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Abstract
———————————————————————————————–

The thesis titled “Picture Fuzzy Soft-Hypersoft Sets, Information Measures & Aggre-

gation Operators in Decision-Making Applications” explores picture fuzzy information

within the framework of soft-hypersoft sets and their applications in decision-making

using various information measures and aggregation operators. It introduces exten-

sions of picture fuzzy sets, including bi-parametric discriminant measures, picture

fuzzy soft sets, picture fuzzy hypersoft sets/matrices, and q-rung picture fuzzy sets,

with applications in hydrogen fuel cell technology, sustainable agrifarming, renewable

energy source selection, and green supply chain management. The thesis begins with a

comprehensive background on picture fuzzy sets and their extensions, including defini-

tions, operations, and a literature survey. A bi-parametric picture fuzzy discriminant

measure is proposed, mathematically validated, and integrated with modified VIKOR

and TOPSIS methods to assess hydrogen fuel cell technologies. Modified picture fuzzy

soft Dombi aggregation operators and their algebraic properties are introduced and

applied within the EDAS methodology to prioritize factors for sustainable agrifarm-

ing. Furthermore, the concept of picture fuzzy hypersoft sets and similarity measures

is developed, with the proposed properties validated through numerical illustrations

and comparative analyses. Picture fuzzy hypersoft matrices are constructed to or-

ganize information, and new choice and value matrices are introduced to address re-

newable energy source selection problems. In addition this, a modified q-rung picture

fuzzy AHP/WASPAS methodology is presented, overcoming restrictions on uncer-

tainty components. This methodology is applied to green supply chain management

for strategic planning in the energy sector. The thesis concludes by summarizing its

findings and contributions, highlighting the theoretical advancements and practical

applicability of the proposed methodologies. Additionally, potential directions for

future work are discussed, including further generalizations of picture fuzzy hypersoft

sets and their applications to more complex multi-criteria decision-making problems

across diverse domains.

Keywords: Picture Fuzzy Sets, Soft Sets, Hypersoft Sets, Aggregation Operators,

Information Measures, q-Rung Picture Fuzzy Sets, Sustainable Development, Renew-

able Energy, Green Supply Chain Management, Multi-Criteria Decision-Making.
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Chapter 1

Introduction

Decision-making is an essential component of human behavior, affecting a broad range

of sectors from business, economics, health care and engineering. The procedure

that involves a selection of alternatives is very important for organizational success,

individual growth and social advancement. In today’s constantly changing world,

making effective decisions has become very difficult due to the plethora of informa-

tion, the pressing need to make choices, and the existence of information involving

a higher amount of vagueness and ambiguity. The significance of making effective

decisions cannot be overestimated. Industries as well as individuals face various dif-

ficult situations, which include the necessity to strike a balance between conflicting

objectives, handle threats, and make decisions based on imprecise and inexact infor-

mation. Therefore, enhancing strong decision-making structures and algorithms is

very crucial for decisive outcomes and accomplishing strategic objectives. For human

life survival, business development, promotion advancements, etc. are fully depend-

able on the ability to make decisions. To select the best possible alternative among

the others, the conflicting criteria under the assessment of one or more experts are uti-

lized in multi-criteria decision-making problems. Also, the decision-makers managed

a sustainable supply chain management for the utilization of agricultural products

with the help of blockchain technology [1], [2]. In addition to this, there is a de-

velopment of various techniques for the production of hydrogen-based technologies

which is beneficial for the environment [3]. The group decision-making models have

also been applied for the enhancement of the performance of school students with the
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utilization of traditional techniques [4].

In recent years, the area of decision-making has changed dramatically over time with

the transition from classical decision theory to behavioral decision-making which over-

comes the shortcomings of human cognition. Further, advancements in artificial intel-

ligence techniques and computational procedures have played a great role in develop-

ing a comprehensive support system for decision-making. In real-world problems, the

route towards decision-making is heavily affected by its advantages and dependability

on our past knowledge as well as opinions. Also, due to the information deficiencies

and the risk of human errors, it is likely believed to have inexact and incomplete

knowledge of the systems. As a result of this, it seems to be very difficult to arrive at

the best possible choice at a designated time. As the intricacies are growing rapidly,

experts face numerous challenges to select promptly by utilizing the given vague and

ambiguous information.

1.1 Fundamental Notions and Preliminaries

In this section, some fundamental definitions concerning the picture fuzzy set, picture

fuzzy soft set, and picture fuzzy hypersoft set along with their operational laws have

been presented as follows.

