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ABSTRACT

[n many areas of engineering, one requires to perform analysis of plates subjected to in-
plane and lateral loads. Today, the finite element analysis is the most versatile method to
obtain results quite close to actual. In the present work, two plates — one of steel and
other of RCC, are analysed by the finite element method as plate-bending problems. The
Mindlin’s plate theory is used in the element formulation. As the finite element analysis
involves large number of nodes and eclements and large-size matrices, manual
caleulations are not possible. In the view of this, the MATLAB and Visual-FEA are used
for analysis of the plates. Further, STAAD-pro is also used to verify the results obtained
from MATLAB programs developed.

The steel plate has been analysed using MATLAB program developed and the
results obtained were compared with those given by analysis by STAAD.pro. The error
incurred between the two deflections has been found to negligible and of the order of
1.13%. The RCC plate has been cast and tested on UTM (Universal Testing Machine) to
get load-deflection curve. Same plate was modeled in Visual-FEA application to plot the
load-defection curve using Finite Element Method. The curve was found to be
comparable to the one given by UTM. The deflection at the centre of the plate given by
UTM at a load of 105 kN was 1.23 mm, while that obtained by Visual-FEA was 1.18
mm. The studies carried o.ut .hercin conclude that the Finite Element Method gives quite
accurate results to an acceptable degree and is a versatile enough to analyse continuous

structures like plates and shells.
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CHAPTER 1
INTRODUCTION

I.1  General

The limitation of the human mind is such that it cannot grasp the behavior of its complex
surroundings and creations in one operation.

It is well known from the elastic theory of plates that the classical solution involves

tedious calculations, especially when the plates are arbitrary shaped and are anisotropic.

1.2 Plates and Shells'
Plates :
In many area of structural design we require analysis of plates subjected to lateral loads.
[t is well known from the elastic theory of plates that the classical solution involves
tedious calculation especially when the plates are arbitrary shaped and are anisotropic.

According to the nature of stress states the plates are classified as follows:

I. Thick plate, in which triaxial state of stress is developed, is defined by a complete set
of differential equations of 3-dimensional theory of elasticity. Plates for which the ratio
of thickness to least dimension on plan exceeds 1/10 maybe taken as belonging to this

class.

2. Thin plates with _small deflection in which the membrane stresses are very small
compared to flexural stresses under deformation due to transverse loading. This class

may be taken to comprise plates for which the ratio of thickness to span does not exceed

[/10 and the maximum deflection w is less than h/10-h/5.
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3. Thin plates with large deflection are characterized by the fact that the flexural stresses
are accompanied by relatively large tensile or compressive stresses in the middle plane.

these membranes stresses significantly affect the bending moment.

Shells

[n many areas of structural design we require analysis of shell subjected to different types
of loads. It is well known from the theory of shells that the classical solution involves
tedious calculations and is extremely difficult especially for shells of arbitrary shapes.
The finite element method is very much suited for the analysis of shells of general shapes
because of its flexibility in accounting for arbitrary geometry, loadings and variations in

material properties.

Thin_shells — If the thickness of the shells is small compared to the radii of curvature of

the mid surface, the shell is referred to as geometrically thin shell.

1.3 Finite Element Method

It was the work of Turner, Clough, Martin and Topp that led to the discovery of finite
clement method. The basic concept is that a body or a structure may be divided into
smaller elements of finite dimensions called ‘Finite Elements’ .The original body or the
structure is then considered as an assemblage of these elements connected at a finite
number of joints called ‘Nodes’ or ‘Nodal Points’.

The properties of the elements are formulated and combined to obtain the solution
for the entire body or structure. Thus, instead of solving the problem for the entire
structure or body in 1 operation, in this method attention is mainly devoted to the
lormulation of properties of the constituent element.

The procedure for combining the elements, solution of equations and the
evaluation of elements strain and stresses are the same for any type of structural system
or body. Hence, the FEM offers scope for developing general purpose programs with the
properties of various types of ¢lements forming an clement library and other procedures

ol analysis forming the common core segments.

Introduction 2
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The finite-element. method originated  from the needs for solving
complex elasticity, structural analysis problems in civil and aeronautical engineering. Its
development can be traced back to the work by Alexander Hrennikoff (1941)
and Richard  Courant (1942). While the approaches used by these pioneers are
dramatically different, they share one essential characteristic: mesh discretization of a

continuous domain into a set of discrete sub-domains, usually called elements.

Hrennikoff's work discretizes the domain by using a lattice analogy while
Courant's approach divides the domain into finite triangular subregions for solution of
second order elliptic partial differential equations (PDEs) that arise from the problem
ol torsion of a cylinder .Courant's contribution was evolutionary, drawing on a large body

of carlier results for PDEs developed by Rayleigh, Ritz, and Galerkin.

