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ABSTRACT

i The debugging tool helps the user to find the location of fault in the program. The Tarantula g
technique is used to develop this tool which is based on calculation of suspiciousness value for i
each executable statement in the code. Suspiciousness for any statement is the value which
signifies danger because if the statements are passed primarily by failed test cases, the statement
is highly suspicious of being faulty. The code entered by the user is edited to indentify which line
is executed at the time of compilation. The tool stores the record of each line that is executed by

the given test cases and based on the failed or passed test case entered by the user, the

|
f z
|

The line having higher rank has the maximum probability of having a fault.

L suspiciousness value is calculated, according to which ranks are assigned to each executable line.
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CHAPTER-1

INTRODUCTION

1.1 Debugging

A practicing programmer inevitably spends a lot of time tracking down
and fixing bugs. Debugging, particularly debugging of other people's
code, is a skill separate from the ability to write programs in the first
place. Unfortunately, while debugging is often practiced, it is rarely
taught. A typical course in debugging techniques consists merely of
reading the manual for a debugger.

Debugging is a methodical process of finding and reducing the number
of bugs, or defects, in a computer program or a piece of electronic
hardware thus making it behave as expected. Debugging tends to be harder
when various subsystems are tightly coupled, as changes in one may cause
bugs to emerge in another.

In computers, debugging is the process of locating and fixing or
bypassing bugs (errors) in computer program code or the engineering of a
hardware device. To debug a program or hardware device is to start with a
problem, isolate the source of the problem, and then fix it. A user of a
program that does not know how to fix the problem may learn enough
about the problem to be able to avoid it until it is permanently fixed.
When someone says they've debugged a program or "worked the bugs out"
of a program, they imply that they fixed it so that the bugs no longer
exist.

Debugging is a necessary process in almost any new software or hardware
development process, whether a commercial product or an enterprise or
personal application program. For complex products, debugging is done as

the result of the unit test for the smallest unit of a system, again at

component test when parts are brought together, again at system test when




the product is used with other existing products, and again during
customer beta test, when users try the product out in a real world
situation. Because most computer programs and many programmed
hardware devices contain thousands of lines of code, almost any new
product is likely to contain a few bugs. Invariably, the bugs in the
functions that get most use are found and fixed first. An early version of
a program that has lots of bugs is referred to as "buggy."

Debugging tools (called debuggers) help identify coding errors at various
development stages. Some programming language packages include a

facility for checking the code for errors as it is being written.

1.2 Debugging tool

A tool used by programmers to reproduce failures, investigate the state of
programs and find the corresponding defect. Debuggers enable
programmers to execute programs step by step, to halt a program at any

program statement and to set and examine program variables.

1.3 Debugger

A debugger is a computer program that is used to test and debug other
programs. The code to be examined might alternatively be running on
an instruction set simulator (ISS), a technique that allows great power in
its ability to halt when specific conditions are encountered but which will
typically be much slower than executing the code directly on the
appropriate processor.

In other words debugger can be defined as “A special program used to
find errors (bugs) in other programs. A debugger allows a programmer to

stop a program at any point and examine and change the values

of variables.”
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When the program crashes, the debugger shows the position in the
original code if it is a source-level debugger or symbolic debugger,
commonly seen in integrated development environments. If it is a low-
5 level debugger or a machine-language debugger it shows the line in
the disassembly. (A "crash" happens when the program cannot continue
because of a programming bug. For example, perhaps the program tried to
use an instruction not available on the current version of the CPU or
attempted access to unavailable or protected memory.)
Typically, debuggers also offer more sophisticated functions such as
running a program step by step (single-stepping), stopping (breaking)
(pausing the program to examine the current state) at some kind of event
by means of breakpoint, and tracking the values of some variables. Some
L debuggers have the ability to modify the state of the program while it is
running, rather than merely to observe it.
The importance of a good debugger cannot be overstated. Indeed, the
existence and quality of such a tool for a given language and platform can
often be the deciding factor in its use, even if another language/platform
is better-suited to the task. However, it is also important to note that
software can (and often does) behave differently running under a
debugger than normally, due to the inevitable changes the presence of a
! debugger will make to a software program's internal timing. As a result,
even with a good debugging tool, it is often very difficult to track down
runtime problems in complex multi-threaded or distributed systems.
The same functionality which makes a debugger useful for eliminating
bugs allows it to be used as a software cracking tool to evade copy
protection, digital rights management, and other software protection
features;
Most mainstream debugging engines, such as gdb and dbx provide
console-based command line interfaces. Debugger front-ends are popular
extensions to debugger engines that provide IDE integration, animation,

and visualization features.
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1.3.A List of debuggers

AppPuncher Debugger: It is used to debug Rich Internet Application.
RIA AppPuncher™ is a software testing and debugging product.
AppPuncher was designed from the ground up to facilitate testing of the
Rich Internet Applications. The product provides the functionality such as
AppPuncher supports Flash, Flex, Silverlight, AJAX clients as well as
traditional browser-based applications. From the client/server protocol
perspective, the product enables testing.of the client/server applications
using any of the following protocols: HTTP, SOAP, REST/XML, AMF and
RTMP. AppPuncher runs on Windows, MAC OS X and *nix platforms.

CA/EZTEST (Cics Interactive test/debug): CA/EZTEST was a CICS
interactive test/debug software package distributed by Computer
Associates and originally called EZTEST/CICS, produced by Capex
Corporation of Phoenix, Arizona with assistance from Ken Dakin from
England. The product provided Source level test and debugging features
for programs written in COBOL, PL/1 and Assembler languages to

complement their own existing COBOL optimizer product.

CodeView: CodeView was a stﬁndalone debugger created by David Norris
at Microsoft in 1985 as part of its development toolset. It originally
shipped with Microsoft C 4.0 and later. It also shipped with Visual Basic
for MS-DOS, Microsoft Basic PDS, and a number of other Microsoft
language products. It was one of the first debuggers on the MS-DOS

platform that was full-screen oriented, rather than line oriented.

DBG (a PHP Debugger and Profiler): Works transparently, neither script
nor PHP engine modifications required. server part (dbg module) runs on

all platforms where PHP itself runs. It works transparently across the

11
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global network as well as locally. JIT, when enabled it can start
debugging Just In Time when an error happens. It also supports back-
trace, e.g. displays a list of all procedures with their local variables, the
current execution position reached from. In other words you can watch
local variables or function parameters in all active and nested scopes.
Certainly, you can execute script in the debugger step by step (step-in,
step-out, step-over, run to cursor, change execution point withing current
scope...), evaluate any valid php expression(s) or inspect arrays, classes
and simple variables, modify their values on the fly and even create any
new variables. Dbg supports conditional breakpoints and even global ones
(commercial version only). Breakpoints can be skipped specified number

of times.

DBX: DBX is a popular Unix-based source-level debugger found primarily
on Solaris, AIX, IRIX, and BSD Unix systems. It provides symbolic
debugging for programs written in C, C++, Pascal, and Fortran. Useful
features include stepping through programs one source line or machine
instruction at a time. In addition to simply viewing operation of the
program, variables can be manipulated and a wide range of expressions

can be evaluated and displayed.

DDD (Data Display Debugger.): Data Display Debugger, or DDD, is a
popular free software (under the GNU GPL) graphical user interface for
command-line debuggers such as GDB, DBX, JDB, WDB, XDB, the Perl
debugger, the Bash debugger, the Python debugger, and the GNU Make
debugger. DDD has GUI front-end features such as viewing source texts
and its interactive graphical data display, where data structures are

displayed as graphs.

