wholly to any other University or Institute for the award of this or

any other degree or diploma.

Supervisor:

Mr#Vipin Balyan Prof”Sunil V. Bhooshan ('“‘

Department of ECE H.O0.D. (ECE) .-;?"E |
i

Jaypee University of Information Technology JUIT, Waknaghat ?

Waknaghat, Himachal Pradesh Himachal Pradesh g

ACKNOWLEDGEMMENT I

We would like to take the opportunity to express our deep sense of acknowledgment to our
project guide Mr. Vipin Baliyan, Department of ECE, whose help, stimulating suggestions and

i
encouragement helped us in all the stages of the project. His overly enthusiasm and his view for i

providing ‘Only high quality work and not less has made a deep impression on us. §|
We are also thankful to Prof. Sunil Bhooshan and other staff members who co-operated with us i
in learning about the working of the software and guiding us throughout the semester. g”
Last, but not the least, we would like to thank everyone who has contributed for successful]
completion of our project. ﬂ ‘

- > Uy o“«raﬂr ; ! 'ﬂ
e ’ s

} V b v ¥sn a zw \ “‘

“Deepak Kumar Laxmikant Upadhyay Ritesh Pande / li"-|

TABLE OF CONTENTS

B B O 1 s AR 1
Listoof ABBreviationse s s v vomsmmmimti i v masssssa st ssmmed
ABECE v s v mo R A S PS5 Th hs arron s et s some 3
Chapter 1 Tntroduetiom v e s e s s 5555 5 a s s s 6
> 1.1: Serial TranSmiSSION..........uvviiiiniriiiiiieiiieieeeiirainns 6
R T — 7
Chapter 2: Description of Hardware Used................ccoovvvveinennn... 12
P 218 VIFIBR B.svinsscovamnmnn vusnsswonsibemenswssind sios g vsss sy s 12
Chapter 3: Description of Programming Language Used................... 14
T D o e L NEE s U 14
P 328 VHDL vvsnsiimenvmmons sy srmears i o s s s iates 14
» 3.3: Programming Coﬁcepts .. 17
Chapter 4: Tools Used..........ovvviiiiriiiiiiiii e, 20
Bl s AN ISE s sumunn s mommndia minn domie Ghome s nmamsn snnns kanes 20
P P W OIS i foneseimmsoovsmpsmamms s A S SR SR 21
Chapter 5: Results and Simulations................cocovvviiiiiiiniinn.n. 23
IR R R P P 213

IR LT L 26

A

» 5.3: Baud-Rate €15y oz o) R

> 5.4 Main UART......civiiimnnniiniinoronsnisnssinsssesiioen .32

e Conclusion................... SRS T TS T P 45

¢ Bibliographyt csssmminciisis samerssnnsnes R 46

LIST OF FIGURES

Figure 1.1: Standard Data Serial BRI 5 555 1505 i s s b s
Figure 1.2: Communication b/w two COMPULBES. o s b s s w4 i i m s
Figure 1.3: UART COMPONENLS..........ccuveevereesneesesoiisooeooe
PB4, T KTHOE TSE. cunsvsiioncssiniiaussnsmannme sermasinmins sepess sssssyis sassso .
Figure 4.2: ModelSim......... T TN,
Figure 5.1: SM chart of Transmitter................ccoocoeveiiinoii
Figure 5.2: RTL Schematic of Transmitter..................................._
Figure 5.3: Technology Schematic 1 of Transmitter..............................._
Figure 5.4: Technology Schematic 2 of Transmitter...............

Figure 5.5: Design Summary of Transmitter......................................._..__
Figure 5.6: SM Chart of ReCeiVer................ccccvuveemviiiisesio
Figure 5.7: RTL Schematic of RECBIVEE: v v i Mt e vy,
Figure 5.8: Technology Schemat.ié OF R CRIVEL s iiinsini s nrnssmanmesmmrssnamenmmaes —
Figure 5.9: Design Summary of Receiver..............c.c....ooooiiii

Figure 5.10: Baud-Rate Generator...................cccoceuvvvvoueuss

Figure 5.12: Technology Schematic of Baud-Rate Generator

Figure 5.13: Design Summary of Baud-Rate Generator........................... 31
Figure 5.14: RTL Schematic of UART............oovvvvviiieii T T . 32
Figure 5.15: Technology Schematic 0) R O OO SO 33
Figure 5.16: Technology Schematic 2 0f UART............ccovvvveeiiiieeei 33

1

e Figure 5.17: Technology Schematic 3 of UART..........ccooviniiiiiiiiiii 34

o Figure 5.18:; Design Summary of UARTcccooiiiiiiiinind 34

o FIBUIE 5,190 00 coniivisiiiinsh e diny s /3 73 @r i et Tna v dhuw s i ¥yt amt dbia v aons 43

& Fiplie 3,20, 0 cvuiii i voiinshnas i pri v n sl oo 1 o i iad 634 S Tevtivsmuone nevmav s sess 44

¢ Flphiei5.2)] .usaammnn s aiatbmmmadediobrpo ipeiinmsnon sooos vveraiers 44
"

LIST OF ABBREVIATIONS
ANBLcvrmemmmenss e American National Standard Information
72N 21 1 (| American Standard Code for Information [nterchange
ABMBL.. .ococvcsmmsmmmn Advanced Silicon Modular Block
L0l 21 1) FERERT———————— Central Processing Units
757 1 SO TS Department of Defense
2 R — Framing Error
FPG A vromssvrmmimvins Field Programmable Gate Arrays
B s wvasomussimmainiiammmmss Hardware Description Language
IBEE. ccusms s imsiispanannes Institution of Electrical and Electronics Engineers
LSB..viviiiiiniiriniininnins Least Significant Bit
8 ————————— Overrun Error
4] D S SR —— . Receive Data Register
2T 123 2 SR—————— Receive Data Register Full
RIE vy oeeses svmpssmnigsni Recefii/e Interrupt Enable
RIE. soicnimoniimesiiissmns Receive Interrupt Enable
BOCR it oo Serial Communications Control Register
BCBR s sisums winsismiinanmmen Serial Communications Status Register
L PT System on Chip
TDR s cvveisss sonrmosiissmmans Trahsmit Data Register
IR E & o5t s eenmcranm Transmit Data Register Empty
TIES i snmmoam g Transmit Interrupt Enable

TR £ e~ Transmit Shift Register “
e UART......ccoviiiiiiiiinin. Universal Asynchronous Receiver Transmitter
TR 51 B BTRETH WS S T e ary VHSIC Hardware Description Language
e VHSIC.......cecovviiiiiinnns Very High Speed Integrated Circuits }

|

i

ABSTRACT

The project focuses on the design of high speed 8 bit UART. The project starts with describing
the soul element of serial data communication, "THE UART" using VIDL.. While designing the
code we have used Bottom to Top Strategy (we firstly did the coding of Transmitter, Receiver
and Baud-Rate Generator and finally interconnected all three blocks). In our project, we have
focused on reducing the use of unnecessary hardware components from UART by removing the
unwanted signals (on which execution process does not depend) from sensitivity list in our code
and we have also avoided slower VHDL command (example- while, wait for t ns etc.) so that we
can increase the speed of UART. The project gives the whole details (flowchart, code,':: RTL
schematics, technology semantics, design summary, synthesis report and simulation waveform)
about each block of the UART separately and also of the whole UART code combined. The
synthesis report of the UART shows that the speed of UART is higher and hardware components

(no. of flip-flops and logic cells) required for the implementation is lesser in comparison to latest
updated 8 bit UART.

e

>

P SRC RSN o T

r 1

CHAPTER 1: INTRODUCTION

1.1 SERIAL TRANSMISSION: '

Serial Transmission of data means sending the data bit by bit i.e. one bit at a time. There are two

basic forms of serial transmission. Synchronous and Asynchronous Serial Transmission.