“Development of the finite element method began in earnest in the middle to late 1950s
for airframe and structural analysis and gathered momentum at the University of
Stuttgart through the work of John Argyris and at Berkeley through the work of Ray W.
Clough in the 1960s for use in civil engineering. By late 1950s, the key concepts of
stiffness matrix and element assembly existed essentially in the form used loday[SJ and
NASA issued request for proposals for the development of the finite
clement software NASTRAN in  1965. The method was provided with a rigorous
mathematical foundation in 1973 with the publication of Strang and Fix's An Analysis of
The Finite Element Method, and has since been generalized into a branch of applied
mathematics for numerical modeling of physical systems in a wide variety of engineering

disciplines, e.g., electromagnetism and fluid dynamics.

Variety of specializations under the umbrella of the mechanical engineering
discipline (such as aeronautical, biomechanical, and automotive industries) commonly
uses integrated FEM in design and development of their products. Several modern FEM
packages include specific components such as thermal, electromagnetic, fluid, and

structural working environments.
I a structural simulation, FEM helps temendously in producing stillness and

strength visualizations and also in minimizing weight, materials, and costs. FEM allows

detailed visualization of where structures bend or twist, and indicates the distribution of

Introduction 3




stresses and displacements. FEM software provides a wide range of simulation options
for controlling the complexity of both modeling and analysis of a system. Similarly, the
desired level of accuracy required and associated computational time requirements can be
managed simultancously to address most engineering applications. FEM allows entire
designs to be constructed, refined, and optimized before the desi en is manufactured. This
powerful design tool has significantly improved both the standard of engineering designs

and the methodology of the design process in many industrial applications.

The introduction of FEM has substantially decreased the time to take products
from concept to the production line. It is primarily through improved initial prototype
designs using FEM that testing and development have been accelerated. In summary,
benefits of FEM include increased accuracy, enhanced design and better insight into
critical design parameters, virtual prototyping, fewer hardware prototypes, a faster and

less expensive design cycle, increased productivity, and increased revenue.

1.4 Objective of the Project

Following are the objectives of the project:-
* Understand Finite Element Analysis and its application to structural analysis.

* Develop differential equations for plates as per Mindlin’s theory and solve the
same by FEM.

e Use CAD enppliczﬁions like STAAD-pro and MATLAB for complex FEM
problems.

¢ Use Visual-FEA for analysis of slab.

* Verification of analytical results with the experimental investigation.

Introduction 4
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CHAPTER 2
THEORY OF PLATE BENDING

2] Literature Review

A plate can be considered a two dimensional extension of a beam in simple bending.
Both plates and beams support loads transverse or perpendicular to their plane and
through bending action. A plate is a flat (if it were curved, it would be a shell). A beam

has a single moment of resistance, while a plate resists bending about two axis and has a

twisting moment.

. - . 2
Basic behavior of geometry and deformation

Consider a thin plate in the x-y plane of thickness ¢ measured in the z direction as shown

below;
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Fig. 2.1 Thin Plate

The plate surfaces are at z = +t/2, and its midsurface is at z =0. The basic geometry of the

plate is as follows:




I~ The plate thickness is much smaller than its inplane dimensions b and ¢ (i.e. t<<b

or ¢). If ¢ is more than about one-tenth of the span of the plate, then transverse

g e

shear deformation must be accounted for and the plate is said to be thick.

2

The deflection w is much less than the thickness t (i.e. w/t<<l).

2.2 Kirchoff assumptions'

; Consider the differential slice cut from the plate by planes perpendicular to the x axis as

; shown in the figure below:

| : ” - 1 == 2
| W ] ‘K
| 1 a

(SRS e e
‘ a P lr Midsurface
k 1 Pe 7 _dw
E 12 % 0 Ay
| Tl L
i i - X, u
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; b

| =
i b
(a) (b)

Fig 2.2 Differential Slice

; Loading ¢ causes the plate to deform laterally or upward in the z direction and, the
| deflection w of point P is assumed to be a function of x and y only; that is w = w(x,y) and
the plate does not stretch in the z direction. The line a-b drawn perpendicular to the plate !
surface before loading remains perpendicular to the surface after loading. These ‘i
conditions are consistent with the Kirchoff’s assumptions: |

[. Normal remains normal. This implies that transverse shear strains Yy = 0 and vy, !
; i = 0. However yyy = does not equals 0. Right angles in the plane of the plate may ’

not remain right angles after loading. The plate may twist in the plane.

2

Thickness changes can be neglected and normals undergo no extension.

Normal stress o, has no effect on in-plane strains &, and €, in the stress-strain

equations and is considered negligible.

Theory of Plate Bending 6




4. Membrane or in-plane forces are neglected here, and the plane stress resistance
can be superimposed later. Therefore, the in-plane deflections in the x and y
direction at the midsurface, t=0, are assumed to be zero; u(x,y,0)=0 and

v(x,y,0)=0.

