firar wer vy

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER
Acc. NumS PO |4 call Num:

General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

The loss of LRC book(s) must be immediately

brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

N

P05116

iy

Remote Compiler

By

PRAPHULL PUROHIT-(051221)
ABHISHEK BAJPAI-(051253)
GARIMA SINGH-(051286)

" MAY -2009

Submitted in partial fulfillment of the Degree of
Bachelor of Technology

DEPARTMENT OF
COMPUTER SCIENCE AND ENGINEERING

L

CERTIFICATE

This is to certify that the work entitled, “Remote Compiler” submitted by Praphull Purohit

(051221), Abhishek Bajpai (051253) and Garima Singh (051286) in partial fultillment (or

the award of degree of Bachelor of Technology in Computer Science and Engineerine of
Jaypee University of Information Technology has been carried out under my supervision. | his

work has not been submitted partially or wholly to any other Universityor Institutc (01 (he

award|pf this or any other degree or diploma.

Brig (retd.) S.P Ghrera Mr. Satish Chandra

(Head of Departmént — Computer Science and LT.) (Project Coordinator)

5

-)
i ¥ —

| Infosys

| Infosys Technologies Limited

No. 350, Hebbal Electronics City
Hootagalli, Mysore - 570018

Tel: 91 B21 240 4101 Fax: 91 821 240 4200
wwaw infosys com

Certificate of Project Completion at Infosys

This is to certify that Mr./Ms. Praphull Purohit has undertake
the project titled “Remote Compiler” at our organization
Infosys Technologies Limited, Mysore, under the guidance of
Mr. Ananth Kota for the period 19 January 2009 to 12 May
2009.

e
T
Signature of Project Manager

ANANTH KOTA

Registered Office : Plot No. 44, Flectronics City, Hosur Road, Bangalore - 560 100, India

‘ a
=
“

ACKNOWLEDGMENT

I'extend my warm and sincere thanks to my project manager Mr. Ananth Kota who
was a staunch supporter and motivator of this project. Right from the inception of this projcct
work, my project manager guided me till the very end in the true sense of the word. He alv 1+
came up with innovative ways and creative terms thus also helping me to instill and enhance

the quality of creative thinking within myself.

Sincere thanks to Brig (retd.) S.P. Ghrera , HOD, CSE & IT Department, and My, Satish
Chandra, Project Coordinator for being cooperative to the students of the department and

providing relevant guidance in their endeavors.

Thanks to all the teaching and non-teaching staff of the CSE department who have helped in

every possible way throughout the 4 years of the B. Tech. academic program.

[would also like to express my gratitude to this alma mater JUIT, Waknaghat for providing

proper resources as and when required such as an all time internet facility and other resources.

Hence without giving a warm thanks to all of them who made this project work a reality my

work would be incomplete.

J—
|
i
|
' TABLE OF CONTENTS
f
LIST OF FIGURES i
LIST OF ABREVIATIONS i
ABSTRACT
CHAPTER 1 INTRODUCTION
1.1 Business Requirements J
|. 1.2 Remote Compiler)
$ [.3 Functional Requirements)
[.3.1 Requirements in scope 2
| 1.3:2 Requirelﬁents out of scope 3
1.3.3 User Interface 3
1.3.3.1 Current Features 3
1.3.3.2 Future Enhancements 3
1.4 Non functional requirements 3
CHAPTER 2 OVERVIEW OF REMOTE COMPILER 5
W 2.1 Requirements of Remote Compiler 6
| 2.1.1 Server Hardware requirement .6
2.1.2 Server Software requirements 6
2.1.3 Client Software requirements 6
2.2 Overview 6
2.3 Subsystems 6 ;
2.4 Use case design 8
2.5 Architecture Design 9 -
2.6 Layering and partitioning 10 |

|
i
|
|

2.7 Activity Diagram 11
2.8 External Libraries Used 13
CHAPTER 3 DETAILED DESIGN 14
3.1 Implementation Elements 15

3.1.1 Login \
3.1.2 Graphical User Interface

3.1.3 File Manager i
3.1.4 Code Analyzer

3.1.5 Compiler

3.1.6 JavaScript Component [5

| 3.1.7 Database 16
3.2 Algorithm Design 16
3.3 Database Design 17
3.4 Optimization of algorithms and data access 18
3.5 Screen field validations and defaults 18 ‘
3.6 Special Processing Notes 18 |L
3.6.1 Assumptions 18
3.6.2 Limits 18
‘ 3.6.3 Exception Handling 19 :
u » }‘
CHAPTER 4 CLASS DIAGRAMS ; 20 i
CHAPTER 5 DEPLOYMENT STEPS 25 ;
5.1 Deploying to server 26 ’
5.2 Environment Setup for Visual C++ Compilers 26
5.2.1 Microsoft Visual Studio 2005 26
5.2.2 Microsoft Visual Studio 98 27
5.3 Installation verification 28 ‘

|
|
E

CHAPTER 6 SCREEN SHOTS 29
CHAPTER 7 CONCLUSION 38
BIBLIOGRAPHY 40

?

g e

'
i
i
i"

Figure

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20,
Figure 21.
Figure 22.
Figure 23.
Figure 24.