1.1.1 Synchronous Serial Transmission: Synchronous serial transmission requires that the

1 |
sender and receiver share a clock with one another, or that the sender provide a strobe or

other timing signal so that the receiver knows when to “read” the next bit of the data. In most

forms of serial Synchronous communication, if there is no data available at a given instant to
transmit, a fill character must be sent instead so that data is always being transmitted.
Synchronous communication is usually more efficient because only data bits are transmitted
between sender and receiver, and synchronous communication can be more costly if extra

wiring and circuits are required to share a clock signal between the sender and receiver.

1.1.2 Asynchronous Serial Transmission: Asynchronous transmission allows data to be

transmitted without the sender having to send a clock signal to the receiver. Instead, the sender

and receiver must agree on timing parameters in advance and special bits are added to each word

which is used to synchronize the sending and receiving units.

When a word is given to the UART for Asynchronous transmissions, a bit called the "Start Bit"
is added to the beginning of each word that is to be transmitted. The Start Bit is used to alert the

receiver that a word of data is about to be sent, and to force the clock in the receiver into

synchronization with the clock in the transmitter. After the Start Bit, the individual bits of the

word of data are sent, with the Least Significant Bit (LSB) being sent first. Each bit in the
transmission is-transmitted for exactly the same amount of time as all of the other bits, and the
receiver “looks” at the wire at approximately halfway through the period assigned to each bit to J

determine if the bit is a 1 or a 0. The 'sender does not know when the receiver has “looked” at the

value of the bit. The sender only knows when the clock says to begin transmitting the next bit of |

6

r

the word. When the entire data word has been sent, the transmitter may add a Parity Bit that the

transmitter generates. The Parity Bit may be used by the receiver to perform simple error
checking. Then at least one Stop Bit is sent by the transmitter. When the receiver has received all
of the bits in the data word, it may check for the Parity Bits (both sender and receiver must agree
on whether a Parity Bit is to be used), and then the receiver looks for a Stop Bit. If the Stop Bit
does not appear when it is supposed to, the UART considers the entire word to be garbled and

will report a Framing Error to the host processor when the data word is read. The usual cause of

a Framing Error is that the sender and receiver clocks were not running at the same speed, or that
the signal was interrupted. Regardless of whether the data was received correctly or not, the
UART automatically discards the Start, Parity and Stop bits. If the sender and receiver are

configured identically, these bits are not passed to the host.

If another word is ready for transmission, the Start Bit for the new word can be sent as soon as
the Stop Bit for the previous word has been sent. Because asynchronous data is “self

synchronizing”, if there is no data to transmit, the transmission line can be idle.

8 data bits

N
D ' ik . i !
of1{0|1]0|1]|0]1]0]1
.~ ‘ 7 T |
v
Start Bit 7-bit ASCll code Parity bit Stop bit
LSB first (even)

Figure 1.1: Standard Data serial encoding. ‘

1.2 THE UART: The UART is a key component of the serial communication sub-system of a

computer. It takes bytes of data and transmits the individual bits in a sequential way. At the |

destination end, a second UART re-assembles the individual bits into complete bytes. ‘

1

The UART's purpose is to convert bytes from the PC's parallel bus to a serial bit-stream. The I

cable going out of the serial port is serial and has only one wire for each direction of flow. The
serial port sends out a stream of bits, one bit at a time. Conversely, the bit stream that enters the
serial port via the external cable is converted to parallel bytes that the computer can understand.
UARTSs deal with data in byte sized pieces, which is conveniently also the size ol ASCII

characters.

| 5 |T=D IxD |
A A
COMPUTER |} | pupy rxp R | COMPUTER
T [+ = T
GND

Figure 1.2: Communication between two computers.

Along with converting between serial and parallel, the UART does some other things as a
byproduct (side effect) of its primary task. The voltage used to represent bits is also converted
(changed). Extra bits, called start and stop bit, are added to each byte before it is transmitted.
Also, while the flow rate (in bytes/sec) on the parallel bus inside the computer is very high, the
flow rate out the UART on the serial port side of it is much lower. The UART has a fixed set of

rates (speeds) which it can use at its serial port interface.

In addition to this, a UART will usually provide additional circuits for signals that can be used to
indicate the state of the transmission media, and to regulate the flow of data in the event that the
remote device is not prepared to accept more data. For example, when the device connected to
the UART is a modem, the modem may report the presence of a carrier on the phone line while
the computer may be able to instruct the modem to reset itself or to not take calls by raising or |

lowering one more of these extra signals.

N

1.2.1 UART COMPONENTS:

A UART is composed of four main components: the receiver, the transmitter, the baud rate
generator and the UART registers. We suppose that the UART is connected to a microcontroller
by a data bus and an address bus, to allow the CPU to read and write the register of the UART.

Refer to figure 3 for the discussion of the following components.

P Data Bus / .
2T F 3 ’8 |
418
Receiver____... e il SR P
RDR :' Lod, .| R
, T i SCCR :
| S S|
ExD _ RER TIE|RIE L;E EIJ': o[g T‘SrR 1 —-i‘XP
is
Receiver Baud Rate Transmitter
Control A Grenerator ' Control
B A [Rliod— e
SCSR .
d b OE|FE

Figure 1.3: The UART Components.

1.2.1.1 UART REGISTERS:

There usually exists four registers for each UART: The Receive Data Register (RDR), the
Transmit Data Register (TDR), the Serial Communications Control Register (SCCR), and the
Serial Communications Status Register (SCSR).

RDR is an 8-bit register which receives the data from an 8-bit shift register (RSR) and contains
the serially received byte. TDR is also an 8-bit register which transmits the data from the

application to an 8-bit shift register (TSR) and contains the byte that has to be serially

transmitted. SCCR is an 8-bit register which contains the UART control signals: TIE, RIE and
9

SEL [2:0] and SCSR is an 8-bit register which contains the UART status signals: TDRE, RDRF,

OE and FE.

The TSR (Transmit Shift Register) receives the output of the TDR, and the RSR (Receive Shift
Register) provides the inputs to RDR. The status and control signals are defined as shown in

table 1.

Signal | S/C Description

TDRE | Status | Transmit Data Register Empty

RDREF | Status | Receive Data Register Full

OE Status | Overrun Error

FE Status | Framing Error

TIE Control | Transmit Interrupt Enable

/
RIE Control | Receive Interrupt Enable ﬂ
SEL. | Control | Baud Rate selector '

Table 1: UART Status and Control Signals.

1.2.1.2 TRANSMITTER:

The UART transmitter consists of register TDR and TSR and the transmitter control. The status
bit TDRE in the SCSR is asserted by the controller when TDR is empty.
1.2.1.3 RECEIVER:

The UART receiver consists of registers RDR and RSR and the receiver controller. The status bit
RDRF in the SCSR is asserted by the controller when RDR is full.

10

' 1
r =

1.2.1.4 BAUD-RATE GENERATOR:

The baud rate generator is programmable by utilizing the three control bits (SEL[2 : 0]) in
SCCR. Since we are using three bits, we have the choice of 8 baud rates. The Baud-Rate

corresponding to each select input are given in Table 2.