Based on the Kirchoff assumptions, at any point P the displacement in the x direction due

to small rotation a is:

[ ew
U=-Zq=~2| (—]
| ox

5

At the same point, the displacement in the y direction is:

ow
V=-Zx Z[ =
oY

The curvatures of the plate are then given as the rate of the change of the angular

displacements of the normals and defined as:

'\,2 4‘12 f'~2
;G G w oW
Fia Rl - A K, = — K = A B e i
X ) ~ xy oy
ox 5y : oxoy

Using the definitions for in-plane strains, along with the curvature relationships, the in-

plane strain/displacement equations are:

o*w o*w o’w
2 z

ox* + oy oxoy

The first of the above equations is used in beam theory. The remaining two equations are

new (o plate theory.

1 . . Fa |
2.3 Stress-strain relationship
Based on the third Kirchoff assumptions, the plane stress equations that relate in-plane

stresses o in-plane strains for an isotropic material are:

Theory of Plate Bending 7
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The in-plane normal stresses and shear stress are shown acting on the edges of the plate

shown in the figure below:

dx

/o,

M',::\

Fig 2.3 Stresses on edge of plate

Similar to stress variation in beam, the stresses vary linearly in the z direction from the "f‘1;
it

midsurface of the plate. The transverse shear stresses Ty, and Ty, are also present, even ‘ i
though transverse shear deformation is neglected. These stresses vary quadratically
through the plate thickness. | ,
< . : - il
The bending moments acting along the edge of the edge of the plate can be related to the I il .
stresses by: l i’
i

12 12 12 i

M, = o, 7dz M, = J. g,z2dz M, = Ty 2d2 b
' ~1/2 pRET R “t2 =112 il

o

e — i il
Substituting strain for stresses gives: I
il

i

gk E § gt 5 12 (i

» 5 sy : i ' 3 - 1l

M= | z[ : =i, Twy))dz M, = | 2(1— =y +w,x)JCJ'Z M, = [ 2Gy,dz | I
g KR / -2 L <12 | i

it

_ il
Theory of Plate Bending 8 (il i
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Using the strain/curvature relationships, the moment expression become:

o G Bl

M, = D(r{x + l’lx’y) M, = D(f\'-, +vicy ) M., 9 Ky
Where,
7

12(l-v )

D is called the Bending Rigidity of the plate.

2.4  Mindlin’s Theory"

Mindlin’s approximation is that straight lines originally normal to the mid surface, before
deformation, remain straight but not normal to the deformed surface, i.c., the average
rotation of the section may be taken as the rotation in which normals remains
perpendicular to the mid surface plus an additional rotation due to transverse shear. Thus
the actual shear deformation is assumed to be equivalent to a straight line rotation
representing a uniform shear strain through the thickness.

The three assumptions made in Mindlin’s Theory of plates are:-

I. The deflections of the plate are small.

2. Normal to the plate mid surface: before deformation remains straight but is not
necessarily normal to it after deformation.
3. Stresses normal to the mid surface are negligible.

Element properties

. Straight or curved one-dimensional elements with physical properties such as

axial, bending, and torsional stiffnesses. This type of elements is suitable for

modeling cables, braces, trusses, beams, stiffeners, grids and frames. Straight

elements usually have two nodes, one at each end, while curved elements will

Theory of Plare Bending 9




need at least three nodes including the end-nodes. The elements are positioned at

the centroidal axis of the actual members.

r2

Two-dimensional elements for membrane action (plane stress, plane strain) and/or

bending action (plates and shells). They may have a variety of shapes such as flat

or curved triangles and quadrilaterals. Nodes are usually placed at the element
corners and, if needed for higher accuracy, additional nodes can be placed along
the element edges or even inside the element. The elements are positioned at the
, mid-surface of the actual layer thickness.
3. Torus-shaped elements for axisymmetric problems such as thin, thick plates,
: shells, and solids. The cross-section of the elements are similar to the previously
described types: one-dimensional for thin plates and shells, and two-dimensional
for solids, and thick plates and shells.

4. Three-dimensional elements for modeling 3-D solids such

as machine components, dams, embankments or soil masses. Common element
shapes include tetrahedrals and hexahedrals. Nodes are placed at the vertexes and

possibly in the element faces or within the element.

—_—
b
2
)
Ll
e
-]

s

T
=
&
T
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}f;’. i
‘-»‘\::'

|
Fig. 2.4 A crude FE example mesh (with triangular and rectangular elements) for a |

cantilever-beam with hole |i [
i

- . 5 & 3 ‘ I
Element interconnection and displacement gs‘
|

The elements are interconnected only at the exterior nodes, and altogether they should

cover the entire domain as accurately as possible. Nodes will have nodal (vector)

displacements or degrees of freedom which may include translations, rotations, and for

Theory of Plate Bending 10
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special applications, higher order derivatives of displacements. When the nodes displace,
they will drag the clements along in a certain manner dictated by the element
formulation. In other words, displacements of any points in the element will
be interpolated from the nodal displacements, and this is the main reason for the

approximate nature of the solution.

Steps involved in the Finite Element Analysis®

1.

[n finite element analysis, simple functions known as ‘shape functions’ are chosen
to approximate the variation of displacement within an element in terms of
displacement at the nodes of the element.