Dynamic debugging technique (DDT): Dynamic Debugging Technique, or

DDT, was the name of several debugger programs originally developed for

12
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DEC hardware, initially known as DEC Debugging Tape because it was
distributed on paper tape). The first version of DDT was developed at
MIT for the PDP-1 computer in 1961, but newer versions on newer
platforms continued to use the same name. After being ported to other
vendor's platforms and changing media, the name was changed to the less

DEC-centric version.

GNU Debugger (GDB): GDB, the GNU Project debugger, allows you to
see what is going on “inside' another program while it executes -- or what

another program was doing at the moment it crashed.

Nemiver — Nemiver is a graphical debugger for GNOME, based on gdb.
It is intended to be a no-nonsense debugger, allowing you get things done
without requiring you to remember any arcane command names or key

combinations. It is written in C++, using the gtkmm toolkit.MacsBug

OLIVER: OLIVER (CICS interactive test/debug) was a proprietary testing
and debugging toolkit for interactively testing programs designed to run
on IBM's Customer Information Control System (CICS) on IBM's System

architecture.

RealView Debugger: Commercial debugger produced for and designed
by ARM. The debugger in the RealView Development Suite delivers
outstanding visibility of the behavior of software and hardware within
complex SoCs. As part of the RealView Development Suite, the debugger
offers support for all ARM architectures, including the latest Cortex

family of processors with CoreSight on-chip debug and trace technology.

Turbo Debugger: Turbo Debugger was a machine-level debugger for MS-
DOS executables sold by Borland. This tool provided a full-screen

debugger with powerful capabilities for watching the execution of

13
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instructions, monitoring machine registers, etc. Later versions are able to
step through source code compiled with Borland compilers set to provide

debugging information.

Zeta Debugger: Zeta Debugger is a stand-alone source level debugger and
code profiler for Windows 98/2000/XP applications written in C/C++ or
assembly languages. Source level debugging is allowed when symbolic
debug information emitted by your compiler is one of those supported by
our debugger or external plug-in modules. Otherwise, when this
information is absent or not recognized, you can only debug at machine

level.

1.4 Bug

Bug in computer science, an error in software or hardware. In software, a
bug is an error in coding or logic that causes a program to malfunction or
to produce incorrect results. Minor bugs—for example, a cursor that does
not behave as expected—can be inconvenient or frustrating, but not
damaging to information. More severe bugs can cause a program to “hang”
(stop responding to commands) and might leave the user with no
alternative but to restart the program, losing whatever previous work had
not been saved. In either case, the programmer must find and correct the
error by the process known as debugging. Because of the potential risk to
important data, commercial application programs are tested and debugged
as completely as possible before release. Minor bugs found after the
program becomes available are corrected in the next update; more severe
bugs can sometimes be fixed with special software, called patches, that
circumvents the problem or otherwise alleviates its effects. In hardware, a
bug is a recurring physical problem that prevents a system or set of
components from working together properly. The origin of the term
reputedly goes back to the early days of computing, when a hardware

problem in an electromechanical computer at Harvard University was

14




(Entomologists will undoubtedly be quick to note that a moth is not really

a bug.)

1.5 Project Scope
The project aims at developing a debugging tool which can be used to

identify the location of fault in the program entered by the user using a
debugging technique. The user will enter the file name (which is to be
debugged) as input to the program, the file is then modified that will
check which line of the code is reached by giving various test cases as an
input to the program. The value of suspiciousness and rank is calculated
corresponding to each line of code entered by the user. Higher the
suspiciousness more is the probability of a bug being lying there and

vice-versa.
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CHAPTER-2

DEBUGGING PROCESS

2.1 Introduction

Often the first step in debugging is to attempt reproduce the problem.
This can be a non-trivial task, for example in case of parallel processes or
some unusual software bugs. Also specific user environment and usage
history can make it difficult to reproduce the problem.

After the bug is reproduced, the input of the program needs to be
simplified to make it easier to debug. For example, a bug in a compiler
can make it crash when parsing some large source file. However, after
simplification of the test case, only few lines from the original source file
can be sufficient to reproduce the same crash. Such simplification can be
made manually, using a divide-and-conquer approach. The programmer
will try to remove some parts of original test case and check if the
problem still exists. When debugging the problem in GUI, the programmer
will try to skip some wuser interaction from the original problem
description and check if reméining actions are sufficient for bug to
appear. To automate test case simplification, delta debugging methods can
be used.

After the test case is sufficiently simplified, a programmer can use
a debugger to examine program states (values of variables, the call stack)
and track down the origin of the problem. Alternatively tracing can be
used. In simple case, tracing is just a few print statements, which output
the values of variables in certain points of program execution.

Remote debugging is the process of debugging a program running on a

system different than the debugger. To start remote debugging, debugger

16




connects to a remote system over a network. Once connected, debugger
can control the execution of the program on the remote system and
retrieve information about its state.

Post-mortem debugging is the act of debugging the core dump of process.
The dump of the process space may be obtained automatically by the
system, or manually by the interactive user. Crash dumps (core dumps)
are often generated after a process has terminated due to an unhandled

exception.

Infection Propagation

Failure

Figure 1: The relation between fault error and failure

ﬁ Fault Execution

Fault Infection /
Error

@ Fault Propagation /

Failure
Incubation Time Time >

Figure 2: The incubation time of a fault
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2.2 The Process

Unlike development debugging is iterative in itself (It means development
in general, but in most more or less complex projects development can

and even should be iterative too). Let's describe its three main stages:
1. Get the bug description.

Maybe this stage doesn't belong to debugging itself, but it's so
important that we have mentioned it here too. You should get as more
details from the user as possible: product version, OS version, all

conditions of reproducing the bug.
2. Get the program snapshot when the bug 'appears’.

i.e. try to reproduce the bug and catch the snapshot of the system.
Snapshot = state + action, where state is memory state (variables,
registers, files, etc.) and action is what the program is doing at the
moment (which function is running). Such catching is quite simple
sometimes, e.g. the program crashes and you can just switch to your
debugger to see what the problem is. But in some cases you have to
perform many iterations to catch the snapshot. You maybe even have to
return to the previous step in some cases. In other cases you will return

here from the next step.
3. Analyze the snapshot (state/action) and search the bug origin if necessary.

State and action can be correct or wrong, so a substep in this stage is to
know if they are correct or not. After that you can make first decisions.
The following state/action combination classification can be used for
further analysis ('+' & '-' mean 'correct' & 'wrong'):
+/+ : irreproducible bug; you have:

--incorrect description or

- different environments (OS, etc.)