SEL[2:0] | Baud-Rate (Bclk)

000 38462

001 19231

010 9615

011 4808

100 2404

101 1202 |
110 601 |
111 300.5 |

Table 2: Frequencies of Bclk

1.2.2 APPLICATIONS OF UART: . /

The first UART was designed by Gordon Bell. The first single chip UART was designed in 1971
by a company called Western Digital. Since then, the UART has been modified and redesigned i
to suit the need of the hour. UARTSs can be found in most of the microprocessor based devices,

be it a computer or PDA or mobile phones. Various applications of the UART are:

1.) The basic job of UART is to conﬂrért data from parallel to serial for transmission and from
serial to parallel for reception. |

2.) The UART usually provides additional circuits for signals that can be used to indicate the
state of the transmission media.

3.) The UART also provides circuits to regulate the flow of data in the event that the remote
device is not prepared to accept more data.

4.) It adds a parity bit (if it's been selected) on outbound transmissions and checks the parity of
incoming bytes (if selected) and discards the parity bit.

5.) It adds start and stop delineators on outbound and strips them from inbound transmissions.

6.) It handles interrupts from the keyboard and mouse.

11

e

. v

CHAPTER 2: DESCRIPTION OF HARDWARE USED

The hardware used during our project was Virtex 4. The Virtex series of F'PGAs have integrated
features such as wired and wireless infrastructure equipment, advanced medical equipment, test
and measurement, and defense systems. In addition to FPGA logic, the Virtex series includes
embedded fixed function hardware for commonly used functions such as multipliers, memories,

serial transceivers and microprocessor cores.

2.1 VIRTEX 4: The Virtex-4 series was introduced in 2004 and was manufactured on a 1.2V,
90-nm, triple-oxide process technology. The Virtex-4 family intréduced the new Advanced
Silicon Modular Block (ASMBL) architecture enabling FPGA platforms with a combination of
features to support logic (LX), embedded processing and connectivity (FX), digital signal
processing (SX). As part of the family of RealView Development Boards, Logic Tiles enable
system-on-chip (SoC) developers to prototype complete systems, prove custom IP, develop and
test device drivers for custom IP. Logic Tiles may be stacked to provide additional capacity.

High performance and high pin-count interconnect allows large design prototyping.

2.1.1 MEMORY SYSTEM: Because of the limited number of I/0 of Virtex-4 FPGAs, the

Logic Tile does not contain on-chip RAM. The FPGA configuration image is stored in a
Flash device. The configuration Flash can store up to 2 FPGA images.

2.1.2 I/O:

1.) Logic Tile Header connectors on top & bottom of each tile.

2.) 395 interconnect pins to tile above.

3.) 395 interconnect pins to tile below.

4.) 128 interconnect pins common to tiles above and below.

5.) Option to fold over some rsignals to increase 1/O to tile below.

6.) 8 DIP switches and 8 general purpdse LEDs.

7.) Pushbutton.

12

21.3 SCALABILITY:
1.) Logic Tiles may be stacked.

2.) Logic Tiles for Virtex-4 devices are mechanically and electrically compatible with
Integrator Interface Modules (IM-LT1 and IM-LT3). However, example FPGA images
are only provided for the Emulation Baseboard and Platform Baseboard configuration.

3.) Logic Tiles interface directly to the Emulation Baseboard and the Platform Baseboard
for ARM926EJ-S, without an adapter.

2.1.4 FPGA DESIGN SOFTWARE AND PROGRAMMING TOOLS:

1.) Xilinx Virtex-4 compatible FPGA synthesis tools may be used with Logic Tiles.
2.) The Logic Tile configuration Flash can be programmed with Multi-ICE, Real View
ICE with the USB debugger on the Platform Baseboard for ARM926EJ-S and the

Emulation Baseboard.

13

CHAPTER 3: DESCRIPTION OF PROGRAMMING LANGUAGE USED

The programming language that we have used for the successful completion of our project is a

HDL (Hardware Description Language) called VHDL.

3.1 HARDWARE DESCRIPTION LANGUAGE (HDL): A Hardware Description
Language or HDL is any language from a class of computer languages and/or programming
languages of electronic circuits. It can describe the circuit's operation, its design an organization,

and tests to verify its operation by means of simulation.

HDLs are used to write executable specifications of some piece of hardware. A simulation
program, designed to implement the underlying semantics of the language statements, coupled
with simulating the progress of time, provides the hardware designer with the ability to model a
piece of hardware before it is created physically. It is this executability that gives HDLs the

illusion of being programming languages.

3.2 VHDL: VHDL is acronym for VHSIC Hardware Description Language. It is a hardware
description language that can be used to model a digital system at many levels of abstraction,
ranging from the algorithm level to the gate level. The complexity of the digital system being
modeled could from that of a simple gate to a digital electronic system or in between. The digital
system can also be described hierarchically. Timing can also be explicitly modeled in the same
description. The VHDL language can be regarded as an integrated amalgamation of the

following language:

e Sequential language
e Concurrent language
e Net —list language

o Timing specifications

e Waveform generation language

14

g

P

Therefore, the language has constructs that enable one to express the concurrent or sequential
behavior of a digital system with or without timings. It also allows one to model (he system as an
interaction of components. Test waveforms can also be generated by using the same
construction. All the above constructs may be combined to provide a comprehensive description

of the system in single model.

The language not only defines the syntax but also defines a very clear simulation semantics for
language can verify using VHDL simulator. It is strongly typed language and is often verbose to
write. It inherits many of it features. Especially the sequential language part, from the Ada

Programming language.

3.2.1 HISTORY: The requirements for the language were first generated in 1981 under the
VHSIC program. In this program, a number of US companies were involved in designing
VHSIC chips for the Department of Defense (DoD). At that time, most of the companies were
using different hardware description languages to describe and develop their integrated circuits.
As a result, different venders could not effectively design with one another. Also different
venders provided DoD with description of their chips in different HDL. Reprocurement and re-

use was also a big issue. Thus a need for standardized HDL for the design, documentation and

verification of digital system was generated.

A team of three companies, IBM, Texars instruments and Intermetrics were first awarded the
contract by DoD to develop a version of ianguage in 1983. Version 7.2 of VHDL was developed
and released to the public in 1985. There was strong industry participation throughout the VHDL
language development pfocess, especially from the companies that needed to make the language
an industry — wide standard. Consequently the language was transferred to IEEE for
standardization in 1986. After a substantial enhancement to the language made by a team of
industry, university and DoD representatives, the language was standardized by the IEEE in
Dec 1987; this version of the language come to be known as the IEEE Std 1076-1987. The
official -description —appears in the IEEE Std. VHDL language Reference Manual (LRM)

available from IEEE. The language has also being recognized as an America National Standards
institute (ANSI) standard.

3.2.2 CAPABILITIES: The following are major capabilities that are provided along with the

features that differentiate it from other hardware description languages.

e The language can be used as an exchange medium between chip vendor and CAD tools
users. Different chip vendors can provide tool users can use it to capture the behavior of
the design at a high level of the abstraction for the functional simulation.

e The language can also be used as a communication medium between CAD and CAE
tools. For example, a schematic capture program may be used to generate a VHDL
description for the design, which can be used as an input to a simulation program.

e The language supports the hierarchy, that is, in a digital system can be modeled as a set
of interconnected components; each component, in turn, modeled as a set of
interconnected sub-components.

 The language supports, flexible design methodologies: top-down, bottom-up or mixed.

® The language is not technology specific, but is capable of supporting technology specific
features. It can also support the various hardware technologies; for example, you may
define new logic types and new components; you may also specific attributes. By being
technology independent the same model can be synthesized into different vendor
libraries. '

e It can support both synchronous and asynchronous timing models.