It follows the concept used in the Rayleigh-Ritz procedure of functional
approximation method but the difference is that the approximation to field
variable is made at the element level.

The strains and stresses within an element will also be expressed in terms of the
nodal displacement. .

Then the principle 'of virtual displacement or minimum potential energy is used to
derive the equation of equilibrium for the element and the nodal displacements
will be the unknowns in the equations.

The equations of equilibrium for the entire structure or body are then obtained by
combining the equilibrium equation of each element such that the continuity of
displacement is ensured at each node where the elements are connected.

The necessary boundary conditions are imposed and the equations of equilibrium
are solved for the nodal displacements.

Having obtained the values of displacements at the nodes of each element, the

strains and stresses are evaluated using the clement properties.

Theory of Plate Bending 11




CHAPTER 3
\ ANALYSIS OF STEEL PLATE ELEMENT

3.1 The Problem Formulation
A simply supported square plate made of steel has been considered for analyzing using
finite element method. The plate is subjected to a concentrated load of 40 Ib at the centre.
The size of the plate is 10 inches by 10 inches and its thickness is 0.1 inches.

A program has been prepared in MATLAB for calculating the deflection of the

plate at its centre parallel to the load.

3.2 Analysis using STAAD.pro
The plate has been modeled in STAAD.pro 2005 by giving the same inputs for geometry
and material. The central deflection obtained due the same amount of load i.e. 40 Ib, was

0.0441 inches. The comparison of this deflection is shown in the Table 3.1.

Fig.3.1 Isometric View of the Plate modeled in STAAD pro
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Fig.3.2 Stress contours obtained by STAAD.pro ’

it
3.3 Analysis using MATLAB program’ i
3.3.1 Preprocessing
The basic flow chart for the MATLAB program is shown in the Fig. 3.4. The input was

prepared as the following steps, to be fed to the program.

Discretization of the plate
The plate has been divided into four equal parts. One part has been taken for FEM

analysis and divided into four 4-noded rectangular plate-elements as shown in Fig. 3.3.

Degree of Freedom

Total numbers of nodes per element are 4. Number of degree of freedom per node is 3 i.e.

in x, y and z direction. Total numbers of nodes in the system are 9. Therefore total

number of degree of freedom in the system will be 27.

Analysis of Steel Plate Element 13 | i
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Fig.3.3 Discretized Quarter Plate

Generating Element Stiffness Matrices
Element stiffness matrix is generated by both using bending and shear. After computation

both are summed up to get the element matrix.

Application of Boundary Conditions
Alter the generation of element stiffness matrix boundary conditions depending on the

plates are applied.

3.3.2 Postprocessing
Nodal Displacement
Nodal displacement at each node is calculated by dividing nodal force vector by the

element stiffness matrix which computed by combining bending and stiffness matrices

Strains and Stresses

The strain at any point may be calculated by multiplying strain —displacement matrix B
with-the-nodal-displacement-vector-obtained-in-the previous step. Ultimately, the stresses
at various points are calculated by multiplying the property matrix D with the strain

matrix just obtained.

Analysis of Steel Plate Element 14
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dule, poisson, gcoord,
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Y

Then K= Ky+K; , where
K= element matrix.

\ 4
Displacement= K Fes s
Where F.=10lb.

Fig. 3.4 Flow Chart for the MATLAB Program
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3.4  Receiving Input Data

The following commands are used to enter various data which is required for the

calculation of nodal displacements:

nnode=9 ;
sdof=nnode*ndof;
edof=ndof*nnel;

emodule=30e6;

poisson=0.3;

t=0.1;
nglxb=2; nglyb=2;
nglxs=1; nglys=1;

geeord=[0.0 Qw0 2:5 10507:5:.0:0,0%

2:5

23971040 12,.5,00:,.0 5.507% 205

0:0 2:5;
504  5.:.0. 5..0]%

nodes=[1 2 5 4;2 3 6 5;4 5'8 7;56 9 81;
bedof=[1 2 3 46 7 9 11 12 16 20 21 23 25 26j;
bcval=zeros(1,15);

ff=zeros(sdof,1);

kk=zeros (sdof, sdof) ;

disp=zeros(sdof, 1);

index=zeros (edof,1);
kinmtpb=zeros (3, edof);
matmtpb=zeros(3,3);
kinmtps=zeros (2, edof) ;
matmtps=zeros (2, 2);

f£(27)=10;

3.5 Determination of Element Stiffness

The following code determines the thickness of the element:
for iel=l:nel
for i=1:nnel
nd (i)=nodes(iel, i);
xcoord(i)=gcoord(nd(i),1);

ycoord (i) =gcoord(nd (i), 2);

Analysis of Steel Plate Element
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end
k=zeros (edof, edof);

b kb=zeros(edof, edof) ; w

ks=zeros(edof, edof) ; *

for intx=1:nglxb

x=pointb{intx, 1);
wtx=weightb(intx, 1); ”
for inty=1l:nglyb
y=pointb(inty, 2); I
wty=weightb({inty, 2); |