+/- : a simply found bug, you have to: ,
- add some checking (NULL pointer, divide by zero, etc.) or i
|

- additional implementation of something

-/+ : a bug requiring searching of its source, origin; i

- methods you can use: |
1 - tracing from previous moments |

- tracing of places where the state components are used/changed

l
tracing with different input data 3|
|
|

- and your experience is desired:

key places in the program (e.g., the start of user input processing)

-/- : same as -/+ plus additional difficulty, but due to the difficulty of |
situation in some cases some work-around may be enough decision, i.e. ”!

making action correct (+).

|

4. Fix the bug. ('l

Ideas about fixing may appear on any stage of debugging process, but
only that one may be implemented, which is proved, i.e. it:

1) fixes the class of bugs which the described one belongs to, and

2) doesn’t introduce other bugs: in other places and/or with other input [
data.
I

Experience i.e. knowledge of the program plays the key role in all stages |
of debugging. Some of

the most important components of it is knowledge of key places of the

program, this knowledge can help both in getting program snapshot and
searching the bug origin. Examples of key places: the start of user input 4‘:

processing, multi-functional procedures and so on. Therefore the ;l

following ideas can be useful.
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2.3 Identifying The Bug:

For a debugger to work efficiently it is very important to identify the bug
in the source code so that the bug can be removed. To identify the
location of bug in the user input program, we have used the tarantula
debugging technique. In modern software development, testing and
debugging software is done as part of an integrated method of software
development. An appropriate method of bug finding can easily help
developers locate and remove bugs. A software bug is regarded as the
abnormal program behaviors which deviates from its specification,
including poor performance when a threshold level of performance is
included as part of specification. Bug patterns, which are related to anti-
patterns, are recurring relationships between potential bugs and explicit
errors in a program; they are common coding practices which share the
similar symptoms and have been proven to fail time and time again. Those
bug patterns are raised from the misunderstanding of language features,
the misuse of positive design patterns or simple mistakes having the
common behaviors. Such bug patterns are an essential complement to the
traditional design pattern, just as a good programmer needs to know
design patterns which can be applied in various context and improve the
software quality, also to be a good software developer or problem solver
the knowledge of common causes-of faults is a need in order to know how

to fix the software bugs.

We may not know what types of bugs are unique without a proper bug
pattern classification, and this poses several restrictions on the research

and development of programs in the language:

* Developers do not know what kind of bugs are most likely to happen in
a program, and therefore do not know how to prevent them. In other
words, programmer would be lack of a fundamental knowledge on how to

write bug-free code.

20
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+ Testers do not have sufficed knowledge of how to write adequacy test

cases that can effectively cover most of the common potential errors.
Only when having an idea of how the common bugs happened in programs,

can tester set up criteria for better addressing the specific bugs?

« Software maintenance staffs do not know which features of the language
are more likely to result in the faulty code; so they cannot have a clear

view on the current system when doing the maintenance tasks.
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CHAPTER 3
PROJECT OBJECTIVE

3.1 Objective

In the program development, it is unavoidable to localize the bugs. For an
intuitive viewpoint, we call symptoms the appearance of an anomaly
during the execution of a program. Symptoms are caused by errors in the
program. An error is a piece of code. Strictly speaking, error localization,
when a symptom is given, is error diagnosis and it can be seen as a first

step in debugging, a second step being error correction.

The objective of our project is to design a debugging tool that act as an
automated error detection help. It will help the user to identify the
location of the bug in his/her source code. The idea is to provide
programmers with a means of analyzing the execution the program and
tracking problems in order to optimize execution time and utilization of
resources. The user will enter the code which is to be debugged, and the
tool helps the user to locate the bugs in the code by pointing out the exact

position where there is a possibility of having an error.

3.2 Qur Approach

Our approach to the development of debugging tool consists of following:
1. Analysis

2. Implementation

3. GUI




3.2.1 Analysis

During analysis phase we searched for various debugging techniques and
short selected a few for implementation. Our project is based on
implementation of debugging technique. We have studied various
techniques of debugging and the following section describes some of the
techniques that we had short listed and their drawbacks while

implementing these techniques.
Debugging Techniques:
A) Parallel Debugging Technique
B) Holistic Debugging Technique
C) Run-time Debugging Technique

D) Tarantula Debugging Technique

3.2.1.A Parallel Debugging Technique

The presence of multiple faults in a program can inhibit the ability of
fault-localization techniques to locate the faults. This problem occurs for
two reasons: when a program fails, the number of faults is, in general,
unknown; and certain faults may mask or obfuscate other faults.
Debugging software is an expensive and mostly manual process. This
debugging expense has two main dimensions: the labor cost to discover
and correct the bugs, and the time required to produce a failure-free
program.l A developer generally wants to find a good trade-off between
these dimensions that reflects the developer’s resources and tolerance for
delay. Of all debugging activities, fault localization is among the most
expensive, —Any improvement —inthe process of finding faults will
generally decrease the expense of debugging. In practice, developers are

aware of the number of failed test cases for their programs, but are
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unaware of whether a single fault or many faults caused those failures.
Thus, developers usually target one fault at a time in their debugging. A
developer can inspect a single failed test case to attempt to find its cause
using an existing debugging technique, or she can utilize all failed test
cases using a fault-localization technique. After a fault is found and
fixed, the program must be retested to determine whether previously
failing test cases now pass. If failures remain, the debugging process is
repeated. We call this one-fault at-a-time mode of debugging and

retesting sequential debugging.

It automatically partitions the set of failing test cases into clusters that
target different faults, called fault-focusing clusters, using behavior
models and fault-localization information created from execution data.
Each fault-focusing cluster is then combined with the passing test cases
to get a specialized test suite that targets a single fault. Consequently,
specialized test suites based on fault-focusing clusters can be assigned to
developers who can then debug multiple faults in parallel. The resulting
specialized test suites provide a prediction of the number of current,
active faults in the program. In practice, however, there may be more than
one developer available to debug a program, particularly under urgent
circumstances such as an imminent release date. Because, in general,
there may be multiple faults wheﬁever a program fails on a test suite, an
effective way to handle this situation is to create parallel work flows so
that multiple developers can each work to isolate different faults, and
thus, reduce the overall time to a failure-free program. Like the
parallelization of other work flows, such as computation, the principal
problem of providing parallel work flows in debugging is determining the
partitioning and assignment of subtasks. To perform the partitioning and
assignment requires an automated technique that can detect the presence
of multiple faults and map them to sets of failing test cases (i.e., clusters)

that can be assigned to different developers.

24
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It is used in those systems that have complex software or hardware
architecture. It simultaneously debugs a program for multiple faults. The
main benefit of parallel debugging technique is that it can result in
decreased time to a failure-free program; our empirical evaluation
supports this savings for our subject program. When resources are
available to permit multiple developers to debug simultaneously, which is
often the case, specialized test suites based on fault-focusing clusters can
substantially reduce the time to a failure-free program while also
reducing the number of testing iterations and their related expenses.
Another benefit is that the fault-localization effort within each cluster is
more efficient than without clustering. Thus, the debugging effort yields
improved utilization of developer time, even if performed by a single
developer. Our empirical evaluation shows that, for our subject, using the
clusters provides savings in effort, even if debugging is done
sequentially. A third benefit is that the number of clusters is an early
estimate of the number of existing active faults. A final benefit is that
our technique automates a debugging process that is already naturally
occurs in current practice. For example, on bug-tracking systems for
open-source projects, multiple developers are assigned to different faults,
each working with a set of inputs that cause different known failures. The
technique improves on this practice in a number of ways. First, the
current practice requires a set of coordinating developers who triage
failures to determine which appear to exhibit the same type of behavior.
Often, this process involves the actual localization of the fault to
determine the reason that a failure occurred, and thus a considerable
amount of manual effort is needed. Our techniques can categorize failures
automatically, without the intervention of the developers. This automation
can save time and reduce the necessary labor involved. Second, in the
current practice, coordinating developers categorize failures based on the

failure output. Our techniques look instead at the execution behavior of

25




the failures, such as how control flowed through the program, which may
provide more detailed and rich information about the executions. Third,
the current practice involves developers finding faults that cause failures
using tedious, manual processes such as using print statements and
symbolic debuggers on a single failed execution. Our techniques can
automatically examine a set of failures and suggest likely fault locations

in the program.
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Figure 3: Technique for debugging in parallel.