Figure 25.

LIST OF FIGURES

Caption

Use Case Diagram

Architecture Diagram

Layering and Partition

Activity Diagram

Authentication

Development Environment

File opened

Save button enabled on file editing

Create Folder Toolbar Icon

Create Folder wizard — Select Base Directory

Create Folder wizard — Base Directory Selected

Create Folder wizard — Enter new folder name
Directory creation request being processed on server
Directory created and added to file tree

Create new file

Upload File

Code Analysis and Compilation being performed on server
Successful Compilation

Compilation Error

Successful execution — no input statements

Program containing input statements

Asking user for value of variable — Invalid value entered
Valid value entered

Replacing input statements in code and re-compiling code

Program compiled with input value

Page No.

.‘{ e

LIST OF ABBREVIATIONS

ACRONYM STANDS FOR
IS JavaScript
ISP Java Server Pages
XHTML eXtensible HyperText Markup Language
AJAX Asynchronous JavaScript and XML
SQL Structured Query Language
XML eXtensible Markup Language
WAR Web Archive
JAR Java Archive
JSON JavaScript Object Notation
HTTP HyperText Transfer Protocol
ii

ABSTRACT

Code compilation is one of the most important phases of software development life cycle.
Despite being this critical to the development of any software, least time is devoted by any development
team to this phase. In an environment where compilation is not an everyday task, de-localizinge
compilation systems and providing remote access to compilation environments not ol
reduces the cost incurred for compilers but also saves time and manpower in maintaining an

upgrading compilation systems.

Remote compiler is a software product which provides centralization of compilation
environments and delocalization of compilation systems to web-based systems. This sofiware
surpasses the existing remote compilation systems by allowing for the use of input statements
in source programs that, traditionally, would have caused the programs to wait indefinitely for
user response at scrver end. A user can create or upload a source file to the system throuch a
web-based interface, which is analyzed, compiled and executed at a remote system and results
are displayed to the user, thereby eliminating the need for the presence of compiler at user’s
end. This system can be used by colleges for training purpose and for various programming

competitions.

CHAPTER 1

T

INTRODUCTION

:
1
|

1.1 Business Requirements

The customer is a programmer in the network based environment who develops
programs (in ¢, ¢+ or java) in the local system and tries to execute them on the centralized
system. The local systems do not have the compilers to execute the programs. All the
compilers are available on the centralized system.

i 1.2 Remote Compiler
i » The Remote Compiler is a network based multi-user supported program that helps
| programmers to compile and execute programs coded in different programiming

languages(c, c++ and java) on a remote system.

: [t avoids the need of various compilers in local system.

L The remote system comprises of required compilers to execute the program. '
+ » The local system sends the programs, after modifying the input/output statements, (o
the remote system for compilation and execution.

» The remote system compiles/executes the program and sends the errors/output to the
local system.

AT 74

» Remote compiler helps to compile and execute the programs coded in any language(c,
¢+t or java) irrespective of the compiler being available in local systen. {
» To obtain the output from a program even when the environment nceded to run the f

program is not available in the local system.

1.3 Functional Requirements

1.3.1 Requirements in scope

» The local system must be able to send files to the remote system.

The remote system should compile the files received and send the results to the local
system.

» The output should be returned to the local system when file is executed on the remote
system.

Security must be maintained through authenticated userld and password. {

Proper validations should be done before compiling the files. ,

Future enhancements should be considered. ‘

e s

|
i
E
i

|
;_
'é?
§

1.3.2 Requirements out of scope

Y

Y

Y

\G

1.3.3

The remote system will not compile the programs that contain input statements nested
inside looping structures.
The remote system will not compile the programs that contain goto statements.
The remote system will not compile the programs that contain multiple statements in
single line.
The remote system will not compile the programs that contain Structures.
User Interface

1.3.3.1 Current Features

>

A

vV VYV

A7 74

User logs in to the Remote System by providing a username and password.

User can either upload a pre-existing source code file from his local system or can
create his/her own source code file by typing the code in the provided text arca which
in turn will be sent to the remote system.

User can also modify the source code and recompile it.

User can create his own directory structure to store the files.

User will be provided with an option to compile and execute his program.

Results will be displayed on the user’s local system after the program exccution.

If during execution of the program user needs to supply any input valucs. then he will
be prompted before the compilation of the source to executable.

1.3.3.2 Future Enhancements

>

The user can run SQL queries and view its results without having Database Server on
the local system.

The user can be assisted by an automated code generator tool while writing the code in
the specific programming language.

This project can be extended to support more programming languages by implementing
the interfaces provided and configuring the compilation/execution system through the
user interface provided.