[shape, dhdr,dhds]=feisoqgd (x,vy);

jacob2=fejacob2 (nnel, dhdr, dhds, xcoord, ycoord) ;

det jacob=det (jacob2) ;

invjacob=inv(jacob2);

(dhdx, dhdy]=federiv2 (nnel, dhdr, dhds, invjacob);
kinmtpb=fekinepb(nnel, dhdx, dhdy) ; ﬁ
kb=kb+kinmtpb'*matmtpb*kinmtpb*wtx*wty*det jacob;

end

end
for intx=1:nglxs
¥x=points (intx, 1)
wtx=weights{intx, 1)
for inty=1l:nglys
y=points(inty, 2) :i
wty=weightskinty,2) nﬁf

[shape,dhdr, dhds]=feisoqgd (x, y)

i jacob2=fejacob2 (nnel, dhdr, dhds, xcoord, ycoord) ; _ il
det jacob=det (jacob2) fﬁ
invjacob:inﬁ(jacobZ);

[dhdx,dhdy] =federiv2(nnel, dhdr, dhds, invjacob);
kinmtps=fekineps (nnel, dhdx, dhdy, shape) ; (I
ks=ks+kinmtps'*matmtps*kinmtps*wtx*wty*detjacob; |
end ' : Il

end
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3.6 Assembling

Assembling of bending stiffness matrix and shear stiffness matrix is done as:

k=kb+ks;
index=feeldof (nd, nnel, ndof) ;
kk=feasmbll (kk, k, index) ;

3.7 Nodal Displacements

Nodal displacements has been calculated by the following code:

[kk, ff]=feaplyc2(kk, ff, bcdof, bcval);
disp=kk\ff;

num=1:1:sdof;

displace=[num' disp]

contourf (displace);

colorbar;

3.8  Analysis of Results

Alter the calculation of nodal displacements, the result obtained by MATLAB is

analyzed and compared with results obtained by STAAD.pro. An error of 1.133% has

been found which is acceptable.

Table 3.1: Comparison of Central Deflections

Tool > — STAAD pro

MATLAB program

Central Deflection (inches) 0.0441

0.0436

Variation in Result w.r.t.

STAAD pro

1.1337 %

Analysis of Steel Plate Element

i?'




CHAPTER 4
EXPERIMENTAL ANALYSIS OF RCC SLAB

4.1 Introduction

A Concrete slab is a common structural element of modern buildings. Horizontal slabs of
steel reinforced concrete, typically between [0 and 50 centimetres thick, are most often

used to construct floors and ceilings, while thinner slabs are also used for exterior paving.

In many domestic and industrial buildings a thick concrete slab, supported on foundations
or directly on the sub soil, is used to construct the ground floor of a building. In high rises
buildings and skyscrapers, thinner, pre-cast concrete slabs are slung between the steel

frames to form the floors and ceilings on each level.

Concrete slabs typically have a high thermal mass. In older buildings, concrete slabs cast
directly on the ground can drain heat from a room. In modern construction techniques,
concrete slabs are usually cast on top of thicker layers of insulation, for example
expanded polystyrene, and may contain underfloor heating. Even so their thermal mass
can lead to a delay warming the room when the heating is switched on. This can be an
advantage in climates with large daily temperature swings, where the slab keeps the

building cool by day and warm by night.

A concrete slab may be prelﬁbricated or in situ. Prefabricated concrete slabs are built in a
factory and transported to the site, ready to be lowered into place between steel or
concrete beams. They may be pre-stressed (in the factory), post-stressed (on site), or
unstressed. It is vital that the supporting structure is built to the correct dimensions, or the

slabs may not fit.

In situ concrete slabs are built on the building site using formwork - a type of boxing into

which the wet concrete is poured. If the slab is to be reinforced, the rebars are positioned




within the formwork before the concrete is poured in. Plastic tipped metal, or plastic bar
chairs are used to hold the rebar away from the bottom and sides of the formwork, so that
when the concrete sets it completely envelops the reinforcement. For a ground slab, the
formwork may consist only of sidewalls pushed into the ground. For a suspended slab,
the formwork is shaped like a tray, often supported by a temporary scaffold until the

concrete sets.

The formwork is commonly built from wooden planks and boards, plastic, or steel. On
commercial building sites today, plastic and steel are more common as they save labour.
On low-budget sites, for instance when laying a concrete garden path, wooden planks are
very common. After the concrete has set the wood may be removed, or left there

permanently.

In some cases formwork is not necessary - for instance, a ground slab surrounded by
brick or block foundation walls, where the walls act as the sides of the tray and hardcore

acts as the base.

4.2 RCC Slab Casting

A RCC slab was cast with the following properties:
® Slab Dimensions = 60cm x 60cm x [0cm
*  Volume Of slab = 0.0377m’
¢ Volume of Cubes =3 x (0.15)* = 0.010Im?
* Total Volume = 0.0478m’
* Wtofslab=0.0478 x 2400 = [14.78 kg.

e Using M20 (1:1.5:3) concrete and Fe 415 steel bars.
o Wtof Cement = 114.78/5.5 = 20.86kg = 22kg.

o Wtof Sand = 1.5 x114.78/5.5 = 31.30kg = 33kg.