To simultaneously debug multiple faults in parallel, we defined a
parallel-debugging process, which is shown by the dataflow diagram in
above figure. The program under, test, P, is instrumented to produce PA.
When P* is executed with test suite T, it produces a set of passing test
cases TP and a set of failing test cases TF, along with execution
information; such as branch or method profiles. TF and the execution
information are input to the clustering technique, Cluster, to produce a
set of fault-focused clusters C1, C2, ...,Cn that are disjoint subsets of TF.
Each Ci is combined with TP to produce a specialized test suite that
assists in locating a particular fault. Using these test suites, developers
can debug the program in parallel—shown as Debugging in the figure. The
resulting changes, chl, ch2, ..., chn, are integrated into the program. This

process can be repeated until all test cases pass.

26




In practice, software developers locate faults in their programs using a
highly involved, manual process. This process usually begins when the
developers run the program with a test case (or test suite) and observe
failures in the program. The developers then choose a particular failed
test case to run, and iteratively place breakpoints using a symbolic
debugger, observe the state until an erroneous state is reached, and
backtrack until the faults are found. This process can be time-consuming
and ad-hoc. Additionally, this process uses results of only one execution
of the program instead of using information provided by many executions

of the program.
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Figure 4: Two alternative techniques to cluster failed test cases for parallel debugging.

TP and a set of failing test cases TF , along with execution information,
such as branch or method profiles.. TF and the execution information are
input to the clustering technique, Cluster, to produce a set of fault-
focused clusters C1, C2, ..., Cn that are disjoint subsets of TF . Each Ci
is combined with TP to produce a specialized test suite that assists in
locating a particular fault. Using these test suites, developers can debug
the program in parallel—shown as Debugging in the figure. The resulting
changes, chl, ch2, ..., chn, are integrated into the program. This process
can be repeated until all test cases pass. The novel component of this

parallel-debugging process, Cluster, is shown in more detail in the
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Figures above. We have developed two techniques to Cluster failed test

cases. This section presents details of these techniques.

Drawback

Parallel programs are more difficult to debug than sequential programs
due to their nondeterministic behavior. Nondeterministic nature of
parallel programs is the major difficulty in debugging. Order-replay, a
technique to solve this problem, is widely used because of its small
overhead. It has, however, several serious drawbacks: all processes of the
parallel program have to participate in replay even when some of them are
clearly not involved with the bug; and the programmer cannot stop the
process being debugged at an arbitrary point. The user cannot stop
parallel processes being debugged in an arbitrary manner. For example,
assume that there are two communicating processes; the process Pa sends
a message M at the event Sa and Pb receives it at Rb. Also assume that we
found an erroneous behavior of Pb and tried to detect its cause by
inserting breakpoints in Pb. Then we examined the behavior of Pb in
detail to find that the real cause is in the message M and try to know why
and how Pa generated the erroneous message. At this point, however, we
will realize that Pa has already completed its erroneous procedure to
generate M and has proceeded too ahead to examine the cause of the error,
because Order-replay execution must obey the causality of the events Sa
and Rb. That is, it is impossible to stop Pa and Pb as we wish, at a point
before Sa and a point after Sb. It is possible to rerun the program by
Order-reply mechanism inserting a breakpoint at a point before Sa, but
such a overrun-and-rerun debugging is seriously inefficient. Another
defect is that all processes of the parallel program have to participate in
replay execution even when some of them are clearly not involved with
the bug. The processes irrelevant to the bug are not only obstructive to

debugging but also wasteful of expensive computing resource. Since a
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modern parallel computer may consist of hundreds or thousands of

processors, this problem becomes more serious.

3.2.1.B Runtime Debugging Technique

A runtime debugger actually modifies your code so that at runtime every
memory reference is checked for validity. The debugger keeps track of
your program's memory and immediately complains if you misuse a
pointer, overwrite memory, free a block too many times, use an un-

initialized variable, and more.

Furthermore, it does this to your entire program, regardless of where you
think bugs might be found. It also doesn't make the simple errors that
humans do, which often introduces more problems while looking for
something else entirely!

Many runtime debuggers only check dynamically allocated memory

blocks, which means that code would pass with no error found.

It locates the error by traversing each line of code and allows fixing it in
a short time. A run-time error is a semantic error. The code checked-out
fine by the compiler, but when the program executed something ran
amuck. There is an error in the .mcaning, or semantics, of the program's
behavior or in the logical flow of the program. Such errors (e.g.,
accessing a non-existing array element) are not caught by the compiler
because it cannot anticipate changes in variables, and the effect of such,
as a program executes. The symptoms for run-time errors are often
strange and seemingly unrelated to the underlying problem in the code.
Because of this, run-time errors are generally more difficult to correct
than compile errors. This hits home at a point made earlier: Take it one
step at a time. If you write a lot of code before testing, you are asking for

trouble. There are two broad categories of run-time errors: those that

29

:a




cause the program to crash, and those that cause the program to generate

incorrect results or to behave improperly. Both are semantic errors: the

former are errors in how you used Java, the latter are errors in how you

approached the problem.

What programmers needed was a tool that could execute one instruction of

a program at a time, and print values of any variable in the program. This
would free the programmer from having to decide ahead of time where to
put print-statements, since it would be done as he stepped through the

program. Thus, runtime debuggers were born. In principle, a runtime

debugger is nothing more than an automatic print-statement. It allows the

programmer to trace the program path and the variables without having to

) put print- statements in the code. i
il
Today, virtually every compiler on the market comes with a runtime )I
debugger. The debugger is implemented as a switch passed to the compiler I
during compilation of the program. Very often this switch is called the "- q’ ‘
g" switch. The switch tells the compiler to build enough information into ﬂ

the executable to enable it to run with the runtime debugger.

The runtime debugger was a vast improvement over print statements, Il

because it allowed the programmer to compile and run with a single | 5
|

compilation, rather than modifying the source and re-compiling as he

tried to narrow down the error.

Drawback .i:

Un-initialized memory errors might be incorrectly read and therefore are

suppressed. It does not actually look at the source of bug but just the
symptoms. Runtime debuggers made it easier to detect errors in the i
program, but they failed to find the cause of the errors. The programmer

needed a better tool to locate and correct the software defect. If
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Software developers discovered that some classes of errors, such as
memory corruption and memory leaks, could be detected automatically.
This was a step forward for debugging techniques, because it automated
the process of finding the bug. The tool would notify the developer of the

error, and his job was to simply fix it.

Automatic debuggers come in several varieties. The simplest ones are just
a library of functions that can be linked into a program. When the
program executes and these functions are called, the debugger checks for
memory corruption. If it finds this condition, it reports it. The weakness
of such a tool is its inability to detect the point in the program where the
memory corruption actually occurs. This happens because the debugger
does not watch every instruction that the program executes, and is only

able to detect a small number of errors.

3.2.1.C Holistic Debugging Technique

It is a novel method for observing complex computer software running in
instruction set simulators. A holistic debugger provides a translation
framework that maps low-level data probed from the simulator to source-
level application data. It also inc.ludes symbolic debuggers for inspecting
individual processes in a simulated system. The debuggers are controlled
by a debugger shepherd, which supports coherent observation of all
participating processes in a distributed system. The shepherd is
programmable and allows users to create new observation tools and
debugging abstractions, and to write application-specific surveillance
routines. A holistic debugger provides a translation framework that maps
low-level data to source-level application data. A holistic debugger
should not be thought of as yet another tool that solves a particular,

narrow problem better than other tools. Although it can be used as an
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interactive debugger, its primary purpose is to serve as a meta-tool that
enables construction of new tools, based on more robust techniques than

existing tools.