1.4 Non functional requirements

-
'

Security: Userld and password should be verified for accessing remote system.Only
authenticated users can access the system.

-
]

s S

e E— T

YV VYV

A% Y

A 7

Audit Trail: Not Applicable.

Error logging: Not Applicable.

Multi language Support: Not Applicable.

Performance: Multiple users can use the system simultaneously. Even when the file
name of different users is same, the ambiguity of compiled filename is resolved
depending upon the username and hence the unique filepath.

Scalability: The project is scalable. It supports languages like ¢, c++ and java. But we
can extend its functionality to other programming languages also by implementing the
interfaces provided.

Availability / reliability: The remote system compiler is available 24x7. Any
authorised user can use it anytime. The compilation will be consistent across all (lc
errors and deviations.,

Data migration: The programs written by the client will be modified, if required. and
will be sent to the remote compiler for compilation and hence execution. 1he
errors/output so generated will be sent back to the local machine.

Data Retention: The files containing code (.c, .cpp, java) and their respective
executable files will be stored in the remote system.

CHAPTER 2 |

OVERVIEW OF REMOTE COMPILER

2.1 Requirements of Remote Compiler

2.1.1 Server Hardware requirements
7 Processor/RAM/HDD : P4/1GB/10GB

» Web server: Tomcat/JBOSS
» Database Server : Oracle

; 2.1.2 Server Software requirements
b » OS for Web server : Windows XP/Vista/2003/NT

‘ » OS for Database Server : Windows XP/Vista/2003/NT '
» DBMS : Oracle/DB2

2.1.3 Client Software requirements

» Web browser: Mozilla Firefox 3+, Internet Explorer 6+ (With JavaScript/AJAX
enabled and ActiveX/MSXML runtime enabled for IE 6) |

2.2 Overview "

The main objective of this software is to compile the code sent by local system on the
remote system compiler. The remote compiler should execute or run the code and send the
error messages or the output to the local system.

2.3 Subsystems

The various subsystems identified in the project are:

» Login: This subsystem deals with allowing only authorized users to use the remote

1 compiler. If the user is authorized, then he/she is allowed to access the compiler and
other subsystems. It interacts with JavaScript component and database.

Graphical User Interface: This subsystem provides a user interface that allows the
user to create his/her own directory structure, provide the inputs to the program if any,
send the files to remote compiler, compile and execute the user program and display the
relevant outputs and errors, if any. To carry out its operations it interacts with
JavaScript component. :

File Manager: This subsystem manages the file operations like getting the list of files
corresponding to the user. It saves the modified source code and deletes the irrelevant
temporary files created in the process.

»—Code Analyser: It searches for the input statements in the source code file and, if any
exists, then it prompts the user to enter the appropriate values before actual compilation

: begins. Then its replaces the source code with appropriate assignments and saves the

- 6

5

|
|

\4

modified source code in a temporary file for its compilation and execution. It interacts
with JavaScript component.

Compiler: This subsystem compiles and executes the user files and sends back the
results to the user’s system. It interacts with JavaScript component.

JavaScript Component: This subsystem provides the functionality for displaying the
directory structure for the user when he/she logs on to the remote compiler; also it
displays the custom dialog boxes. It interacts with subsystems login, code analyser.
compiler GUI.

Database: This subsystem stores the authorised user’s details, the configuration details
of languages, compilers, source files, temporary files, executable files which ¢
required to make the project portable. It interacts with login.

5

2.4 Use case design

L e %
pgrammer Compilation Pl m

Compile @
Y Exccute
O

'(emolc Compiler

Authenticator

Display
Errors

Fig 1 — Use Case Diagram

&

2.5 Architecture Design

Performs actions and
= events ;
Client »| JavaScript User requests
browser Library >
<
Response to actions
I
1
s A 4
Response to user’s request)
View (JSP) (1
il
|

i
|
Invokes the :

business logic Returns

functionality Results

ot Returns OQutput Model
Compiler(c, c++ » (Codc Analyzer.
and java) P User Inputs,
i , , Analysis Status
Sends Code G)

T Returns relevant
data

Query
Database

Fig. 2 — Architecture Diagram

Nl

2.6 Layering and partitioning i

Layer2 i

[

[t
e File Manager [
f

Layerl

e [nitialization Layer3 il
¢ Configuration (i

e Analysis
e Code il

Replacement
e Compilation il

Layerd * Exccution
[5 e ISP’s
.ayers |
ay |
e Login
i Layer6

e JavaScript
Component

Layer?

e Graphical User
Interface

Fig. 3 — Layering and Partition

10

|
i

2.7 Activity Diagram

User Logs in

et B N
False .~ Authenticated T
_.__mg\‘ User?
gy LT

~ -

T’Ime

{ Display the user files

pload a new
file

s S

Open an existing
file

y

Create a new
provided text area

file in the

View the file

N i

Y
[Make the changes J

Y

Y
{ Compile the code J

e A

= S

</ Compilation \‘-\\
< Errors? s
T l No et

\\/"/I

l Save changes ;

l

- ’!/ Analyze the code for input statements t

.