*  Wtof Aggregates = 3 x114.78/5.5 = 62.60kg = 66kg.
e Water/ Cement Ratio = 0.5

o Use 10 bars of 10mm ¢ spaced [00mm C/C.

Experimental Analysis of RCC Slab 20




4.3  Tests on Slab

) Fhe UTM (Universal testing machine) was used to measure the deflection of the slab.
The capacity of the UTM was 1000 kN (100 tones). A line load was applied at the centre
of the slab. The load was increased gradually upto 105 kN and the load-deflection curve
was plotted.

\

Fig.4.1 Project Team I
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4.3 Tests on Slab

The UTM (Universal testing machine) was used to measure the deflection of the slab.
The capacity of the UTM was 1000 kN (100 tones). A line load was applied at the centre
of the slab. The load was increased gradually upto 105 kN and the load-deflection curve

was plotted.

Fig.4.1 Project Team i

Tang 2980urce

Experimental Analysis of RCC Slab 21 1




phERisaBIEBEEE

L L A

rrvreeeer]

Fig.4.2 Slab being tested on UTM

22

Experimental Analysis of RCC Slab




23

Experimental Analysis of RCC Slab

Fig.4.3 A line load is being applied using UTM at the centre of the slab




Table 4.1: Load-Deflection values Obtained by UTM
. Load (kN) Deflection (mm)
\ 0 0.000
10 0.100
20 0.212
30 0.480
40 0.590
50 0.750
60 0.961
70 1.000
80 1.030
90 1.150
100 1.200
110 1.330
120 1.410
i
W
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CHAPTER 5
ANALYSIS OF RCC SLAB WITH VISUAL-FEA

5.1 Introduction to Visual-FEA

Visual-FEA is integrated software for finite element analysis, which is an advanced
numerical technique to solve and analyze physical problems arising in many fields of
science and engineering. Numerous commercial or academic programs for finite element
analysis have been developed and distributed all over the world so far. However, most of
them are not much accessible for many potential users of the method, owing to various
reasons: complexity of usage, high expenses, restricted portability, functional limitations

and so on,

The main objective of Visual-FEA is to overcome such barriers between the user
and the software, and make itself easily accessible and affordable for everyone who needs
finite element analysis not only for practical use but also for educational purposes. The
greatest advantage of Visual-FEA is its ease of use and user-friendliness. Its usage is
simple, natural and intuitive for all the diverse and ample functionality it provides. This
makes the software most unique and attractive, because finite element analysis involves

complicated procedures, and accordingly finite element programs in general are far from

user-friendly.

5.2 Data input to Visual- FEA
Stab Dimension= 60 x 60 x 10 cm

Loads= three loads of 35 kN each placed 7.5 cm apart.

Structural Boundary= Node No. 301, 223, 145, 608, 530, 452 are fixed.




5.3 Load-deflection curves

Given below is the load-deflection curve obtained by analyzing the RCC slab with ;

Visual-FEA. ;
|

=)
—

Deflections (mm)
=
= =

f=1 = [=] =1 = (=] o o
= —~ (=] == w = ~
INX] peoY

Fig.5.1 Load-deflection curve obtained by Visual-FEA
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5.4 Stress and Deflection Contours

The stress contours obtained by Visual-FEA are given in this section, for normal stresses

} in X (Fig. 5.2) and Z-axis (Fig. 5.3) and displacement in X,Y and Z-axis (Fig. 5.4).
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Fig.5.2 Normal Stress X obtained by Visual FEA
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Fig.5.7 Deformed Shape of the slab after the application of load

5.5 Comparison of Results

Table 5.1 shows the comparison of variation in the deflection at the centre of the RCC
slab for changes in load values for UTM tests and Visual-FEA analysis. It may be
observed here that for initial values of load, the error is more than that for higher values.
This may be attributed to the slip between the dies of UTM until a firm grip is achieved.
Moreover, the deflections for loads beyond 70 kN, errors reduces. It is even zero for 100
kN load.

Table 5.2 shows the cdmparison of static deflections at the centre of the RCC slab
for the two cases: test on UTM and analysis by Visual-FEA. The deflection obtained by
UTM testing for a load of 105 kN applied at the centre was 1.23 mm and the deflection
obtained by Visual-FEA was 1.18 mm; with an error of 4%.