1.1.1 Picture Fuzzy Set

The idea of fuzzy sets, developed by Zadeh [5] in 1965, drastically changed the way of

handling imprecise and vague information. The traditional fuzzy sets give the value

of the degree of membership between 0 and 1 for handling uncertain information.

Then, Atanassov [6] in 1986, developed one more uncertainty component i.e. degree

of non-membership for representing the uncertainty with the inclusion of hesitancy.

However, some decision-making situations require a more thorough computational

structure. Picture fuzzy sets [7] were introduced to overcome these shortcomings with

the incorporation of three uncertainty components: positive membership (ρ), neutral

membership (τ) and negative membership (ω). This comprehensive framework is very

helpful in situations where the degree of neutrality has a significant role.
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Definition 1 [7]: “A picture fuzzy set (PFS) U in X(universe of discourse) is given

by

U = {< x, ρU(x), τU(x), ωU(x) >| x ∈ X} ;

where ρU : X → [0, 1], τU : X → [0, 1] and ωU : X → [0, 1] denotes the degree

of positive membership, degree of neutral membership and degree of non-membership

respectively and for every x ∈ X satisfy the condition

0 ≤ ρU(x) + τU(x) + ωU(x) ≤ 1

and the degree of refusal for any picture fuzzy set U and x ∈ X is given by θU(x) =

1− ρU(x)− τU(x)− ωU(x)”.

The constraint on the degree of membership ρU(x), neutral membership τU(x) and

non-membership ωU(x) is

0 ≤ ρU(x) + τU(x) + ωU(x) ≤ 1.

Definition 2 [7]: “If U, V ∈ PFS(X), then the operations can be defined as follows:

(a) Complement: U = {< x, ωU(x), τU(x), ρU(x) > | x ∈ X};

(b) Subsethood: U ⊆ V iff ∀x ∈ X, ρU(x) ≤ ρV (x) τU(x) ≥ τV (x) and ωU(x) ≥
ωV (x);

(c) Containment: U ⊇ V iff ∀x ∈ X, ρU(x) ≥ ρV (x) τU(x) ≤ τV (x) and ωU(x) ≤
ωV (x);

(d) Union: U ∪ V = {< x, ρU(x) ∨ ρV (x), τU(x) ∧ τV (x) and ωU(x) ∧ ωV (x) > | x ∈
X};

(e) Intersection: U ∩V = {< x, ρU(x)∧ρV (x), τU(x)∨ τV (x) and ωU(x)∨ωV (x) >
| x ∈ X}.”

1.1.2 Picture Fuzzy Soft Set

For dealing with the parametrization of uncertain information, Molodstov introduced

the notion of soft set which offers a flexible structural framework. The combination of
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picture fuzzy sets and soft sets provides a robust structure capable of handling more

complex decision-making situations.

Let U = {u1, u2, . . . , um} be the universe of discourse and P = {p1, p2, . . . , pn} be the

set of parameters. The pair (Φ, P ) is called

• “Soft Set [8] over U iff Φ : P → P(U), where P(U) is the power set of U .”

• “Fuzzy Soft Set [9] over Φ(U), where Φ is a mapping given by Φ : P → (F (U))

and F (U) denotes the set of all fuzzy sets of U .”

• “Intuitionistic Fuzzy Soft Set(IFSS) [10] over U if Φ : P → IFS(U) and

can be represented as

(Φ, P ) = {(p,Φ(p)) : p ∈ P,Φ(p) ∈ IFS(U)},

where IFS(U) represents the set of all IFSs of U .”

• “Picture Fuzzy Soft Set(PFSS) [11] over U if Φ : P → PFS(U) and can

be represented as

(Φ, P ) = {(p,Φ(p)) : p ∈ P,Φ(p) ∈ PFS(U)},

where PFS(U) represents the set of all PFSs of U .”

Definition 3 [12] Let (Φ, Q) and (Ψ,M) be two picture fuzzy soft sets on the

same universe of discourse U . Let Q,M ⊆ P be the set of parameters, then

– Complement (Φ, Q)c = (Φc, Q) where Φc : Q→ TSFS(U) is a mapping

given by Φc(p) = (Φ(p))c, for all p ∈ Q.

– Subsethood: (Φ, Q) ⊆ (Ψ,M), iff Q ⊆ M and for all p ∈ Q, Φ(p) ⊆
Ψ(p).