o

-

7" Input statements S~

":‘___‘ found? ;}
False —\‘”'“-\‘ ol
‘_‘_\._. ,«'j'/
i e
True
\ 4
(Prompt the user for inputs }
¥

[User inputs values J

[co de Replace J

\

{ Execute ’

Y

" Display results

Y

JlJlT

{ Logs off

©

Fig. 4 — Activity Diagram
12

i
i

2.8 External Libraries Used

~ Prototype JavaScript Library 1.6.0.3
» Apache Commons 10 Library 1.4
» Apache Commons FileUpload Library 1.2.1

v

CHAPTER 3 |
i
gl
DETAILED DESIGN
|
|
14

3.1 Implementation Elements

3.1.1 Login }
Its specific implementation element is the database, to which the connection is |
established, that has users table through which authentication is done and has attributes:
» Userld

» Username
~ Password

|
I
i
|
[
|

3.1.2 Graphical User Interface

[ts various implementation elements are:

» Various File options such as:
o Open File

Upload File
Create File
Save File
Compile File

o Execute File
» Customized Directory structure creation
» Folder within a folder
» Files within a folder

O 0 0 0

3.1.3 File Manager
Its various implementation elements are: .
Get the list of files and directories corresponding to the user.
» Deletes temporary files created in the process of compilation.
» Modifies the source file.

3.1.4 Code Analyzer .
[ts various implementation elements are:
| » Searching input statements in the source code file |

» Replacing the source code with appropriate assignments
» Saving the modified source code for its compilation and execution.

3.1.5 Compiler

|
- . . |
[ts various implementation elements are: ;
» Compile the source code.
Execute the compiled code.

3.1.6 JavaScript Component
Its various implementation elements are:

» Displays the user interface.

15

» Handles various events and actions of the user.
» Prompts the user for input values, if any.

3.1.7 Database :

Its various implementation elements are:

It stores the authorised user’s details.

» It stores the configuration details of languages, compilers, source files,
temporary files, executable files that are required to make the project portable.

3.2 Algorithm Design

3.2.1 Code Analysis

Read the source file from selected by user for compilation.

» Search for all Input statements inside the program and make a list of matched
occurrences along with the line of code where statement was found, input variable to
receive the data into and the variable data type (language specific).

Set this list of occurrences as a session object and prompt the user to enter values for
each of the variable

3.2.2 Code Replacement

Retrieve the session variable holding list of variables in input statements.
Retrieve the values entered by user for each of the variable.
~ Replace each input statement in the code by proper assignment statements for each

v

variable.
Original source file is stored in a temporary folder and changes are made to the file in
original location.

3.2.3 Compilation

TFileis compiled.
» In case compilation errors are found, a list of errors is returned.

16

In case of no errors, all the modified source code is replaced by the original source file
from temporary folder and all the temporary files are deleted.

3.3 Database Design

Our database has following tables:
» Users:
[ts attributes are:
o userld: it is the user’s id and also a primary key.
o userName : it is the name of the user.
o password: password of the user.

~ Languages:
Its attributes are:
o languageld: it is the language’s id.
o languageName : it is the name of the language.
o extension: it is the extension of the file and can be either ¢, cpp or java.
The languageld and extension constitute the primary key.

~ TemporaryFiles:
[ts attributes are:
o languageld: it is the language’s id.
o extension: it is the extension of the file and can be either ¢, cpp or java.
The languageld and extension constitute the primary key.

Y

Compiler:
Its attributes are:
o languageld: it is the language’s id.
o stepld: it constitutes the steps required to compile the source code.
o compilerPath: it is the path required to compile the source code.
The languageld and stepld constitute the primary key.

» SourceFiles:
Its attributes are:

o languageld: it is the language’s id.
o extension: it is the extension of the file and can be either ¢, cpp or java.
The languageld and extension constitute the primary Key.

|
l;

3.4 Optimization of algorithms and data access

The optimization techniques used in the project are:
» Deletion of the intermediate files generated during compilation.
» The users’ table is normalized up to 3NF.

3.5 Screen field validations and defaults

» Login Screen:
The validations for the login screen are:
o The userld, userName and password should not be blank.
o The userld should only contain digits.
o The password should be at least four characters.
The login screen does not have any default values.

» The User Input Screen:
The validations for user input screen are:
o For char data type, the ficld can contain only | character
o For numeric data types (int, float, double, etc), the field can contain only
numeric values.
o For all fields, blank field validations have to be done.

3.6 Special Processing Notes

\ 3.6.1 Assumptions

» The remote system will not compile the programs that contain looping statements.
» The remote system will not compile the programs that contain goto statements.
» The remote system will not compile the programs that contain multiple statements in

single line.
> The remote system will not compile the programs that contain Structures.