 Various digital modeling techniques such as finite-state machine description, algorithm
description, and the Boolean equation can be modeled using the language.

e The language is publicly available, human readable, machine readable, and above all, it is
not proprietary.

o It is an IEEE and ANSI standard; therefore models described using these languages are
portable. The government also has a strong interest in maintaining this as a standard so
that re-procurement and second sourcing-may become easier.

e The language supports three basic different description styles: structural, dataflow, and

behavioral. A design may also be expressed in any combination of these three descriptive

styles.

P——— —

r

3.3 PROGRAMMING CONCEPTS: The purpose of VHDL description is to provide a model

for digital circuits and systems. This abstract view of the real physical circuit is referred to as an

entity. An entity normally consists of five basic elements or design units:

1. Entity declaration
Architecture body
Configuration declaration

Package declaration

WA g B D

Package body

3.3.1 ENTITY DECLARATION: An entity declaration specifies the name of the entity and its

interface. Signals, which are used for communication with the surrounding modules, are called

ports.In general, the entity declaration has the following format:
SYNTAX:

entity [entity name] is

port([declaration(types, constants, signals)])

end [entity name];
Ports are of four modes:
Mode in: The port can be read within the entity and its architecture.
Mode out: This port can only be written.

Mode inout: This port can be read or written. This is useful for modeling bus system.

3.3.2 ARCHITECTURE BODY: Following the entity declaration the second important

component of a VHDL description is the Architecture. This is where the functionality and the

internal implementation of the module is described.

17

Mg

r

SYNTAX:
architecture [architecture_name] of [entity name] is
[arch_declarative part]
begin |
[arch_statement part]
end [architecture _name];

The architecture specifies the implementation of the entity. A label architecture name must be
assigned to the architecture. In case there are multiple architecture associated with one entity this
label is then used within a configuration statement to bind one particular architecture to its entity.
The architecture block consists of two parts: the arch_declarative part before the begin and
subprogram is defined. The actual model description is done in the statement part. The
statements in the arch_statement_part are executed concurrently, or in parallel however, during

the simulation of VHDL description, all concurrent statement are executed on a processor, which

processes all the statements sequentially. Therefore, a special simulation algorithm is used to

achieve a virtual concurrent processing. il
P |

3.3.3 CONFIGURATION DECLARATION: A configuration declaration is used to select one of

the possibly many architecture bodies that an entity may have, and to bind components, used to
represent structure in that architecture body, to entities represented by an entity-architecture pair
or by a configuration, which reside in a design library. There are no behavioral or simulation

semantics associated with a configuration declaration. It merely specifies a binding that is used

|
to-build-a configuration for-an entity. These bindings are performed during the elaboration phase |

of simulation when the entire design to be simulated is being assembled. Having a configuration Ul
for the entity, the configuration can then be simulated. ‘
|

18

3.3.4 PACKAGE DECLARATION: A package declaration is used to store a set of common

declarations, such as components, types, procedures, and functions. These declarations can then

be imported into other design units using a use clause.

3.3.5 PACKAGE BODY: A package body is used to store the definitions of functions and

procedures that were declared in the corresponding package declaration, and also the complete
constant declarations for any deferred constants that appear in the package declaration.
Therefore, a package body is always associated with a package declaration. Furthermore, a

package declaration can have at most one package body associated with it.

19

CHAPTER 4: TOOLS USED

To check our VHDL codes, we have used Xilinx and Modelsim to generate the respective
waveforms and to check for various syntax errors.

4.1 XILINX ISE: Xilinx is the world’s largest supplier of programmablec logic devices, the
inventor of the field programmable gate array (FPGA) and the first semiconductor company with

a fabless manufacturing model.

Founded in Silicon Valley in 1984 and headquartered in San Jose, California, U.S.A.; Dublin,
Ireland; Singapore; and Tokyo, Japan, the company has corporate offices throughout North

America, Asia and Europe.

The programmable logic device market has been led by Xilinx since the late 1990s. Over the
years, Xilinx has fueled an aggressive expansion to India, Asia and Europe — regions Xilinx

representatives have described as high-growth areas for the business.

Xilinx has two main FPGA families: the high-performance Virtex series and the high-volume
Spartan series, with a cheaper Easy Path option for ramping to volume production. It also
manufactures two CPLD lines, the Cool Runner and the 9500 series. Each model series has been

released in multiple generations since its launch.

The latest Virtex-6 and Spartan-6 FPGA families are said to consume 50 percent less power, cost

20 percent less, and have up to twice the logic capacity of previous generations of FPGAs.

The following is a screen shot taken of the software we have used.

20

ISE - C:UOBAAUARTMIART 356 - [Deskgn Sumemary |

sla Bt View Project Scurce Process Window Hep

.J,wm HoXBREX we) AOXHA BN BENG AN AR
P BUAALNA OO s
: 15 FPGADssin Smmary ol S0 UART Projet Stats
ﬁnhwlu,mum : Gngmouww wit-. N— .
: : [E) UARTstx [0B Pocere i & Emon
= £1xc%200-81256 - D g Target Device: wc2e200-4R256 s Wamings 2 Wamirgs
i @ [dhUART ul't‘I(U-uv 3 Prcut % Producl Version: 13683 * Updated o May 4 12:00:06 2009
1 oo g S B] [5w e l UART Pation S,

Syrihass Messages

0] Implemant Design

4 Erabie Enhanced Design Summan ;

Processes: [Mep |
a ':dd v il D % Report Name Stalus Gﬂ\ﬂﬂd Errors Warnings Infos
[T Create MNew Soute or | ﬁ TR LT T :
s o : | Smthes's Reood r 4 305552009 1B i {
Vew Design Summary [Bgan Mecsages ! Cument w Apr 208 1
| H G Design Uities %] -!. Wg hesaaw | Translation Rapon
¥ W UserCorstraints AANasled Bassde ba Map Repot
Q) Smibesize - X5T Project Proparties | Piacs sn4 Route Recon

Static Tming Report

[Erabls Message Fiteing |

[0 Deplay incremsntal Messsages | Bagen Repaat
Enhanced Dewgn Summary Contents !

B Show Padtion Deta

O Show Evors

3 show Wamings

[Show Faing Conatrants Xplorsr Repad
4] I [21] [3 Show Clock Report

B Processes |

0 Ganersts Programming Fig

¥ Design Summary

Sterved : “launching Design Summary”.

€1 | s
[&] Conscle | €YEmorn | g\ Wamings | [TolCorscle | 3§ Findin Fles |

T} UART fnal [Comoat.. S xiox - 156 - Cribox\,.

Figure 4.1: Xilinx ISE

4.2 MODELSIM: ModelSim is an industry standard simulator used in many semiconductor
companies worldwide for their HDL simulation needs. It provides complete support for all
Verilog features, in contrast to the limitations imposed by the MAX+PLUS II simulator. The

advanced features of ModelSim are so well integrated into the simulator that you will not be
overwhelmed while using the software for your basic simulation needs. These features include
advanced debugging techniques, integrated Tcl/Tk scripting etc., which could turn out to be very
useful in case you decide on doing your senior design projects in this area. While MAX+PLUS II
excels as an integrated simulationsynthesis tool for basic learning purposes, it is no match for

hands on experience on an industry standard HDL simulator when the purpose of the lab sessions

21

?(er
(s i 2 Ur
09 :iu

o%(

@

Acc. N"'Jg.,,,:)
P ng 437/

e

is to get you familiar with HDL simulations and prepare you for a possiblc future carcer in the

industry. The following is a screen shot taken of the software used.