– Equality: (Φ, Q) = (Ψ,M), if (Φ, Q) ⊆ (Ψ,M) and (Ψ,M) ⊆ (Φ, Q).

– Union: (Φ, Q) ∪ (Ψ,M) = (H,S); where S = Q ∪M for all ξ ∈ S and

H(ξ) =


Φ(ξ) ξ ∈ Q−M,

Ψ(ξ) ξ ∈M −Q,

Φ(ξ) ∪Ψ(ξ) ξ ∈ Q ∩M.
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In other words, for all ξ ∈ Q ∩M ,

H(ξ) =
{(
u,max(µΦ(ξ)(u), µΨ(ξ)(u)),min(ηΦ(ξ)(u), ηΨ(ξ)(u)),min(νΦ(ξ)(u), νΨ(ξ)(u))

)}
.

– Intersection: (Φ, Q) ∩ (Ψ,M) = (H,S); where S = Q ∩M for all ξ ∈ S

and

H(ξ) =


Φ(ξ) ξ ∈ Q−M,

Ψ(ξ) ξ ∈M −Q,

Φ(ξ) ∩Ψ(ξ) ξ ∈ Q ∩M.

In other words, for all ξ ∈ Q ∩M ,

H(ξ) =
{(
u,min(µΦ(ξ)(u), µΨ(ξ)(u)),min(ηΦ(ξ)(u), ηΨ(ξ)(u)),max(νΦ(ξ)(u), νΨ(ξ)(u))

)}
.

Definition 4 [12] “Suppose (Φ, Q) and (Ψ,M) are two Picture fuzzy soft sets on the

universal set U . Let Q,M ⊆ P be two subsets of the set of parameters, then as per

their definitions, the following properties hold:

(i) ((Φ, Q)c)c = (Φ, Q).

(ii) ((Φ, Q) ∩ (Ψ,M))c = (Φ, Q)c ∪ (Ψ,M)c.

(iii) ((Φ, Q) ∪ (Ψ,M))c = (Φ, Q)c ∩ (Ψ,M)c.”

Dombi [13] has recommended a particular kind of operation called triangular norm /

conorm whose definitions are given below:

Definition 5 [13] “Let r and s be any two real numbers. Then, Dombi t − norms

and t− conorms are defined as:

Dom(r, s) =
1

1 +
{(

1−r
r

)R
+
(
1−s
s

)R} 1
R

Dom∗(r, s) = 1− 1

1 +
{(

r
1−r

)R
+
(

s
1−s

)R} 1
R

where, R ≥ 1 and (r, s) ∈ [0, 1]× [0, 1].”
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1.1.3 Picture Fuzzy HyperSoft Set

The concept of hypersoft sets enhanced the classical soft set structure by allowing

for multi sub-attribute computation, by giving a far more structural representation

and detailing of data. Also, the blending of hypersoft sets with different extensions

of fuzzy sets further allows for the inclusion of uncertainty components which is

very crucial while dealing with vague and ambiguous information in real-life decision-

making problems.

Definition 6 Hypersoft Set (HSS) [14]. “Let V be the universal set and P(V )

be the power set of V . Consider k1, k2, . . . .kn for n ≥ 1, be n well-defined attributes,

whose corresponding attribute values are the sets K1, K2, . . . , Kn with Ki ∩ Kj =

φ for i ̸= j and i, j ∈ {1, 2, . . . , n} . Let Bi be the non-empty subsets of Ki for each

i = 1, 2, . . . , n. Then the pair (R,B1×B2× . . . .Bn) is said to be Hypersoft Set over

V where R : B1 × B2 × . . . . × Bn → P (V ). In other words, the Hypersoft Set is a

multi-parameterized family of subsets of the set V .”

Definition 7 Fuzzy Hypersoft Set (FHSS) [14]. “Let V be the universal set and

F (V ) be the set all Fuzzy subsets of V . Consider k1, k2, . . . .kn for n ≥ 1, be n well-

defined attributes, whose corresponding attribute values are the sets K1, K2, . . . , Kn

with Ki ∩ Kj = φ for i ̸= j and i, j ∈ {1, 2, . . . , n} . Let Bi be the non-empty

subsets of Ki for each i = 1, 2, . . . , n. Then the pair (R,B1×B2× . . . .Bn) is said

to be Fuzzy Hypersoft Set over V where R : B1 × B2 × . . . . × Bn → F (V ) and,

R (b) = {v,R(b)(v)|v ∈ V } ; b ∈ B1 ×B2 × . . . Bn ⊆ K1 ×K2 × . . . Kn.”