3.6.2 Limits Il

This project is limited to three programming languages, i.e, ¢, c++ and java. And to run
a complete user application, the executables of all the related-files-(to-the project) should have
their executables present in the same folder.

18

3.6.3 Exception Handling

5
>
Ve
5

Exception handling is done if:

The source code contains loops.

The source code contains goto statements.
The source code contains structures.

The source code contains multiple statements separated by semicolon (3).

I B

CHAPTER 4
\
CLASS DIAGRAMS i}
k
20
|

Userlnput

-lineNumber : int
-variableName : String
-variableType : String
-replacedValue : String

+ getter()
+ setter()

Eadfis

CodeAnalyzer
Interface

+ analyze(relativeFilepath:String) :
AnalysisStatus

+ codeReplace(analysisStatus: AnalysisStatus) :
String

CompilationStatus

- status : boolean
- compileErrors e @ String] |

+ getCompileErrors(): String[]
+ execcuteProgram (filepath:String.
userName:String) : Document

+ getter()

+ setter()

Conn

- userName : String

- password : String

- connectionString: String
- dbClass_: String

+ getter()
+ setter()

Language

- langld @ int

- langName : String

- connectionString: String

- executionCommand : String

21

AnalysisStatus

-analysisErrors : list
-status: Boolean
-inputValue: Userlnput[|

+ getter()
+ setter()

CodeExecutor

+ isExecutableExists (filepath:String,
userName:String) : boolean

+ executeProgram (filepath:String,
userName:String) : Document

CompilationStep

- stepld : int
- compilationCommand : String

+ getter()
+ setter()

FileFilter

+ accept (dir:File, name: String) : boolean

#-

+ getter()
+ sctter()

Nvi

+ nvl (obj: Object, retVal: String): String
+ nvl (obj: Object) : String
+ parselnt (obj : Object) : int

CCodcAnalyzer

+ analyze(username:String, sourcelilename :String):
AnalysisStatus

+ codeReplace (analysisStatus: AnalysisStatus,
userName:String, sourceFilename:String) ! Boolean

CodeCompiler

currentCompilationStep :int}: CompilationStatus

+ compilcFile (userName :String, relativelilePath :String,

22

LanguageConfig

- languag

- exccFiles 1 String[]
- sourceliles ; String[]

e : Language

- tempFiles @ String[]

- compilationSteps: CompilationStep(]
+ getter()

+ seiter()

Str_eamG obbler

- inputStream : [nputStream
- result : String

+ run():

+ getter()
+ setter()

void

CPPCodcAnalyzer

+ cinAnalysis(currentVariable:String,
userName:String, sourccFilename:String) :
CinElement

+ analyse(userName:String, sourceFilename:String
¥ AnalysisStatus

+ codeReplace (analysisStatus: AnalysisStatus,
userName:String, sourceFilename:String) :
Boolean

CinElement

-lineNumber : int
-variableName : String

+ getter()
+ setter(}

Initializer

Executer

+MINWAITTIME : int

+ execute (executionCommand :String[],
resultFilePath :String, useBatchFile : boolean):
Document

+ performExecutionUseStream {executionCommand
:String[]): Document

+ performExecutionUseBatchlile

waitTime : int, deleteFile: boolean): Document

+ replaceCommands (originalCommand: String,
fileExtension: String, fileNameWithExtension :
String, fileRelativeDirectory : String, fileDirectory :
| String, filePathWithExtension : String): String

- languageConfigs : LanguageConfig(]
+ initialized : boolean
- connection : Connection

(executionCommand :String[], resultFilePath :String,

+ getter()

+ setter()

+ setLanguageConfig(languageConfig :
LanguageConlfig, index : int) : void

+ getLanguageConlig(language : String) :
LanguageConfig

+ getLanguagelndexForSource (sourcelixtension :

String) : int

+ setLanguageConfig(languageConfig :
LanguageConfig, language : String) : void
+ getLanguagelndex (language: String): int
+ getLanguagelndex(languageld : int) : int
+ initialize(bascFilePath : String) : boolean
+ initialize(): boolean

+ initExecDir() : boolean

+ initLanguages() : boolcan

+ initSourceliles() : boolean

+ initTempliles() : boolean

+ initExecFiles() : boolean

+ initCompilationSteps() : boolean

+ getLanguageContigString() : String

FileManager

- exelilesPath : String
- basel‘ilePath : String !
- temporaryDirectoryName : String

+ getter()

+ setter()

+ getFileList(username : String) : Document

- getDirContents (directory : String, document : Document) : ArrayList <Element>
+ getlileListISON(username : String) : String

- getDirContents(directory : String, isBaseDirectory : boolean) : String

+ getDirectoryPath(filePath : String) : String

+ getlFileName(filePath : String) : String |
+ getFileNameWithoutixtension (filePath : String) : String '
+ addPaths(directory : String, relativePath : String) : String