Modern computers are in-deterministic. There are factors affecting
program execution that cannot be accurately predicted, for example
interrupt arrival times, memory communication interleaving, subroutine
execution times, and clock readings. Complex programs are always
affected by such random factors, and program executions are therefore not
fully reproducible, unless the program is explicitly designed to be
independent of unpredictable factors. In theory, repeatable execution is a
prerequisite for the standard repetitive debugging procedure. In practice,
repetitive debugging is meaningful for simple programs, as long as the
variations are small. In-deterministic execution effectively prevents
construction of scalable observation tools. Development and use of
automated tools when experiments cannot be reliably reproduced is
usually too time-consuming to be worthwhile. As an example, consider the
multitude of debuggers for distributed software, using standard debuggers
as building blocks. Although such debuggers have potential for debugging
complex software, they have not become widely used. Due to in-
deterministic factors, repeated executions of a particular program tend to
differ at some points, for example in interleaving of events. Automated
debuggers are generally not able to adapt to variations in an intelligent

manner, and are therefore not practical for in-deterministic programs.

Any attempt to monitor a computer system with software probes will
change the system's behavior. This is referred to as probe effect. The
probe effect contributes to the indeterminism problem, and also limits the
amount of data that can be observed in a running system. A monitoring

service that suffers from probe effect provides a service whose quality
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degrades with increased usage. Such a service is inherently fragile and

unsuitable for scalable observation tools.

There is no global clock in distributed systems, and a global ordering on
all events in a system can often not be determined, even in post-mortem.
Observing a partial ordering de_ned by the happens-before relation,
however, is sufficient for observing the execution of a distributed system.
In order for a tool to observe this partial ordering, it must be able to
observe all messages sent between processes, and their points of arrival.
This can be difficult in practice. In some distributed systems, messages
and arrival points are straightforward to record, as in the case of network
packets delivered to an application. Other types of messages, such as
cache-to-cache transfers, are difficult to observe, and building tools that

record and replay distributed executions involving such messages is hard.

Holistic debugging takes a complete system perspective on distributed
system observation. A holistic debugger runs a distributed software
system in a simulator and provides the user with means to examine all
components in a system simultaneously, at any abstraction level higher

than the simulator's.

a)Machine observation

A complete system simulator provides non-intrusive access to all system
state visible to software. Thus, we can at any time stop the simulator,
freeze time in the simulated world, and retrieve state data relevant for the
application. Unlike standard debuggers, which use probing services
supplied by the operating system to probe the state of running processes,
the holistic debugger must use non-intrusive probing techniques, and
cannot rely on operating system services. It probes the simulator for

machine state, but the information retrieved is raw, binary information
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that has been transformed by compilers, virtual machines, and operating
systems, and is no longer easily comprehensible to humans. In order to
make this information useful for a programmer, it must be translated back
to the abstraction level the programmer deals with, i.e. to variables and

types in the programming languages used in the application.

b) Abstraction stacks

Each program in a computer system runs in a machine, which interprets
the program instructions and updates machine state accordingly. The most
basic machine is the physical machine, where instructions are interpreted
by hardware, and machine state is stored in physical storage, such as
memory, disk, and registers. Each machine has a set of instructions that
programs can use, and programmers use a compiler to translate source
code into the machine's instruction set. A physical computer usually runs
only one program directly on the hardware, and in many cases, this
program is an operating system. The operating system provides virtual
machines, in which other programs can run. The programs in the virtual
machines are likewise programmed in a high-level language, translated by
a compiler to machine instructions. Some of these programs may in turn
form other types of virtual machines, interpreting some program, which
may be generated by a compiler, and so on. Computer systems generally
contain a number of such abstraction stacks, seldom more than a few
levels deep. For each program in a stack, there is a symbolic
transformation, where a compiler transforms source code to machine code.
There is often no straightforward way to perform the reverse translation
from machine code to source code without help from the compiler, but
most compilers are able to provide debugging information that contains
adequate information to perform reverse translation, even in the presence
of compiler optimizations. For each virtual machine in the stack, there is

also a machine transformation; the storage of the program running in the
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virtual machine is mapped to storage in the machine that is running the
program providing the virtual machine. For example, the virtual memory
and registers of the virtual machine corresponding to a Unix process is
mapped to physical registers, memory, or disk blocks. The machine
transformation is usually reversible, if the state of the virtual machine

can be examined.

c) Translation stacks

In our design of a holistic debugger, for each inspected process‘ in the
simulated system, there is an associated abstraction translation stack. A
translation stack consists of pairs of symbolic context objects and
machine context objects, corresponding to the symbolic transformations
and machines of the inspected process. The structure is shown in Figure
below. When the user inspects a particular program, a translation stack is
instantiated. It includes a symbolic context object, with a symbolic
translator that lets the user inspect the execution and state of the
program, similarly to a standard debugger. The symbolic translator probes
the underlying machine context objects for program state data. Machine
context objects that refer to a physical machine probe the simulator for
simulated machine state. Machine context objects that refer to virtual
machines, for example operating system processes, include a virtual
machine translator (VMT) - a component that translates requests for
virtual machine state to state requests to the underlying machine context
object. In order for the VMT to perform storage reference translations, it
probes the state of the program providing the virtual machine, using its
symbolic context object. There are no fundamental problems stacking
translators in this manner, as long as the necessary information for
performing reverse translations is available. The stacked translator design
enables translation of the information available in the underlying

simulators to any abstraction level in the system.
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Figure 5: Working of Holistic Debugging

Holistic debugging addresses a major debugging problem that currently

has no good solution. Nevertheless, we believe ‘that, its most important

potential is as a robust platform for building other software observation

Il
and analysis tools, much like an operating system is a solid platform for ‘"4
other programs. :’ ~
|
Drawback 1:

The main drawback of running multiple applications in a simulator is that

it runs much slower than on a physical machine. T

3.2.1.D Tarantula Technique I

Software testers often gather large amounts of data about a software 1
system under test. These data can be used to demonstrate the ‘
exhaustiveness of the testing, and find areas of the source code not Il

executed by the test suite, thus prompting the need for additional test I

cases. These data can also provide information that can be useful for fault w
localization. Tarantula utilizes such information that is readily available W;‘

Il
from standard testing tools: the pass/fail information about each test case, i ‘

the entities that were executed by each test case (e.g., statements, il
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branches, methods), and the source code for the program under test. The
intuition behind Tarantula is that entities in a program that are primarily
executed by failed test cases are more likely to be faulty than those that
are primarily executed by passed test cases. Unlike most previous
techniques that used coverage information, Tarantula allows some
tolerance for the fault to be occasionally executed by passed test cases.
We have found that this tolerance often provides for more effective fault

localization.

Tarantula is a technique that displays the results of running suites of tests
against software systems. By showing what portions of the code are
executed by passed and failed tests, the system helps people identify
faults in their programs. Software testers often gather large amounts of
data about a software system under test. These data can be used to
demonstrate the exhaustiveness of the testing, and find areas of the source
code not executed by the test suite, thus prompting the need for additional
test cases. These data can also provide information that can be useful for

fault localization.