Definition 8 Intuitionistic Fuzzy Hypersoft Set (IFHSS) [14]. “Let V be

the universal set and IFS(V ) be the set of all intuitionistic fuzzy subsets of V .

Consider k1, k2, . . . .kn for n ≥ 1, be n well – defined attributes, whose corresponding

attribute values are the sets K1, K2, . . . , Kn with Ki ∩ Kj = φ for i ̸= j and i, j ∈
{1, 2, . . . , n}. Let Bi be the non-empty subsets of Ki for each i = 1, 2, . . . , n. An intu-

itionistic Fuzzy Hypersoft Set is defined as the pair, (R,B1 ×B2 × . . . .×Bn) where; R :
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B1 ×B2 × . . . .×Bn → IFS(V ) and

R (B1 ×B2 × . . . .×Bn) ={
< ϑ,

(
v

ρR(ϑ) (v) , ωR(ϑ)(v)

)
> | v ϵ V

}
;

where, ϑ ∈ B1 × B2 × . . . . × Bn ⊆ K1 × K2 × . . . .Kn. It may be noted that ρ

and ω represent membership and non-membership degrees respectively, and satisfies

the condition 0 ≤ ρR(ϑ) (v) + ωR(ϑ)(v) ≤ 1; where ρR(ϑ) (v) , ωR(ϑ) ∈ [0, 1] ; and,

∁R(ϑ) (v) = 1− ρR(ϑ) (v)− ωR(ϑ)(v) is called the degree of indeterminacy.”

Definition 9 Pythagorean Fuzzy Hypersoft Set (PyFHSS) [15]. “Let V be

the universal set and PyFS(V ) be the set of all Pythagorean fuzzy subsets of V .

Consider k1, k2, . . . , kn for n ≥ 1, be n well-defined attributes, whose corresponding

attribute values are the sets K1, K2, . . . , Kn with Ki ∩ Kj = φ for i ̸= j and i, j ∈
{1, 2, . . . , n}. Let Bi be the non-empty subsets of Ki for each i = 1, 2, . . . , n. A

Pythagorean Fuzzy Hypersoft Set is defined as the pair, (R,B1 ×B2 × . . . .×Bn) ,

where R : B1 ×B2 × . . . .×Bn → PyFS (V ) and

R (B1 ×B2 × . . . .×Bn) ={
< ϑ,

(
v

ρR(ϑ) (v) , ωR(ϑ)(v)

)
> | v ϵ V

}
;

where ϑ ∈ B1 × B2 × . . . . × Bn ⊆ K1 × K2 × . . . .Kn. It may be noted that

ρ and ω represent membership and non-membership degrees respectively, and satisfies

the condition 0 ≤ ρ2R(ϑ) (v) + ω2
R(ϑ)(v) ≤ 1}; where ρR(ϑ) (v) , ωR(ϑ) ∈ [0, 1] ; and,

∁R(ϑ) (v) =
√

1− ρ2R(ϑ) (v)− ω2
R(ϑ)(v) is called the degree of indeterminacy.”

1.1.4 q- Rung Picture Fuzzy Set

q-rung picture fuzzy information[16] is considered to be a paradigmatic shift in a

fuzzy environment as it covers two important additional components of uncertainty,

i.e., degree of abstain /refusal and also overcomes the limitation of picture fuzzy set

[7], which is very useful in decision-making problems.
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Definition 10 [16]: “A q-rung picture fuzzy set (q-RPFS) Up in X(universe of dis-

course) is given by

Up =
{
< x, ρUp(x), τUp(x), ωUp(x) >| x ∈ X

}
;

where ρUp : X → [0, 1], τUp : X → [0, 1] and ωUp : X → [0, 1] denotes the degree

of positive membership, degree of neutral membership, and degree of non-membership

respectively and for every x ∈ X satisfy the condition

0 ≤ ρqUp
(x) + τ qUp

(x) + ωqUp
(x) ≤ 1

and the degree of refusal for any picture fuzzy set U and x ∈ X is given by θUp(x) =

q

√
1− (ρqUp

(x) + τ qUp
(x) + ωqUp

(x))”.

Definition 11 . “Let Up and Vp be any two q-rung picture fuzzy sets, then some of

the basic operators for these sets are as follows [16]:

(a) Up ⊕ Vp =
〈

q

√
ρqUp

+ ρqVp − ρqUp
ρqVp , τ

q
Up
τ pVp , ω

q
Up
ωqVp

〉
.