+ addPaths(directory : String. relativePath1 : String, relativePath2 : String) : String
+ ge(FileExtension(filePath : String) : String '

+ getFileExtensionNoCheck(filePath : String) : String

+ getUserlFilesDirectory() : String

+ getUserTemporaryDirectory(userName : String) : String

+ escapeSlashes(string : String) : String

+ escapeQuotes (string : String) : String

+ escapeSingleQuotes (string : String) : String N
+ copyFile(fullOriginalFilePath : String, fullNewFilePath : String) : boolean W‘\
+ copyFileToUser TempDir{userName : String, relativeFilepath : String) : String h§
+ revertFileFromTempDir(userName : String, relativeFilepath : String) : String t
+ replaceString(originalString : String, replacementString : String, replacedValue : String) : String

+ deleteFile(fullFilePath : String) : boolean L#

+ deleteExecutable(userName : String, filePath : String) : boolean ; i
+ isSourcelile(fileExtension : String) : boolean
+ isTempFile(fileExtension : String) : boolean

+ isExecutable((ileExtension : String) : boolean

24

-

CHAPTER 5
|
DEPLOYMENT STEPS J
|
f
25 5

5.1 Deploying to server
> Deployment to Apache Tomcat v5.5 on Eclipse IDE

o Open Eclipse

o Go to File - > Import.

o Select Web - > WAR File

o Click Next.

o Click browse against WAR File to select the Remote Compiler WAR file.

o Click New against Target Runtime and configure a new Apache Tomeat 5.5
server.

o Inselect JARs, keep all JAR files unchecked.

o Click Finish.

o Go to Run - > Run As - > Run on Server.

o Access Remote Compiler through web browser.

5.2 Environment Setup for Visual C++ Compilers

5.2.1 Microsoft Visual Studio 2005

e

YVVVYV

\'%

.\.’

Go to your Visual Studio installation directory, usually C:\Program Files\Microsofi
Visual Studio 8\
Go to Common Tools folder generally in Common7\Tools
Right click on VCVARS32.BAT and select Edit.
Now go to Start - > Control Panel - > System
Go to Advanced Tab and click on Environment Variables.
Now, you’ll need to add environment variables for current user as given in
VCVARS32.BAT file.
Corresponding to each Set variableName = variableValue command in batch file,
Add a new system variable for current user. (Note that Click on “New” button below
“User variables for <<CurrentUser>>" instead of “New” button below “System
variables”. Make sure to replace all %VAR% in variables values with actual value for
that variable as shown in list of variables e.g. If command is “Set Abc =
Yowindir%\system32” and value of Windir in system variables is C:\Windows, the
actual value to be set for environment variable Abc will be C:\Windows\system32.
Similarly, if command is Set Def = C:\Program Files\Adobe; C:\Program
Files\Java; %Def and variable Def already exists in list of variables and has value
C:\Program Files\Java; C:\Program Files\Infosys, the actual value to be set for
environment variable Def will be C:\Program Files;C:\Program Files\Adobe;
C:\Program Files\Java;. Also, if there are some statements like if "%0OS8%" ==
"Windows NT'" Set VarName=VarValuel and if "%O0S%" == "" Set
VarNanie=VarValue2; use VarValuel-asthe-value-for VarName
Typical system variables and their values for VC2005 are:

o DevEnvDir - C:\Program Files\Microsoft Visual Studio 8\Common7\IDE

26

e
-

e
==

5.2.2

=

VVVYY

o FrameworkDir - C:A\WINDOWS\Microsoft. NET\Framework

o FrameworkSDKDir - C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0

o FrameworkVersion - v2.0.50727

o INCLUDE - C:\Program Files\Microsoft Visual Studio
S\WOATLMFCAUNCLUDE;C:\Program Files\Microsoft Visual Studio
S$\WVCAINCLUDE;C:\Program Files\Microsoft Visual Studio

$\VC\PlatformSDK\include;C:\Program Files\Microsoft Visual Studio
S\SDK\v2.0\include;

o LIB - C:\Program Files\Microsoft Visual Studio
S$\WC\ATLMFC\LIB;C:\Program Files\Microsoft Visual Studio
S$\VC\LIB;C:\Program Files\Microsoft Visual Studio
S\WWC\PlatformSDK\ib;C:\Program Files\Microsoft Visual Studio
S\SDK\v2.0\lib;

o PATH - C:\Program Files\Microsoft Visual Studio
$\Common7\IDE;C:\Program Files\Microsoft Visual Studio
S\VC\BIN;C:\Program Files\Microsoft Visual Studio
8\Common7\Tools;C:\Program Files\Microsoft Visual Studio

8\Common7\Tools\bin;C:\Program Files\Microsoft Visual Studio
$\WC\PlatformSDK\bin;C:\Program Files\Microsoft Visual Studio
S\SDK\VZ.I]\bin;C:\W[NDOWS\Microsoft.NET\Framcwork\v2.0.50727;C:\
Program Files\Microsoft Visual Studio 8\VC\VCPackages;

o VCINSTALLDIR - C:\Program Files\Microsoft Visual Studio 8\VC

VSINSTALLDIR - C:\Program Files\Microsoft Visual Studio 8

o LIBPATH - C:\WINDOWS\Microsoft. NET\Framework\v2.0.50727;
C:\Program Files\Microsoft Visual Studio 8$\WVC\ATLMFC\LIB

(@]

Microsoft Visual Studio 98

Go to your Visual C++ installation directory, usually C:\Program Files\Microsofi
Visual Studio\VC98)

Go to bin folder -

Right click on VCVARS32.BAT and select Edit.