The errors introduced herein may be attributed to the differences in the
homogeneity of concrete in practice and that in the modeling. Moreover, location of the

supports and loads may not be exactly simulated.
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Table 5.1: Comparison of Load-Deflection values
Load (kN) Deflection at Centrf.: (mm) Difference
UTM Visual-FEA (mm)
0 0.000 0.000 0
10 .. 0.100 0.120 -0.02
20 0.212 0.241 -0.029
30 0.480 0.362 0.118
40 0.590 0.483 0.107
50 0.750 0.603 0.147
| 60 0.961 0.724 0.237
70 1.000 0.845 0.155
30 1.030 0.966 0.064
90 1.150 1.080 0.07
100 1.200 1.200 0
110 1.330 1.320 0.01
120 1.410 1.440 -0.03
Table 5.2: Comparison of Central Deflection
I Tool > UTM Visual FEA
Central Deflection 1.23 mm 1.18 mm
Variation in result
EA il
w.r.t. Visual F
|2
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6.1

CHAPTER 6
CONCLUSIONS

Conclusions

The analytical and experimental studies carried out in this report lead to the conclusions

as given below:

The program developed in MATLAB gives fairly accurate results. The deflection
at the center of the steel plate is 0.0436 inches given by the program; which is
verified with the result from STAAD-pro which is 0.0441 inches. The error
incurred is merely 1.13%.

The stress and deflection contours obtained from the Visual-FEA reveal the
behaviour of the slab as expected practically.

The deflection of the RCC slab at the centre is 1.23 mm obtained by Universal
Testing Machine at a load of 105 kN, while the deflection at the centre of plate
obtained using Visual-FEA is 1.18 mm, which are close to an acceptable degree.
The load-deflection curve obtained by flexure tests by UTM is found to be follow
the Experimental results obtained by Visual FEA are verified by the analytical
results obtained by.

For the initial values of load, the error is more than that for higher values. This
may be attributed to the slip between the dies of UTM until a firm grip is
achieved. Moreover, the deflections for loads beyond 70 kN, errors reduce. It is

even zero for 100 kN load.

The accuracy of the results could be increased by increasing the number of elements and

by choosing higher-order displacement model and elements. Lastly, it may be stated that

ihe Finite Element Method—is—a—very powerful tool to analyse discrete as well as

continuous structures as plates.

Conclusions
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APPENDIX A: MATLAB and STAAD.pro Source codes

nel=4 H
nnel=4;
ndof=33;

nnode=9;
sdof=nnode*ndof;
edof=ndof*nnel;
emodule=30e6;
poisson=0.3;
t=0:1;
nglxb=2; nglyb=2;
nglxs=1; nglys=1l;
geoord=(0.0 0.0; 2.5 0.0% 5,010,507 .0:0 2.5¢
TR SRS o YR B Y o B T O e 55075505501+
nodes=[1 2 5 4;2 3 6 5:4 51807115 e N
hedof=(1' 2 '3 4" 6 /911212516 20221 2325 :26]1;
beval=zeros(1l,15);
ff=zeros (sdof,1); - 'ﬂ
kk=zeros (sdof, sdof);
nisp;zeros(sdof,l); ‘
index=zeros{edof,1);
kinmtpb:zeros(3,edof);
matmtpb=zeros{(3,3);
krinmtps=zeros (2, edof);
matmtps=zeros(2,2);
f£(27)=10;
[pointb,weightb]=feglqd2(nqlxbfnglyb);
matmtpb:fematiso(1,emodule,poisson]*(t*t*t)/lZ;
[points,weights]:feglqdz(nglxs,nglys);
shearm:0.5*emodule/(1.O+poi550n);
shcot=5/6;

matmtps=shearm*shcof*t*[1 04:0—1)=

for iel=l:nel
for i=1l:nnel

nd(i)=modes(iel,i];




xcoord{i):qcoord(nd(i),1);
ycoord(i):gcoord(nd(i],2);
end
k=zeros (edof, edof);

kb=zeros {edof,edof) ;

s=zeros (edof,edof) ;
for intx=1l:nglxb
x=pointh(intx,1); '
wtx:weiqhtb(jntx,l};
for inty=1l:nglyb
y=pointb(in£y,2);
wty=weiqhtb(inty,2);
Lshape,dhdr,dhds]:feisoq4(x,y];

jacob2=fejacob2(nnel,dhd;,dhds,xcoord,ycoord);
detjacob=det(jacob2};

invjacobzinv(jacobZ);
[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob);
kinmtpbifekinepb(nnel,dhdx,dhdy);
kb=kb+kinmtpb'*matmtpb*kinmtpb*wtx*wty*detjacob;

end l?k
end |
for intx=1l:nglXxs . #

x:points(intx,l) ?

wtx=weights{intx;1) ‘
for inty=1l:nglys ;
\ y:points(inty,Z)
wty=weiqhts(inty,2)
[shape,dhdr,dhds]:féjsoqé(x,y)
jacob2:fejacob2(nnel,dhdr,dhds,xcoord,ycoord);
detjacob:det(jacobZ)
invjacob=inv(jacob2};
[dhdx,dhdy]:federiVZ(nnel,dhdr,dhds,invjacob);
kinmtps=fekineps(nnel,dhdx,dhdy,shape);
ks=ks+kinmtps'*matmtps*kinmtps*wtx*wty*detjacob;
end
; end
k=kb+ks;

indeXﬁfeeldof(nd,nnel,ndof);
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kk:feasmbll(kk,k,index);
end :
(kk, £f]=feaplyc2(kk, £, bedof, beval);
dﬁﬁp:kk\ff;
num=1:1:sdof;

displace=[num' disp]

contourf (displace);

colorbar;