(b) Up ⊗ Vp =
〈
ρqUp

ρqVp ,
q

√
τ qUp

+ τ qVp − τ qUp
τ qVp ,

q

√
ωqUp

+ ωqVp − ωqUp
ωqVp

〉
.

(c) κUp =

〈
q

√(
1−

(
1− ρqUp

)κ)
,
(
τ qUp

)κ
,
(
ωqUp

)κ〉
.

(d) Uκ
p =

〈(
ρqUp

)κ
, q

√
1−

(
1− τ qUp

)κ
, q

√
1−

(
1− ωqUp

)κ〉
.”

Definition 12 [16] “q-rung picture fuzzy weighted geometric (q-RPFWG) and q-

rung picture fuzzy weighted arithmetic (q-RPFWA) operators with respect to λ =

(λ1, λ2, ..., λn); λj ∈ [0, 1];
∑n

j=1 λj = 1, defined as follows;

q −RPFWGλ(U1, U2, U3, ..., Un) =


n∏
j=1

(ρqUj
)λj , q

√√√√1−
n∏
j=1

(1− τ qUj
)λj , q

√√√√1−
n∏
j=1

(1− ωqUj
)λj


(1.1.1)

q −RPFWAλ(U1, U2, U3, ..., Un) =

 q

√√√√1−
n∏
j=1

(ρqUj
)λj ,

n∏
j=1

(τ qUj
)λj ,

n∏
j=1

(ωqUj
)λj

 (1.1.2)

”
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1.2 Literature Survey

In this section, there is a brief literature review that is relevant to our presented work

as follows:

1.2.1 Discriminant Measures

The notion of discriminant/cross-entropy measure was first developed by Kullback

and Leibler [17] which states that this measure gives the difference between the two

discrete probability distributions. Then, Bhandari & Pal [18] investigated and ex-

panded the discriminant measure under a fuzzy environment and gave the new no-

tion of fuzzy discriminant measure. Fan and Xie [19] presented a divergence measure

based on the exponential function and examined its relationship to the fuzzy expo-

nential entropy. Then, the special classes of divergence measures concerning fuzzy

and probabilistic uncertainty were given by Montes et al. [20]. Further, Ghosh et

al. [21] have successfully utilized the fuzzy divergence measure in the investigation

of automated leukocyte recognition. In addition to this, Vlachos and Sergiadis [22]

introduced the discriminant measure for intuitionistic fuzzy setup, which is analogous

to the cross-entropy measure of Shang and Jiang [23]. For the validation of the dis-

tance and discriminant measures, a new set of axioms were introduced by Wang et al.

[24] and Hung et al. [25]. The discriminant measure for the intuitionistic fuzzy setup

was introduced by Li [26] and Hung et al. [27] presented the J- divergence measure

for the same sets with their utilization in the pattern recognition application. Fur-

ther, Bajaj et al. [28] presented a R-norm intuitionistic fuzzy cross-entropy measure

with its utilization in image thresholding applications. Also, Gandotra et al. [29]

introduced parametric entropy under “K-cut” and its distance measure for applica-

tion in decision-making problems. In addition to this, the bi-parametric discriminant

measure for Pythagorean fuzzy sets were given by Guleria & Bajaj [30]

Guiwu Wei [31] introduce the idea of discriminant/cross-entropy measure for pic-

ture fuzzy environment and devised picture fuzzy cross entropy as ”IPFS(A,B) which

satisfies two axioms - IPFS(A,B) ≥ 0 and IPFS(A,B) = 0 if and only if A = B.

IPFS(A,B) can also be called discriminant information measure for PFSs. In general,
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for fuzzy sets IFS(A,B) ̸= IFS(A,B). However, for PFSs, IPFS(A,B) = IPFS(A,B)

holds.”