Now go to Start - > Control Panel - > System

Go to Advanced Tab and click on Environment Variables.

Now, yow’ll need to add environment variables for current user as given in
VCVARS32.BAT file.

Corresponding to each Set variableName = variableValue command in batch file,
Add a new system variable for current user. (Note that Click on “New” button below
«User variables for <<CurrentUser>>" instead of “New” button below “System
variables”. Make sure to replace all %VAR% in variables values with actual value for
that variable as shown in list of variables e.g. If command is “Set Abc =
vewindir%)\system32” and value of Windir in system variables is C:\Windows, the
actual value to be set for environment variable Abc will be C:\Windows\system32.
Similarly, if command is Set Def = C:\Program Files\Adobe; C:\Program
Files\Java; %Def% and variable Def already exists in list of variables and has value
C:\Program Files\Java; C:\Program Files\Infosys, the actual value to be set for

24,

e e

environment variable Def will be C:\Program Files;C:\Program Files\Adobe;
C:\Program Files\Java;. Also, if there are some statements like if "%O0S%" ==
"Windows NT" Set VarName=VarValuel and if "%O0S%" == "" Set
VarName=VarValue2, use VarValuel as the value for VarName

» Typical system variables and their values for VC98 are:

o VSCommonDir - C:\PROGRA~I\MICROS~3\Common

MSDevDir - C:\PROGRA~1\MICROS~3\Common\msdev98

MSVCDir - C:\PROGRA~1\MICROS~3\VC98

VcOsDir=WINNT

Path-

C:\PROGRA~I\M[CROS~3\C0mmon\msdcv98\BIN;C:\PROGRANI\MIC

ROS~3\VCI8\BIN;C:\PROGRA~I\MICROS~3\Commom\TOOLS\WINNT;

C:\PROGRA~1\MICROS~3\Common\TOOLS;

o Include-
C:\PROGRA~I\MICROS~3\VCI$\ATLAINCLUDE; C:\PROGRA~I\MICR
0S~3\VCIS\INCLUDE;C:\PROGRA~I\MICROS~3\VCI8\MFC\INCLUD
E;

o Lib-
C:\PROGRA~I\MICROS~3\VC98\LIB;C:\PROGRA~I\MICROS~3\VC98\
MFC\LIB;

O ¢ B e

5.3 Installation verification

Restart the machine and run the application server. Verify Visual studio configuration
by going to Start - > Run, type cmd, Press OK. Type cl.exe and press enter. If the output is
similar to: Microsoft (R) 32-bit C/C++ Optimizing compiler, your installation was
successful.

CHAPTER 6
| i
SCREENSHOTS L?
B
v

Fig. 5 — Authentication '

EFieS Java
Z]Fleb.java
2] TestProgram.fava
Fctestl.c]
PPLIvE i
ZPPTestt fava |
Hestc ||
\ Ttesti.cop It
] TestProgram.java 1
Il
it
i
1

RERIES——————E R]!]

Fig. 6 — Development Environment

30

e b e e e e

T|Flob.java

E] TestProgram. java
Tctestic
ZIPPLjave
Z\pPTestl.java
a L
Ftestl.pp
] TestProgram java

int main()
«

recurn 0;
)

ram.java

#include <atdio.h>

int a=5:
printf("enter the value of a:id”,a):

#include <stdio.h>

int main{)
{
int a=5i
printf ("enter the value of a:%d",a);

return 0;
}

Fig. 8 - Save button enabled on file editing

31

u P e
va public class PP1 {

public static void main(String[] args)
tey(§
int i;

i=System.in.read():
S?sc.oub.p;j._gr__ll;('nguu" + 1);

} catch(Exception e) (
System.out.printlin(e.getHessage(}):

)

}

}

Fig. 9 — Create Folder Toolbar Icon

Fig. 10 - Create Folder wizard — Select Base Directory

[

er; /a.
| Proceed >> |
Pteeﬂ-

Fig. 11 - Créﬁté Folder wizard — Base Directory Selected
Fig. 12 - Create Folder wizard = Enter new folder name

32

Fig. 13 - Request being processed on server

FETD

[£]FieS.java
[E]Fieb.java i L ;
[F]TestProgram.java public class PP1 (
@[JTest public static void main(String[] args) (
Fctestl.c try{
Eppl,;w, int 1i:
Z]PPTest1 java i=3ystem, in.read();
Htest.c System.out.println("Hello™ + i};
Htestl.pp } catch({Exception e) {
System.out.println(e.getMessage()):
£ TestProgram.java }
}
}
AT A TN M D T E R T S e T A S TR OO VAT 0 TR N P
Mew directory created!!!