Source Code of Plate modeled in STAAD.pro 2005:
STAAD SPACE

START JOB INFORMATION

ENGINEER DATE 20-Nov-08 ' "
END JOB INFORMATION |
INPUT WIDTH 79 Ll
UNIT INCHES POUND I
JOINT COORDINATES i
(000:21000;310010;40010;52.500;62502.5;
7002.5:8500;95025;107.500;117.502.5; 12 100 2.5; :
132.505:14005;15505;167.505,171005; 182.507.5;
19007.5:20507.5;217.507.5;22 10075, 23250 10
245010;257.50 10;

ELEMENT INCIDENCES SHELL

2 1567:35896,4810119;51021211367613 14;
16915 13:89 1116159111217 16;10 14 13 18 19;

L1 131520 18: 12 15 1621 20; 13 16 722215 14191823 4;
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1518 20 24 23; 16 20 21 25 24; 17 21 22 3 25;
ELEMENT PROPERTY

2 TO 17 THICKNESS 0.1

DEFINE MATERIAL START

ISOTROPIC STEEL

3 2.97327e+007

POISSON 0.3

DENSITY 0.283

ALPHA 1.2e-005

DAMP 0.03

END DEFINE MATERIAL

CONSTANTS

MATERIAL STEEL MEMB 2 TO 17
SUPPORTS :

I TOS578 10121417 1922 TO 25 PINNED
LOAD 1 LOADTYPE Live TITLE LL
JOINT LOAD %

15 FY -40

PERFORM ANALYSIS

LOAD LIST ALL

PRINT ANALYSIS RESULTS

PRINT JOINT DISPLACEMENTS LIST 1 TO 25
FINISH
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APPENDIX B: Overview of MATLAB and STAAD-pro

Overview of MATLAB

MATLAB is interactive software which has been used recently in various areas of
engineering and scientific applications. The power of MATLAB is represented by the

length and simplicity of the code. MATLAB provides Graphical User Interface (GUI) as

well 3-D graphical animation.

In general, MATLAB is a useful tool for vector and matrix manipulations. Since
the majority of the engineering systems arc represented by matrix and vector equations,
we can relieve our workload to a significant extent using MATLAB. The Finite Element
Method is a well defined candidate for which MATLAB can be very useful solution tool.

Matrix and vector manipulations are essential parts in the method.
Overview of STAAD.pro

STAAD Pro is the World's leading Structural Analysis and Design Package for Structural
Engineers. Incorporating design codes for 15 different countries it is also the most
comprehensive and universal. The STAAD/Pro Suite of software incorporates many

aspects aimed at making the Engineers' working life as easy as possible.

The new graphical interface uses the latest in object oriented programming
techniques and allows STAAD users (o quickly and easily manage models of all sizes. In
addition to all the features available in the Space Frame section STAAD has a range of

Automatic Mesh Generators for slabs, complex shapes etc.

The STAAD Analysis Engiﬁc has 2D and 3D capabilities for solving problems
containing Beams, plate elements and 8 noded bricks. The general nature of the solution
engine allows beam models using the stiffness matrix method to be combined with finite
clements. A wide range of support conditions, load types and various other

member/element specifications are available for combination with these features.
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APPENDIX C: Ilustrative Steps Followed in Visual-FEA

Step 1: Open Visual FEA. Select new option from File menu. A project setup dialog box
will appear, select 3D solid. Select the units as kN/mm. Click O.K.

Project Setup

Fig. C-1 Creating a New File and Setting Units
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Step 2: A grid view will appear select line option from the tool box at the left side of the
window. Enter the coordinate values for the slab to define the boundaries.

W

Fie Edt View Render Divide Mesh Assion Sove Postro Line Help

2 -5 e i el
i[O 0] >+ (@R O[a["] 3
s DO | =[## cojn| ole 3
o L\ SO~ e R ] &E B
Fig. C-2 Creating Element Boundaries
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Step 3: Select Divide option and divide all the line elements into desired numbers. Finer

the division, finer will be the mesh and the accuracy of the result.
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Fig. C-3 Dividing the Element for Mesh Generation
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Select the type of mesh from Mesh menu.

Step 4
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Step 6: Apply the boundary conditions i.e. fixed or roller or hinged.
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Fig. C-6 Applying Boundary Conditions
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Step 7: Apply the load conditions as desired.

g

PRy e O T R )
164 116 & 1 4 16 B4

[Nodal Force

[¥ Direction

¥ WsualFEAICBT 4.11: 22052009.mtr

BEECEGEEREOEN T [
|4 gl ([ 1) 3
AR T ;
||l ] ] ] S L
Fig. C-7 Application of loads
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Step 9: From the Postpro menu a number of results can be seen such as Contour, Iso-
surface, Deformed Shape, Nodal Values etc.
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Fig. C-9 Visual FEA post processing
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