Previously, we presented our Tarantula technique and a visualization tool
that uses the technique for assigning a value for each program entity's
likelihood of being faulty. We did this by specifying a color for each
statement in the program. We utilize a color (or hue) spectrum from red to
yellow to green to color each statement in the program under test. The
intuition is that statements that are executed primarily by failed test cases
and are thus, highly suspicious of being faulty, are colored red to denote
\danger"; statements that are executed primarily by passed test cases and
are thus, not likely to be faulty, are colored green to denote \safety"; and
statements that are executed by a mixture of passed and failed test cases
and thus, and do not lend themselves to suspicion or safety, are colored

yellow to denote \caution."
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In particular, the hue of a statement, s, is computed by the following

|
. |
equation: i

|

passed(s)
\ e total passed ,
/ sy = passed(s) | failed(s) It
total passed * total failed “
‘I
Suspiciousness I

The statements that are passed primarily by failed test cases are highly
suspicious of being faulty are colored red to denote “danger” and the
statements that are passed primarily by passed test cases are not
suspicious of being faulty are colored green to denote “safety”. The
statements that are executed by a mixture of failed and passed test cases

do not lend themselves to suspicion or safety is colored yellow to denote ”"'

“caution”. The suspiciousness of a coverage entity e with the following ”‘ !
equation: ,h”
‘i:Jr

failed(s) ‘_

total failed i

suspiciousness(s) = 1 — hue(s) = passed(s) Failed(s)

total passed  total failed i

The Suspiciousness value varies from 0 to I, where 1 is the most
suspicious, and 0 is the least suspicious. In Equation 1, passed(s) is the
number of passed test cases that executed statement s one or more times.
Similarly, failed(s) is the number of failed test cases that executed
statement s one or more times. Total passed and total failed are the total
numbers of test cases that pass and fail, respectively, in the entire test
suite. Note that if any of the denominators evaluate to zero, we assign

zero to that fraction. Our Tarantula tool used the color model based on a

38




spectrum from red to yellow to green. However, the resulting hue(s) can
be scaled and shifted for other color models. Although we expressed these
concepts in the form of statement coloring, they compute values that can
be used without visualization. The hue(s) is used to express the likelihood
that is faulty, or the suspiciousness of s. The hue(s) varies from 0 to 110
is the most suspicious and 1 is the least suspicious. To express this in a
more intuitive manner where the value increases with the suspiciousness,
we can either subtract it from 1, or can equivalently replace the
numerator with the ratio of the failed test cases for s. Also, note that we
can define this metric for other coverage entities such as branches,

functions, or classes.

Using the suspiciousness score, we sort the coverage entities of the
program under test. The set of entities that have the highest
suspiciousness value is the set of entities to be considered first by the
programmer when looking for the fault. If, after examining these
statements, the fault is not found, the remaining statements should be
examined in the sorted order of the decreasing suspiciousness values. This
specifies a ranking of entities in the program. For evaluation purposes,
each set of entities at the same ranking level is given a rank number equal
to the greatest number of statements that would need to be examined if
the fault were the last statement in that rank to be examined. For
example, if the initial set of entities is ten statements, then every

statement in that set is considered to have a rank of 10.
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Figure 6: Example of Tarantula Technique

To illustrate how the Tarantula technique works, we provide a simple
example program, mid(), and test suite, given in Figure 1. Program mid()
takes three integers as input and outputs the median value. The program
contains a fault on line 7Ithis line should read “m = x;". To the right of
each line of code is a set of six test cases: their input is shown at the top
of each column, their coverage is shown by the black dots, and their
pass/fail status is shown at the bottom of the columns. To the right of the

test case columns are two columns labeled “suspiciousness" and “rank."
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The suspiciousness column shows the suspiciousness score that the
technique computes for each statement. The ranking column shows the
maximum number of statements that would have to be examined if that
statement were the last statement of that particular suspiciousness level
chosen for examination. The ranking is ordered on the suspiciousness,
from the greatest score to the least score. Consider statement 1, which is
executed by all six test cases containing both passing and failing test
cases. The Tarantula technique assigns statement 1 a suspiciousness score
of 0.5 because one failed test case executes it out of a total of one failing
test case in the test suite (giving a ratio of 1). Using the suspiciousness
equation specified in Equation 2, we get 1=(1 + 1), or 0:5. When
Tarantula orders the statements according to suspiciousness, statement 7
is the only statement in the initial set of statements for the programmer to
inspect. If the fault were not at line 7, she would continue her search by
looking at the statements at the next ranks. There are three statements
that have higher suspiciousness values than statement 1. However,
because there are four statements that have a suspiciousness value of 0:5,
Tarantula assigns every statement with that suspiciousness value a rank of
7 (3 statements examined before, and a maximum of 4 more to get to
statement 1). Note that the faulty statement 7 is ranked first, this means
that programmer would find the fault at the first statement that she

examined.
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4.2 Source Code

#include<fstream.h>
#include<string.h>
#include<conio.h>

#include<stdio.h>

int count(ifstream &input);
void modify(int cnt,ifstream &input,ofstream &output);

void clear_files()

fstream clr_stresult,clr_testcases;
clr_stresult.open("stresult.txt",ios::out,ios::trunc);
clr_stresult.close();
clr_testcases.open("testcase.txt",ios::out,ios::trunc);

clr_testcases.close();

void createsuspfile(int cnt,int no_test_case)

ofstream susp;
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susp.open("suspl_calc.cpp");
susp<<"\n#include<fstream.h>";
susp<<"\n#include<conio.h>",
susp<<"\nvoid main()";
susp<<"\n{";
susp<<"\nclrscr();";
susp<<"\nifstream input;";

susp<<"\nint array_value["<<no_test_case<<"]["<<cnt<<"] ,test_pass["<<no_test_case<<"],i,j;";

susp<<"\nint totalpass=0,totalfail=0,pass=0,fail=0;";

susp<<"\nint rank["<<cnt<<"][2],max,maxpos,max_temp,pos_temp;";

susp<<"\nfloat susp["<<cnt<<"],susp_cpy["<<cnt<<"][2],fd,pd;"; I‘"H"
/lint test_array[]; h’
susp<<"\ninput.open(\"samp.cpp\");";
susp<<"\nfstream store_o;";

susp<<"\nfstream store_test;";

susp<<"\nfstream suspec;";
susp<<"\nstore_o.open(\"stresult.txt\",ios::in);";
susp<<"\nstore_test.open(\"testcase.txt\",ios::in);";
susp<<"\nsuspec.open(\"suspecious.txt\",ios::out);";
susp<<"\nchar ch;";

susp<<"\ninput.close();";
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susp<<"\ni=0;";

susp<<"\ndo{";

susp<<"\nstore_o.get(ch);";

( //cout<<ch;

susp<<"\nif(ch=="0")";

susp<<"\n{";
susp<<"\narray_value[i/"<<cnt<<"][1%"<<cnt<<"]=0;";

SUSp<<"\r1} u;

susp<<"\nelse"; Il
susp<<"\nif(ch=="1")"; \
susp<<"\n{"; I"!”'J
susp<<"\narray_value[i/"<<cnt<<"][1%"<<cnt<<"]=1;"; I l‘!
susp<<"\n}";

susp<<"\ni++;";
susp<<"\nif((i%"<<¢nt<<")==0)";
susp<<"\n{";
susp<<"\nstore_o.get(ch);";

I cout<<ch;

susp<<"\n}";
susp<<"\n}while(store_o);";