Fig. 14 - Directory created and added to file tree

@iJava
E]FieS.java
[F|Fle.fava
[E) TestProgram.java
E Test
FFlel.c
FFle2.c
Sctestl.c
E]PP1.java

Fig. 15 - Create new file.

33

I Java
=\FileS.java
ZFie6.java
] TestProgram.java
4 Test
EjFielc
FFie2.c
Z]Hello World bxt
Zctestl.c
£]PPl.Java
E]PPTestl java
Htest.c
Etestl.cpp
Z]TestProgram.fava

}

lic class ’ .Program {
public static void main(String[] args) (

Hello World!fT

Syﬂtm.ouc._x_nz_;ntlg("ﬂello World!!!"):

Fig. 18 — Successful Compilation.
34

lic class jrggxog am {
4 3Test public static void main(String[] args) {
EJFelc abed;
FJFle2.c System.out.println("Hello World!!!"™):
]Helo World bt)
F]aestl.c
EPFl.javu
F)PPTestl.java
E]test.c
Ztestl.opp
E]TestProgram.Java

RS el (o e T A T T W
Eﬂf:

Skage 1 - Home_401475{TestProgram.java:3: not a statement l#
abed;

~

Fig. 19 — Compilation Error
|t s pava
) Fies.java]
@Taﬂﬂowun.java
IETest ; public static void main(String[] args) (
[EjFlel.c System.out.printin("Hello World!!!");
[E)Fle2.c ; }
= Helo World.bxt }
Hctestl.c
ZIPPLjava
F]PPTestl java i |
Ftest.c '
Ftest1.cpp |
Trestrrepanaa | |

AT AU TS T

Hello Workd! 1!

Fig. 20 — Successful execution — no input statements

35

import java.
import java.
import java.u

public class File5 (
private static Scanner scan=new Scanner (System. in) ;
private static DataInputStream dis=new Da tStream{System.in);
private static :B
InputStreamReader (System.in));

public static int a(int aa){
return aa + 2}

}
public static void main(String[] args)throws IOException {

int i;
i=3ystem.in.read(): 15y
System.out.printlin(i);

System.out.printlin{a(i));

rp.tﬂabemul'ltswerufu.ndhthepmwan
Please substitute the values for variables in input statements below
bte: rqmwymnmmmmmmm

Value

T Trpe

ﬁyradngrm#&mﬁnmmmmmm
#variable NameVariable Type : Value
i int

oo o]

Fig. 23 - Valid value entered.

Fig. 24 - Replacing input statements in code and re-compiling code.

36

|
1
|

Z]FileS.java
E)Fieb.java
=] TestProgram. java
2 Test
Z)Fiel.c import java.util.
Z)Fie2.c
gﬂelowmld.m public class File5 {
Tctest1.c private static Scanner scan=nev Scanner (System.in);
=|PPLjava private static DatalnputStream dis=new DatalnputStream(System.:
\pPTest] java private static
%M: ! amReader (System. in)) ;
[Z]test1.cpp public static int a(int aa){
[F] TestProgram.java return aa + 2;

H
public static void main(String[] args)throws IOException (

int i:
i=System.in.read():
System.out.printlin(i};
System.out. pr In(afi)):

Fig. 25 - Program combiled with input value.

37

CHAPTER 7
CONCLUSION
n
38

In this project, the authenticated user writes or uploads a source code, in any
programming language like ¢, ¢++ or java. Then the user sends this code to the remote
compiler for compilation. If any errors exist in compilation, they are displayed to the user;
otherwise the respective executable file is created. A user is allowed to execute a source code
only when it has been compiled. On execution, the respective output (errors or results) are
displayed to the user.

Behind all this, when the user sends a code for compilation, that code is analysed and
the user is prompted for input, if any input statement exists. The assignment statements replace
the input statements. And then the code is compiled. In this process certain temporary files are
created that are deleted after the soﬁrce code has been compiled.

Also, the user is allowed to view his own directory structure in the tree form and also

he is allowed to create his own directories within. The user is also allowed to run an entire user

application provided all the required files have their respective executables.

YV YV V VYV VY

b4

BIBLIOGRAPHY

Java 2 Complete Reference
hitp://extis.com/

hitp://ww.prototypejs.org/

http://commons.apache.org/io/

http://commons.apache.org/fileupload/
When Runtime.exec() won’t — hitp://www.javaworld.com/javaworld/jw-12-2000/jw-

1229-traps.huml
http://www.ibm.com/deve loperworks/java/
hitp://www.ibm.com/developerworks/xm I/

40