TTE

Fls ESt Vam Comple Smuge Tooh Wndoew Help e

awma“ammn[

i el do deried
lﬂ'.eyi‘a 4] hhcduech_!&v‘b Vosnpief el
ﬂl' MockBin SESEb Jan (N 20

W' Cepripht Moded Technaoge. & Marter Gract i Docanon canpany 206
| AlHigis Heterved

| w UNPURLISNGE D, LICENSRD SOF hoise

LN COFFIDENTIAL AND PHOFRE 1AFY P60 e w 'r } T §
e PROFEATY OF MERTON GRAPHICE COrr o on T

NI CES

T Laateg gt Wb

| [{Modetiime

I Praser| Livvey]|

Figure 4.2: ModelSim

22

CHAPTER 5: RESULTS AND SIMULATIONS

5.1 TRANSMITTER: When the transmitter is ready to transmit, the following occurs:

1.) The microcontroller waits until TDRE= ‘1" and then loads a byte of data into TDR and clears
TDRE.

2.) The UART transfers data from TDR to TSR and sets TDRE. 1

3.) The UART outputs a start bit(‘0’) for one bit time and then shifts TSR right to transmit the
eight data bits followed by a stop bit (‘1°).

Figure shows the SM chart for the transmitter. The corresponding sequential machine is clocked
by the microcontroller system clock(CLK). In the IDLE state, the SM waits until TDR has been
loaded and TDRE is cleared. In the SYNCH state, the SM waits for the rising edge of the bit
clock(Bclk O) and then clears the low-order bit of TSR to transmit a ‘0’ for one bit time. In the
TDATA state, each time a Belk(J is detected, TSR is shifted right to transmit the next data bit
and the bit counter(Bct) is incremented. When Bct=9, 8 data bits and a stop bit have been
transmitted. Bet is then cleared and the SM goes back to IDLE.

Start bit
R

Shift TSR
inc Bet

{ Cléar Bet) Bet=9

Figure 5.1: SM chart of Transmitter

23

=Y

=.1.1 RTL SCHEMATIC:

Fio Edk View Window

Hi YRB0nmd PARXAARTOALS HEH AAHDBIERD Are

U— T i e
13
Inatarcer P L s 1 Heme Voo

[Viewby Categy | [View by Mame |

[376,160)

Figure 5.2: RTL schematic of transmitter

5.1.2 TECHONOLOGY SCHEMATIC:

Fle Edt View Window

I B dnBwefd POAXXP@AN SO Rkn AANBREG ARG ™
|1
2

2 Design |

L

Proportics
No object is selected

Figure 5.3: Technology Schematic 1 of Transmitter

24

T
T

Ao UDBmed PAXXARAN T 00nh HED AARHBED AneG ™
s tas s e x|

|2

w |
! i
|
|
|
I
[
|

Design Objects of s EgRt] j Puopestias

. L : i ; ; No object is selected
Instances AP ; .| sianals 4| Nama . Nahw

[l Viewby Category | B Viewby Name |

Figure 5.4: Technology Schematic 2 of Transmitter

5.1.3 DESIGN SUMMARY:

Pla Edt View Window Holp

[+ X 1 Kol
| X2 FPOA Detion Summary SRR sk 4 R TH Project Status A i 2
(€3 Desian Overviow ||| Projact File: i Eurent State: Syriheszed
; %fu“;";‘lf::‘ o ||| Module Neme: 3 [« Eners: No Enors
1 [Vot Eomtiaits || | Tasgat Dovive: o dvand A1658 R TwWarka
[Finvt Fropod || Product Version: 1SE83 * Updated: Wed Age 22 04 24:32 2000
[Clock. Regad |
3 E o and Warmings ; I L TR Panidon Sudmay

|) Synthesis Mestages Mo partiion infomation was fourd

[Yranstation Mot eages

. Pevica Litkeation Sumiasiy [eatimatod voluoe)

) Flecs and Route Mestages

) Tty Mossaoes || | Logie Utitization Used Avallable Utitization

) Dagen Matesgss Hurrbor of Sices 2 _ 18360

[All Curiont Messagas Number of Sice Fio Flops 24 0720
€3 Datalad Rapoits | Number of 4 input LUTe [30720
| | [Sunthesis Aeport ||| Mumbet of bonded 108+ 15 440

() Feansiation Repea | [Wcariier of GELKs 1 -

[Hep Fopot |

[¥tece and Route Riepod | Er ek : ; x o

[Static Timdng Aepeat || A AL Tl ez - Dalailed Repoits . .

[Bigen Repon Roport Nams Status Gonorated Euoes Wamings nfos
Projeot Propalies Syoehesis Alepon Cunent WedApi 220424252009 | 0 1 Wamkg i
| 11
| B2 Enable Enhanced Design Summary, | | T1anslation Repatt

Enabis Massags Fteing ||| Map Fepod

) Display Incremental Musizages Place and Rows Regort |
Enhanced Design Sunmary Contents .. oz

B Show Pasttion Data || | Staa Viming FReport

) Show Enars ||| Btgen Repodt

£ ShowWamings |

= heabiniie i i S Sesanaas Reprts

||| Repast Nams Statur . Generated
11 splorer Repont

Figure 5.5: Design Summary of Transmitter

25

N

B

o

5.2 RECEIVER: The operation of the UART receiver is as follows:

1.) When the UART detects a start bit, it reads in the remaining bits serially and shifts them
into RSR.

2.) When all the data bits and the stop bit have been received, the RSR is loaded into the
RDR, and the RDREF flag in the SCSR is set. '

3.) The microcontroller checks the RDRF flag, and if it is set, the RDR is read and the flag
is cleared.

Figure shows the SM chart for the UART receiver. Two counters are used. Ctl counts the

number of BclkX8 clocks. Ct2 counts the number of bits received after the start bit. In the

IDLE state, SM waits for the start bit (RxD = ‘0”) and then goes to the Start Detected State.

The SM waits for the rising edge of BclkX8 (BclkX80) and then samples RxD again. Since

the start bit should be ‘0’ for eight BclkX8 clocks, we should read ‘0°. Ctl is still 0, so Ctl

is incremented and the SM waits for BelkX8 0. If RxD = “1°, this is an error condition and

the SM clears Ctl and resets to the IDLE state. Otherwise, the SM keeps looping. When "1

RxD is 0 for the fourth time, Ct1=3, so Ctl is cleared and the state goes to Receive Data. In d |

this state, the SM increments Ctl after every rising edge of BclkX8. After the eighth clock,)

Ctl= "7 and Ct2 is checked. If it is not 8, the current value of RxD is shifted into RSR, Ct2 is i

incremented, and Ctl is cleared. If Ct2= 8, all 8 bits have been read and we should be in the

middle of the stop bit. If RDRF =1, the microcontroller has not yet read the previously

received data byte, and an overrun error has occurred, in which case, the OE flag in the

status register is set and the new data is ignored. If RxD = ‘0, the stop bit has not been

detected properly, and the framing error (FE) flag in the status register is set. If no errors

have occurred, RDR is loaded from RSR. In all cases, RDRF is set to indicate that the

receive operation is completed and the counters are cleared.

26

Start detected

~
Stop bit 7

|
Load RDR

Figure 5.6: SM chart of Receiver

27

5.21 RTL SCHEMATIC:

—————
- pae Tt

Fla Edt View Window
Ao AD0mai FEREXIBNY D% HUb AABRBERRD ARE ™

x Design Dbjects of R flitec Pl’ﬂpﬂhe' s of Instance
Top Level Symbol ! "
Instances “IPne ginds ; T Vi
B B Viewby Calegory | [View by Name

Figure 5.7: RTL schematic of Receiver "ﬁ

J
5.2.2 TECHNOLOGY SCHEMATIC: ﬁ

s Edt View Wirdow
Ao KDEmeas) PLPHUXABR TS ATh HED AABEIRNE D ARG F

[Vew by Hae

Figure 5.8: Technology schematic of Receiver

28

5.2.3 DESIGN SUMMARY:

Fi= Edt View Window Help
QoRm

1, FPGA Design Summary

&3Design Dveiview
.Sunmaiy 1

DH- ik, Fv-p it
¢3Enors and Wamings

Qsmhem!«leuagm

[Tranclation Messages

[Show Faling Constiaints

v ’
[Design Summary

Project File: uail_teciever.ise Current State: Synthesized

Module Name: uail_teceiver s Errois: Mo Enor

Target Device: xcdvsn3S-1211668 * Watnings: 13/ an

Product Vession: ISE8.2i ¢ Updated: Wed Apr 22 031619 2003
No pastition information was found.