Susp<<||\ni=0;u;
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susp<<"\ndo";

susp<<"\n{";
susp<<"\nstore_test.get(ch);";
susp<<"\ncout<<ch;";
susp<<"nif(ch=="'0"";
susp<<"\n{";

susp<<"\n test_pass[i]=0;";
susp<<"\n totalfail++;";
susp<<"\n o
susp<<"\nelse";

susp<<"\n  if(ch=="1")";
susp<<"\n 1"

susp<<"\n test_pass[i]=1;";
susp<<"\n totalpass;++;";
susp<<"\n |
susp<<"\ni++;";
susp<<"\n}while(store_test);";
susp<<"\ncout<<\"\\n\\n\\n\\n\";";

susp<<"\nstore_o.close();";

susp<<"\n_for(i=0;i<"<<cnt<<";i++)";

susp<<"\n £

3
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susp<<"\n pass=0;";

susp<<"\n fail=0;";

susp<<"\n for(j=0;j<"<<no_test_case<<";j++)";
susp<<"\n ™

susp<<"\n if(array_value[j][i]==1)";
susp<<"\n "

susp<<"\n pass++;";
susp<<"\n Ju

susp<<"\n if(array_value[j][i]==0)";
susp<<"\n {"

susp<<"\n fail++;";
susp<<"\n ' &

susp<<"\n cout<<array_value[j][i]<<\" \";";
susp<<"\n i

/lcout<<pass<<" "<<fail<<"\n";

susp<<"\n fd=fail/totalfail;";
susp<<"\n pd=pass/totalpass;";
susp<<"\n susp[i]=fd/(fd+pd);";

susp<<"\nsusp_cpy[i][0]=susplil;";
susp<<"\nsusp_cpy[i][1]=i;";

susp<<"\n cout<<\" \"<<susp[i]<<\"\\n\";";
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susp<<"\nsuspec<<susp[i]<<\"\n\";";

susp<<"\n
susp<<"\n
susp<<"\n
susp<<"\n
susp<<"\n
susp<<"\n
susp<<"\n
susp<<"\n
susp<<"\n
susp<<"\n
susp<<"\n
susp<<"\n
susp<<"\n
susp<<"\n
susp<<"\n
susp<<"\n
susp<<"\n
susp<<"\n
susp<<"\n

susp<<"\n

1
for(i=0;i<15;i++)";
{";
maxpos=i;";
max=susp_cpy[i][0];";
for(j=i+1;j<15;j++)";
{"
if(susp_cpy[j][0]>max)";
{"
max=susp_cpy[j1[0];";

maxpos=j;";

I

max_temp=susp_cpy[méxpos] (0] 5
susp_cpy[maxpos][0]=susp_cpy[i][0];";
susp_cpy[i][0]=max_temp;";
pos_temp=susp_cpy[maxpos][1];";
susp_cpy[maxpos][1]=susp_cpy[il[1];";

susp_cpy[i][1]=pos_temp;";
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susp<<"\n cout<<\"W\n\\n\\nRank\\n\\n\";"; | |
susp<<"\n for(i=0;i<15;i++)";

susp<<"\n I

susp<<"\n for(j=0;j<2;j++)";
susp<<"\n "

susp<<"\n cout<<susp_cpy[il[jl;";
susp<<"\n cout<<\"\t\Wt\Wte  \";";
susp<<"\n "

susp<<"\n cout<<\"\\n\";";

susp<<"\n " ,
susp<<"\ngetch();"; j ,“‘
susp<<"\n}"; ; lﬂ,
susp.close();

}

int crtfile_notest()

{
_int no_test_case;

cout<<"Enter the no. of test cases you want to enter : ";
cin>>no_test_case;

ofstream cases;

cases.open("no_cases.txt");
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cases<<no_test_case;

return no_test_case;
void main()

clrscr();

ifstream input,inputl;
ofstream output;
clear_files();

int cnt,no_test_case;
input.open("samp.cpp");
output.open("user_op.cpp"); ! Ilf
cnt=count(input);

input.close();

inputl.open("samp.cpp");

modify(cnt,inputl,output);

inputl.close();

output.close();

no_test_case=crtfile_notest();

/lcout<<no_test_case;

createsuspfile(cnt,no_test_case);
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//getch();

)

int count(ifstream &input)

{

char ch;

int count,count1=0,count2=0,count3=0;

input.get(ch);
do

{

if(ch==""

{

countl++;

}

else
if(ch==1")

{
input.get(ch);
if(ch=="f")

{
input.get(ch);
if(ch=="(")
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{

count2++;

}

}

}

else
if(ch=="w")

{
input.get(ch);
if(ch=="h")

{
input.get(ch);
if(ch=="1

{
input.get(ch);
if(ch=="1)

{
input.get(ch);
if(ch=='e")

{
input.get(ch);
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if(ch=="(")

{

count3++;

}

}

input.get(ch);

}while(input); 'll'
1
count=countl+count2+count3; “

return count;

}

void modify(int cnt,ifstream &input,ofstream &ohtput)

{

/lrewind(input);

char ch,str[200];

int br_op,br_cl,main_br=0,k=0,main_strt=0,main_br_strt=0,main_arr_init;
int return_chek=0,return_str=0,str_i,str_n,main_disp=1;

/fint comment=0;
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input.get(ch);

flent=17;

output<<"int A_inc["<<cnt<<"];"<<endl;
[*output<<"class class_for_array"<<endl;
output<<"{"<<endl,
output<<"public:"<<endl;

output<<"int x["<<cnt<<"];"<<endl;
output<<"};"<<endl;

i §

output<<"#include<fstream.h>"<<endl;
output<<"#include<ctype.h>"<<endl; i
do “) J 1
( |
[Fif(eh=='/")

{

output<<ch;

input.get(ch);

if(ch==""

{

cout<<"hehe";

output<<ch;
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input.fputs(str);
comment=1;
//cout<<str;

}

b+
if(ch=="m')

{
output<<ch;
input.get(ch);
if(ch=="a")

{
output<<ch;
input.get(ch);
if(ch=="1")

{
output<<ch;
input.get(ch);
if(ch=="n")

{
output<<ch;

input.get(ch);
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output<<ch;
input.get(ch);
main_strt=1;
main_arr_init=1;

}

) I
br_op=0;

br_cl=0;

if(ch=="'

{
output<<ch<<endl<<"A_inc["<<k<<"]=1;"<<endl;
k-++;

/loutput<<"A_inc["<<k+1<<"]=0;"<<endl;
input.get(ch);

}

else
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if(ch=="1")

{
output<<ch;
input.get(ch);
if(ch=='f")

{
output<<ch,;
input.get(ch);
if(ch=="(")

{
output<<ch<<ch;
input.get(ch);
br_op=1;
br_cl=0;

do

{

if(ch=="(")

{

br_op++;

}

else
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if(ch==")")

{

br_cl++;

}

output<<ch,

input.get(ch);
Jwhile((br_op!=br_cl)&&(ch!="\n");

output<<"&&(A_inc["<<k<<"]=1))";

k++;

}

}

}

else
if(ch=='w")

{
output<<ch;
input.get(ch);
if(ch=="h")

{
output<<ch;
input.get(ch);
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if(ch=="")

{
output<<ch;
input.get(ch);
if(ch==""

{
output<<ch;

input.get(ch);

if(ch=="e")
{

output<<ch; g.‘-

input.get(ch); )l
: il

if(ch=="(")

{

output<<ch<<ch;

input.get(ch);

br_op=1;

br_cl=0;

do

{

if(ch=='(")
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br_op++;

}

else

if(ch=="")

{

br_cl++;

}

output<<ch;

input.get(ch);
ywhile((br_op!=br_cl)&&(ch!="n"});
output<<"&&(A_inc["<<k<<"]=1))";
k++;

}

else

if(ch==")

61

W

Kty




{

output<<ch;
input.get(ch);
if(ch=="0")

{
output<<ch;
input.get(ch);
if(ch=="")

{
output<<ch;
input.get(ch);
if(ch=="(")

{
output<<ch;
input.get(ch);
br_op=1;
br_cl=0;

do

{

if(ch=="(")