S Deviea Utilization Summary (ostimated valuer]
v | Logic Uliization Used Available Utilization

) BigenMess]" || Number of Shices _ 0 15350 0%

{2 Al Current Messages | Number of bonded 1085 1 8 "
&3 Detaled Repots |

[Transtation Report { Status Warnings Infos

B"’“‘Eﬂ“—‘:’ R ‘ Current Wed Api 220316:082009 | 0 13 Wangmas 101ntes

Flace and Route Report] =

[Sratic Tirning Report | Trafahon GiFpart

DFMM Re [.n \IL Map Repont
Proect Properies ~, | Place and Routs Repott

%] En&hEnhmcedDmSwwy Static Timing Report

(3 Enable Message Fitering ||| Bitgen Repart

[Display Incremental Messsages i
Enhanced Design Summaty Contents | s Secondar

B Show Partition Data | SRR RS Secondarg Reports

[Show Erors | Report Name Status Generated

[ShowWarmings || Xplore: Report |

|

[Show Clock Repoit

Figure 5.9: Design Summary of Receiver

5.3 BAUD-RATE GENERATOR: Three bits in the SCCR are used to select any one of the
eight Baud rates. Here the system clock frequency is taken as 8MHz and we want Baud rates
300, 600, 1200, 2400, 4800, 9600, 19200 and 38400. The maximum BclkX8 frequency
needed is 38400*8 =307200. To get this frequency, we should divide 8 MHz b6 26.04. Since

we can divide only by an integer, we need to either accept a small error in Baud rate or

adjust the system clock frequency downward to 7.9877 MHz to compensate. The following

figure shows the block diagram for the Baud-Rate Generator. The 8-MHz system clock is

first divided by 13 using a counter. This counter output goes to an 8-bit binary counter. The

29

—

—=

outputs of the flip-flops in this counter correspond to divide by 2, divid

by 256. One of these outputs is selected by a multiplexer. The MUX selcct inputs come
the lower 3bits of the SCCR. The MUX output corresponds to BlkX&, which is further

divided by 8 to give Belk. The frequencies generated are given in Table 2.

BClkxg BClk
A

Divide by 8
A

SEL{2:0] l

RS

—25.175 MHz—® Divide by41 [—————m Divide by 256

Figure 5.10: Baud-Rate Generator

5.3.1 RTL SCHEMATIC:

Piufa!.\'m
B dhRwod POXRXEAAN NI BHD ALAGHGERG m e O

 DesignObjectaol .
Top Level Symbol

BN Iratces 1Pm ; ; I ionah 1 Mama Vol
B View by Cotogy | 3 View by Hare

Figure 5.11: RTL Schematic of Baud-rate geherator

30

and divide

5.3.2

%.3.3

TECHNOLOGY SCHEMATIC:

XXABR G 2%% HHD AAGBBEREL ARG -

Dasign Objocts ol

ivn“

Name ; ;.
EH Viewby Neme | 0 View by Catogry |

Figure 5.12: Technology Schematic of Baud-Rate Generator

DESIGN SUMMARY:

¥ FPGA Detign Surmary A
€ Desin Dverven 5
| %:1:;\4:"5_\ | | Woduls Hame: S dovan. SEmwk
[} Tiniog Cormtiarts ||| Target Davics: wohvod5 1 2563 * Wamings:
| '+ DY Pincas Reint ||| Product Varsion: BE82 « Updated:
[tk Regent 3
g3 Enon andWarigs CLK_DEVIDER Pafiition Suimary
|) Symhasis Messages
| Q) Travstation Mereapes -
[vzomaszage:] Ui Y A A
B EERA R Ve WA) 03 5
|+ [Tining Meszages 11} D £t
) FigenMssuages ||| Numbes of Stcer ¢ 10 1530
(21 Cumort Messages | Number of Sice Fip Fopr 15 W70
Detaled Repoatz +| | Number of €npul LUT: i 7N
) Srihesis Repot Nusebas of borded 10 3 [
[hiaratation Repot H i o GOLES 1 ~ %
[Rent 112
[P ad Aot Regant o . : =
[0) St Tirsimg Repot it - Dotadled Rleports G
| " Detgenesn o | | Rpor Nama Statux Genarstad Emon Weaning:
'P' i = || Secthesin Reoo Cunent WedAp 2218913209 | 0 1Wanicg
% =
| B Enabla Enturced Desn Sunvy | | Tianélafon Rspat
‘ gsmumwrnnm Map Reped
| Displey Incrementd Messsages R
Enhanced Desin Sunmary Cortenty fiace wetiods oot
| BB Show Patton Data || | Biatie Tiwirg Riapon
O Show Encns Bagen Report
8 Show Warningt
Show Faing Conatainls : x
O Shoow Clock Repet G 3 ik Secondory fleports
| Raport Nams Status Gnnmatad
ohorer Regart

Mistane o

31

NoErmn

1 Wanig

Wed A 22 0415:42 2009

Utization

Infae.

0%

0%

]

EEE

5.4 MAIN UART: SCI_IRQ is an interrupt signal that interrupts the CPLJ when the UART
receiver or transmitter needs attention. When the RIE is set in SCCR. S 1O s
generated whenever RDRE or OE is 1°. When TIE is set in SCCR, SCI IRQ is

generated whenever TDRE is 1°.
The UART is interfaced to a microcontroller address and data buses so that the CPU can read
and write to the UART registers when the UART is selected by SClsel = 17, The last two
bits of the address (ADDR?2), together with R_ W signal, are used for the register selection.
When the UART is not selected for reading, the data bus is driven to high-Z.

5.4.1 RTLSCHEMATIC:

mmmmm v .
Ao AhbDned ALPHXPRR b ING BHD AADBHREL ARG M

e ooy
I pim T B o o) Vol

Instancas
B [View by Catzgoy | [View by Name

T star

Figure 5.14: RTL Schematic of UART

5.4.2 TECHNOLOGY SCHEMATIC:

Fle Edt View Windom
H: D00 2PP2XXABN 40 D% BHD SAGHBED aAG O
1

Propestine
- e AT\ W R S AR Syt] Mo obiect i relected
Iatances P — Skrah 2 A Name Ve
{3 Viewby Categey B View ba Neme |

Fls Edt View Window
Hao dRBoo PEOXXPANYCD0 BEb AAGRAIL aAne ™

Instancet

Figure 5.16: Technology Schematic 2 of UART

33

S

Flo Edt View Window

| Instances

Hio XDE0el POXKPBN TO 000 WD A ASGBRED &
: ;

Propeities

No object is selected

Figure 5.17: Technology Schematic 3 of UART

5.4.3 DESIGN SUMMARY:

Fiz Edt Vew Window Heb

coerm

| 85 FPBA Design Summay

(3108 Prpemes
Y Twirg Coretrairt
|~ Fnow Repat
| - [Y0ock Repat
!@!nm.ﬂw-my
| [ASymthasis Massages
| D) Tvarmichion Maseages
| = DYMap Meszager
1 [APisce i Routs Mesragar
| - [YTwingblersages
(I & [P TR
| EAAICurent Memages
(@Detsted Peports
| EASminosis Ropor
| [Traneiation Repeat
| - [Map Ropett
[YFtazs aad Rouke Fleped
| [A5ta8: Timing Repart
| - [yBigen Repon