{
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br_op++; |

}

else

if(ch==")")

{

br_cl++;

}

output<<ch;

input.get(ch);

}while((br_op!=br_cl)&&(ch!="n"));

} : l‘
}

}

}

else

{
if(main_strt==1)

{

if(ch=="{")

£

main_br++;
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main_br_strt=1;

if(main_arr_init==1)

| {

output<<ch;

input.get(ch);

/foutput<<"class_for_array class_for_array_obj;"<<endl;
output<<"clrscr();":

output<<" \nfstream check_test,write_test;";

output<<"\ncheck_test.open(\"no_cases.txt\",ios::in);":
output<<"\nint no_test_left=0;";

output<<"\nchar get_test_left;"; i‘

output<<"\ncheck_test.get(get_test_left);"; J‘
/loutput<<"\ncout<<get_test_left;";

output<<"\ndo";

output<<"\n{";

output<<"\n no_test_left=no_test_left*10+toascii(get_test_left)-48;";

1 output<<"\n  check_test.get(get_test_left);";

output<<"\n}while(check_test);";

output<<"\ncheck_test.close();";

output<<™nif(no_test_left!=0)";

output<<"\n{"; ; !‘
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output<<"\nno_test_left--;"; |

output<<"\nwrite_test.open(\"no_cases.txt\",ios::out);";
output<<"\nwrite_test<<no_test_left;";

output<<"\nwrite_test.close();";

output<<endl<<"\nfor(int plmk0=0;plmkO<="<<cnt-1<<";plmk0++)"<<endl;
output<<"\nA_inc[plmk0]=0;"<<endl,

output<<" fstream

store_o;"<<endl<<"store_o.open(\"stresult.txt\",ios::inlios::outlios::app);"<<endl;

output<<" fstream

store_test;"<<endl<<"store_test.open(\"testcase.txt\",ios::inlios::outlios::app);"<<endl,

output<<"int test_case_value,test_case_value_again=0;";

|
main_arr_init=0; 11[

else

if(ch=="1")

main_br--;

str_n=0;str_i=0; ‘
if((main_strt==1)&&(main_br_strt==1)&&(ch=="r"))
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{
input.get(ch);
str[0]="";
str_n=1;
return_str=1;
if(ch=='e")

{

str_n=2;
input.get(ch);
str[1]="e";
if(ch=="t")

{

str_n=3;
input.get(ch);
str[2]="t";
if(ch=="u")

{

str_n=4;
input.get(ch);
str[3]="u';

if(ch=="')
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{ |
str_n=5;
input.get(ch);
str[4]="r";
if(ch=="n'

{
return_str=0;
input.get(ch);

str[5]="n";

_return_chek=1; |
main_disp=0; ‘ ‘
Il

'j

} } ;

)

} |
} |

if (return_str==1)
{
for(str_i=0;str_i<str_n;str_i++)

output<<str[str_i]; ‘
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return_str=0;
if(return_chek==1)

output<<"do{"<<endl;
output<<"if(test_case_value_again==1)"<<endl;
output<<"{clrscr();";
output<<"cout<<\"You have entered an invalid value.\"<<endl<<endl;"<<endl<<endl;
J output<<"cout<<\"Please enter the valid value\"<<endl<<endl;}"<<endl<<endl;
output<<"cout<<\"Enter 1 or 0 for the test case is a pass or a fail respectively : \";"<<endl;
output<<"cin>>test_case_value;"<<endl; l
output<<"test_case_value_again=1;"<<endl, "
output<<"}while(test_case_value!=0&&test_case_value!=1);"<<endl;
output<<endl<<"for(int plmk=0;plmk<="<<cnt-1<<";plmk++)"<<endl;
output<<"store_o<<A_inc[plmk];";//<<\" \""; -
output<<"store_o<<\"\n\"";
output<<"store_o.close();";
output<<endl<<"store_test<<test_case_value<<endl;"<<endl;
output<<"store_test.close(); }"<<end],
output<<"\nelse\n";

output<<"cout<<\"\nYou have entered all the test cases\";";
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output<<"getch();";

0utput<;"1'eturn e

return_chek=0;

}

if((main_strt==1)&&(main_br_strt==1 )&&(main_br==0)&&(main_disp==1))

{

output<<"do{"<<end]l;

output<<"if(test_case_value_again==1)"<<endl;

output<<"{clrscr();"<<endl;

output<<"cout<<\"You have entered an invalid value.\"<<endl<<endl;"<<endl<<endl;
output<<"cout<<\"Please enter the valid value.\"<<endl<<endl; }"<<endl<<endl;
/loutput<<"cout<<\"Enter the valid value\"<<endl;"<<endl;

output<<"cout<<\"Enter 1 or 0 for the test case is a pass or a fail respectively : \";"<<end],
output<<"cin>>test_case_value;"<<endl:

output<<"test_case_value_again=1;"<<end];
/loutput<<"cout<<test_case_value;"<<endl:
output<<"}while(test_case_value!=08&&test_case_value I=1);"<<endl;
/loutput<<"cout<<test_case_value;"<<endl;

output<<endl<<"for(int plmk=0;plmk<="<<cnt-1<<";plmk++)"<<endl;
output<<"store_o<<A_inc[plmk];"//<<\"\";}";

output<<endl<<"store_o<<\"\\n\";"<<endl;
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output<<"store_o.close();";
optput<<endl<<"store_tcst<<test_case_valuc<<end1;“<<endl;
output<<'store_test.close();}"<<endl;

output<<"\nelse\n";

output<<"cout<<\"\\nYou have entered all the test cases\";";
output<<"getch();";
/loutput<<"storeresult_o<<A_inc[plmk]<<\" \";}"<<endl;

/loutput<<"storeresult_o<<endl;";

/loutput<<"storeresult_o.read((char *) & bo,sizeof (bo));"<<endl;

}

output<<ch; i i
input.get(ch); I
}

}while(input);

}
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Figure 12: Value of suspiciousness and rank corresponding to each line of code

44 Hardware/Software Requirements

¢  Windows platform

e At least 64 Mb of RAM
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CONCLUSION

The tool is designed to identify the location in the code where there is a
maximum probability of having an error. After the user inputs the
program to be debugged, the tool passes the user entered test cases
following which the tool assigns the suspiciousness value depending upon
whether it has passed the test case or not and the line is executed or not.
Higher the suspiciousness value more is the probability of having an error
in that line of code. However, the tool works for the program having

conditional statements only,

73




BIBLIOGRAPHY

¢ Nicholas Mc Guire Runtime debugging in embedded systems, Distributed &
Embedded Systems Lab 2006

® Lars Albertsson , Holistic debugging. ISRN:SICS-T.2006.
® Gerard Ferrand and Alexandre Tessier, Declarative Debugging. INRIA.2005.

® James A. Jones, James F. Bowring and Mary Jean Harrold, Debugging in
Parallel. 2007.

® James A. Jones and Mary Jean Harrold, Tarantula Technique. 2007,

®  Yu-Chin Hsu, Bassam Tabbara, Yirng-An Chen and Furshing Tsai, Advanced
Techniques for RTL Debugging. Novas Software Inc., 2025. 2006.

e A.P. Kryukov and AYa.Rodionov, Dynamic-Debugging System for The
Reduce Programs.2007.

® Michiel Ronsse, Mark Christiaens, and Koen De Bosschere, Cyclic Debugging
Using Execution Replay. ELIS Department.2005.

® Holger Cleve and Andreas Zeller, Locating Causes of Program Failures. 2008.

® www.ieeexplore.com

e www.wikipedia.com

74