O3 Enable Message Fieing
| [1 Display Incremental Messsagas
{Erhanced Detign Surmary Contarts
| 4 ShowPaiion Dats

0 ShowEnars
| 0 ShowWamings
| O ShowFaiing Corstiaiits
00 Show Clock Repart

|
||| Report Name Status

Piciect Properties |
] Enable Enharced Devign Summar:

Project File:
Modula Nome:

Tasgel Device:
Product Version:

Muerbes of Shoes

Nurber of Sice Fip Flops
Humbes of 4 nput LUTs
Mumbex of bonded 1085

| Number of GCLKs

Synthesia Bepod Currert
Transiation Fleport

Map Report

Flaca and Routs Repod

Static Tiring Aeport

Bigen Repat

||| Repost Hame

Hplotet Report

iu;--tl-d Enuors

Status

Wed Ap 20412042009 [0

i e
Ho Enees

Lvames
Wed Ape 220412 59 2009

15360 0%
W72 0%
720 0%
s *
k-1 1
Infos
12Infoy

Geneated

Figure 5.18: Design Summary of UART

34

g

S.4.4 SYNTHESIS REPORT:

Final Results

RTL Top Level Output File Name

: uart.ngr

Top Level Output File Name : uart

Output Format
Optimization Goal
Keep Hierarchy
Design Statistics
#10s

Cell Usage :

BELS

GND

INV

LUTI

LUT2

LUT2 D

. LUT3

i LUTI L

LUT4

LUT4 D

LUT4 L

MUXCY

MUXF5

MUXF6

VCC

XORCY

FlipFlops/Latches
FD

FDC

FDCE

:NGC
: Speed
:NO

: 20

: 100

: 12

17

128

145

214

35

FDE 11 i
FDP :10 t
FDR 01 |
Clock Buffers il !
BUFGP il | ’
10 Buffers 115 |
IBUF 5 |
IOBUF 0 8
OBUF P2
Device utilization summary:
Selected Device: 4vsx35ff668-12
Number of Slices : 37 out of 15360 0% :
Number of Slice Flip Flops : 45 out of 30720 0% ‘1
Number of 4 input LUTs 71 out of 30720 0% J
Number of 10s i 20 /
Number of bonded IOBs : . 16 outof 448 3%
Number of GCLKSs : loutof 32 3%
TIMING REPORT '
Clock Information:
----------------------------------- i ‘
Clock Signal | Clock buffer (FF name) | Load | J
----------------------------------- - ORISR ST |
clk | BUFGP |34 | ‘
_
36
1

BelkX8(CLKDIV/Mmux_BclkX8 6:0) | NONE(*)(CLKDIV/ctr3 0)

CLKDIV/ctrl 3 | NONE(CLKDIV/ctr2 2) |8 |
----------------------------------- T T IO
(*) This 1 clock signal(s) are generated by combinatorial logic,

and XST is not able to identify which are the primary clock signals.

Please use the CLOCK_SIGNAL constraint to specify the clock signal(s) generated by

combinatorial logic.

INFO:Xst:2169 - HDL ADVISOR - Some clock signals were not automatically buffered
by XST with BUFG/BUFR resources. Please use the buffer type constraint in order to

insert these buffers to the clock signals to help prevent skew problems.

Asynchronous Control Signals Information:

....................................... T B Y P
Control Signal | Buffer(FF name) | Load |
--------------------------------------- B L T
XMIT/rst_b_inv(XMIT/rst_b_invl_INV_0:0)| NONE(XMIT/TSR_8)
................... IO RRINL7 T8 W ENR T2 RO MR AR wee) A s R S

Speed Grade: -12

Minimum period: 2.325ns (Maximum Frequency: 430.135MHz)
Minimum input arrival time before clock: 3.201ns
Maximum output required time after clock: 4.741ns

Maximum combinational path delay: 5.204ns

Timing Detail:

All values displayed in nanoseconds (ns)

37

~

)

119

Timing constraint: Default period analysis for Clock 'clk'
Clock period: 2.325ns (frequency: 430.135MHz)
Total number of paths / destination ports: 170 / 24

Delay: 2.325ns (Levels of Logic = 3)
Source: XMl T/state FFdl (FF)
Destination: XMIT/TSR_0 (FF)
Source Clock: clk rising
Destination Clock: clk rising
Data Path: XMIT/state_FFd1 to XMIT/TSR_0
Gate Net
Cell:in->out fanout Delay Delay Logical Name (Net Name)

FDC:C->Q 16 0.272 0.767 XMIT/state FFd1 (XMIT/state FFd1)
LUT3:10->0 1 0.147 0.000 XMIT/TSR_0_rstpot SW0_F (N138)
MUXF5:10->0 1 0291 0.403 XMIT/TSR_0 rstpot SWO (N73) /
LUT4:13->0 1 0.147 0.000 XMIT/TSR_0_rstpot (N72) l
FDP:D 0.297 - XMIT/TSR_0
Total 2.325ns (1.154ns logic, 1.171ns route)

(49.6% logic, 50.4% route)

Timing constraint: Default period analysis for Clock 'BcelkX8'
Clock period: 1.636ns (frequency: 611.135MHz)
Total number of paths / destination ports: 6 / 3 ’

Delay: 1.636ns (Levels of Logic = 0)

38

Source: CLKDIV/ctr3 0 (FF)
Destination: ~ CLKDIV/ctr3_0 (FF) |
Source Clock: BclkX8 rising
Destination Clock: BelkX8 rising -

Data Path: CLKDIV/ctr3 0 to CLKDIV/ctr3 0
Gate Net
Cell:in->out fanout Delay Delay Logical Name (Net Name)

FDR:C->Q 3 0272 0.406 CLKDIV/ctr3 0 (CLKDIV/ctr3 0)
FDR:R 0.958 CLKDIV/etr3 0
Total 1.636ns (1.230ns logic, 0.406ns route)

(75.2% logic, 24.8% route)

Timing constraint: Default period analysis for Clock 'CLKDIV/ctrl 3' “1
Clock period: 2.054ns (frequency: 486.855MHz) f
Total number of paths / destination ports: 36 / 8

Delay: 2.054ns (Levels of Logic = 9)

Source: CLKDIV/ctr2_0 (FF)

Destination: CLKDIV/ctr2 7 (FF) ‘
Source Clock: CLKDIV/ctrl 3 rising

Destination Clock: CLKDIV/ctrl 3 rising

Data Path: CLKDIV/ctr2_0 to CLKDIV/ctr2 7 _
Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)

e

FD:C->Q 2 0.272 0.408 CLKDIV/ctr2 0 (CLKDIV/ctr2 0) l

INV:I->0 2 0322 0.000 CLKDIV/Mcount ctr2 lut<0> INV 0 :
(Result<0>1)

MUXCY:S->0 I 0278 0000 CLKDIV/Mcount cti2 cy<0> |
(CLKDIV/Mcount_ctr2,_cy<0>) |

MUXCY:CI->0 1 0.034 0.000 CLKDIV/Mcount ctr2 cy<l> | |
(CLKDIV/Mcount_ctr2__cy<1>) | |

MUXCY:CI->0O 1 0.034 0.000 CLKDIV/Mcount ctr2 cy<2>
(CLKDIV/Mcount_ctr2_cy<2>)

MUXCY:CI->0O 1 0.034 0.000 CLKDIV/Mcount ctr2 cy<3>
(CLKDIV/Mcount_ctr2 cy<3>)

MUXCY:CI->0 1 0.034 0.000 CLKDIV/Mcount ctr2 cy<4>
(CLKDIV/Mcount ctr2 cy<4>)

MUXCY:CI->0O 1 0.034 0.000 CLKDIV/Mcount ctr2 cy<5>
(CLKDIV/Mcount_ctr2 cy<5>)

MUXCY:CI->0O 0 0.034 0.000 CLKDIV/Mcount ctr2 cy<6>
(CLKDIV/Mcount_ctr2_cy<6>) \

XORCY:CI->0O 1 0273 0.000 CLKDIV/Mcount_ctr2_xor<7> (Result<7>) I

FD:D 0.297 CLKDIV/ctr2_7 '

Total 2.054ns (1.646ns logic, 0.408ns route)

(80.1% logic, 19.9% route)

Timing constraint: Default OFFSET IN BEFORE for Clock 'clk'’
Total number of paths / destination ports: 80 /27
Offset: 3.201ns (Levels of Logic = 3) ! |
Source: R_W (PAD)
Destination: ~ XMIT/TDR_0 (FF) }
'\‘

dcilacar,
. =

Destination Clock: clk rising

Data Path: R W to XMIT/TDR_0 ‘
Gate Net ‘

Cell:in->out fanout Delay Delay Logical Name (Net Name) \

- |
IBUF:1->0 3 0.754 0.581 R_W_IBUF (R_W_IBUF) ' |
LUT4:10->0 2 0.147 0.543 _and00031 (loadTDR)
LUT2:11->0 8 0.147 0.467 XMIT/_and00001 (XMIT/ and0000)
FDE:CE 0.562 XMIT/TDR_0
Total 3.201ns (1.610ns logic, 1.591ns route)

(50.3% logic, 49.7% route)

Timing constraint: Default OFFSET OUT AFTER for Clock 'clk'

Total number of paths / destination ports: 9/ 7 ‘1
Offset: 4.741ns (Levels of Logic = 2)
Source: TDRE (FF) |

Destination: SCI_IRQ (PAD)

Source Clock: clk rising

Data Path: TDRE to SCI_IRQ
Gate Net
Cell:in->out fanout Delay Delay Logical Name (Net Name)

FDP:C->Q 13 0.272 0.673 TDRE (TDRE) o
LUT2:11->0 1 0.147 0.394 or00041 (SCI_IRQ OBUF) |
OBUF:1->0 3.255 SCI IRQ OBUF (SCI IRQ)

|
r
! 41 J
|

|

__ |

Total 4.741ns (3.674ns logic, 1.067ns route) !
(77.5% logic, 22.5% route) '

Timing constraint: Default path analysis 14
Total number of paths / destination ports: 22 / 8

Delay: 5.204ns (Levels of Logic = 3)
Source: R W (PAD)
Destination: DBUS<7> (PAD)

Data Path: R_W to DBUS<7> |
Gate Net ‘
Cell:in->out fanout Delay Delay Logical Name (Net Name)
IBUF:1->0 3 0.754 0.581 R_W_IBUF (R_W_IBUF) “
LUT2:10->0 8 0.147 0.467 SCI Read invl (SCI_Read_inv) [
[OBUF:T->10 3.255 DBUS 1 TIOBUF (DBUS<I>) |
Total 5.204ns (4.156ns logic, 1.048ns route)
(79.9% logic, 20.1% route)

CPU : 18.69/20.08 s | Elapsed : 19.00/20.00 s
Total memory usage is 242880 kilobytes ‘

Number of errors : 0 (0 filtered) T
Number of warnings : 23 (0 filtered)

42

-l

Number of infos

12 (0 filtered)

5.4.5 MODEILSIM SIMULATIONS RESULTS:

Following Results clearly represent the function of UART,

ADDR2 | R W | Action
00 1 DBUSIRDR
00 0 TDRODBUS
01 1 DBUS[ISCSR
01 0 DBUS[hi-Z
1- | DBUS[ISCCR
1- 0 SCCRIDBUS
Table 3

] wave - default

File Edit View Insert Format Tools \Window

; !uarlﬁle;t{spi _fse:l : =
@ Juattesthw |0

@ Justtesizck
@ luatlestistb |1

@ uait_test/ind

‘ Juart_test/sci_irq
@ Juaittestnd

@ Juan_testhdi

& lua_testock

& N testhdie
@ Juart_test/addr2

UuuuuuU |

E- uart_test/dbus

Now

Al b

T
(RNTNINIR]E]

110 1000

] \10000000 | Y01107001 |

S @G| @ || &R les || % B QQ @ B3| B | E 8@

1001111100

LU0

[onstobddns

| Now: 700 ns Delta: 1

Figure 5.19

43

——Y

o

Eile Edit Yiew [Insert Format Tools Window

Juart_test/sci_s=l
r‘uart_testf'!_'.{'
uart_test/clk
Juart_test/ist_b
fuait lest/ixd

Juart_test/tnd

Juart_test/idit

Auart_test/belk

Juart_testitdie

Juant_test/addr2 0 0o
fuart_test/dbus (W] WIN]NNRNN]

Cursor 1 l B .
] o B < = i
| 0 ns to 316601 ns [Now 404,300 ns Delta: 1

7~

Figure 5.20

vl wave default = "315_(]
Eile Edit View [Insert Format Tools Window

SEHE|| @M DR\ B QQQE || B EEEE|

S W A A T o RN P PR MR8 <

Juart_testd/sci_sel 1
Juart_test2/iw 0
Juart_test2/clk 1
Juart_test2/ist_b 1
fuart_test2/ivd it
Juatt_test2/sai i 1
Juart_test2/ted il

i
fuatt_test2/belk 0
Juart test2/tdre 1

B fuar test2/addi? oo (]

@ fuan test2/dbus R e A TN

Now E42700 ns
Cursor 1 |206250 ns

|.0.ns to 279150 ns | Now: 242 700 ns Delta” 1
= PR £ A - TR
Figure 5.21
44

f e

s

|
|
|
i

CONCLUSION

The software developed for the 8bit UART is synthesized using Xilinx and Modelsim
software using vertex4 as a family. The resulting implementation requires only 71 flip-
flops(less than the latest updated 8bit UART which uses 78 flip-flops) and fits into
xcdvsx35-12-ff668 target device. The synthesis report shows that the speed grade is - 12
means that the device is guaranteed to send a signal from an input pin through to an
output pin in under (10- 20% of 10)ns= 9.8 ns. The timing detail of the repor shows that
the maximum frequency is 430.135MHz (corresponding to delay =2.325ns). The
simulation waveform of UART clearly represents the characteristics of UAR'I" design
(how the transmission and reception of data is being occurred as per different flag signals

used).

Future Prospects: We can modify UART to USART for synchronous data transmission

also. Due to time constraints, we could not further pursue the modification of the UART.

45

BIBLIOGRAPHY

1. Roth, Jr., Charles Digital Systems Design Using VHDL. Thomson Asia Pvi. Lid 2005 4
Bhasker,] A4 VHDL Primer. Prentice Hall of India 2005 b |
Ashenden, Peter J The Designer’s Guide to VHDL. Harcourt India Pvt. [.td. 2002 ,
Mano, Morris Digital Logic and Circuit Design. Prentice Hall of India 2005 |
www.ieeexplore.com

www.nuigalway.ie/cs/staff/software/modelsim.html
www.en.wikipedia.org/wiki/Xilinx

www.arm.com/products/DevTools/LT-XC4VLX160-200.html

o ISy i B

46