The main goal of multi-criteria decision-making techniques is to attain the best possi-

ble optimal alternative assessed under a certain set of criteria. Numerous researchers

have worked on the different methodologies for solving the decision-making prob-

lems. In literature, Hwang and Yoon [32] proposed the “Technique for Order Prefer-

ence by Similarity to Ideal Solutions (TOPSIS)” decision-making technique, Opricovic

[33] devised the “Vlsekriterijumska Optimizacijai Kompromisno Resenje (VIKOR)”

methods. Wang et al. [34] modified the TOPSIS technique with a fuzzy analytic

process for the establishment of radioactive plants in “Vietnam”. Also, Pamucar [35]

developed the notion of “Geographical Information Systems (GIS)” under the clas-

sical technique of “Best-Worst Method (BWM)” and applied it to the assessment of

wind turbine locations. Further, Joshi [36] estimated the election results in a polling-

bound nation utilizing the VIKOR technique in a picture-fuzzy environment. Yue

[37] extended the VIKOR approach to the group decision-making model for assessing

the issues related to software reliability and specific experimental studies. Goccer

[38] selected a sustainable supply chain approach in an interval-valued picture fuzzy

environment by combining the VIKOR method with the analytical hierarchy process

in Catastrophic Disruptions. To address the issue with opinion polls, Arya & Kumar

[39] expanded the use of VIKOR and TODIM procedures based on picture fuzzy in-

formation measures. A picture fuzzy-Choquet integral-based VIKOR approach was

proposed by Singh & Kumar [40] to address supplier selection problems. Dutta et al.

[41] introduced a new decision-making methodology based on type-2 fuzzy linguistic

variables for solving the multi-attribute problem. Also, Tripathi et al. [42] developed

a new CRITIC-RS-VIKOR decision-making technique under the intuitionistic fuzzy

environment for the assessment of renewable energy source assessment problem.

1.2.2 Soft Set Theory

In the literature, numerous theories have their shortcomings in addressing the impre-

ciseness, vagueness and ambiguity because of the inclusion of multi-attribute tools

introduced in the field of engineering, socio-economic situations and other decision-
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making problems. To cover the multi-attribute feature of the parameters involved

in various uncertainty components, Molodtsov [8] proposed a new set called soft set.

Further, the new notion of soft set has been utilized by various researchers with

many extensions of fuzzy sets as fuzzy soft sets (FSSs) [9], Intuitionistic fuzzy soft

sets (IFSSs) [10], Pythagorean fuzzy soft sets (PyFSSs) [43], picture fuzzy soft sets

(PFSSs) [11], for various decision-making applications. Further, Das et al. [44] intro-

duced the new concept of neutrosophic soft matrix and successfully applied it to the

group decision-making problem of selection of business sectors. Further, a modified

decision-making methodology has been developed by Salsabeela et al. [45] with the

incorporation of q-rung orthopair fuzzy soft sets.

Various decision-making techniques satisfy the essential requirements for evaluating

the best possible alternative. Keshavarz Ghorabaee et al. [46] developed the “(Evalu-

ation Based On Distance from Average Solution) EDAS” decision-making technique

which is found to be very useful while dealing with conflicting criteria. The EDAS

technique computes the “positive distance from the average and the negative distance

from the average from the averaging value”. The greatest value of positive distance

and the lowest value of negative distance will be used to evaluate which option is

the most suitable among the available ones. The EDAS technique has the virtue of

applying to the average value solution alone, which is particularly useful given the

tactile property among decision-makers resulting from an uncertain environment. For

solving real-life decision-making problems, the EDAS (Evaluation Based On Distance

from Average Solution) technique has been merged with multiple dimensions through

distinct fuzzy set extensions. A new modified EDAS-based methodology has been

developed by Kahraman et al. [47] for the choice of a proper solid waste disposal

site. Then, Peng and Liu [48] developed some new similarity measures for the neu-

trosophic soft sets and presented a modified EDAS technique with application in the

decision-making problem. Further, Feng et al. [49] also gave a new form of EDAS

methodology in the hesitant fuzzy environment with the involvement of linguistic pa-

rameters. In addition to this, Zhang et al. [50] introduced a picture fuzzy aggregation

operators oriented EDAS model for a decision-making problem based on score and

accuracy function.

The Dombi aggregation operator was utilized to evaluate renewable energy projects,
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such as solar, wind, and hydroelectric energy, based on criteria like cost, environmen-

tal impact, and efficiency. This method provided more reliable results when handling

uncertain or incomplete data, leading to the selection of projects with optimized per-

formance and resource allocation [51].In healthcare, Dombi operators were applied

to analyze multi-criteria evaluations of treatment plans for chronic diseases. By ag-

gregating patient data effectively, the method improved the accuracy and reliability

of treatment recommendations, resulting in better patient outcomes [52]. Dombi op-

erators have also been implemented in credit risk evaluation, where their ability to

handle nonlinear aggregation provided improved decision-making models for credit

scoring, enhancing the reliability of risk predictions [53]. Applied in urban planning

and sustainability projects, the Dombi aggregation operator enabled the evaluation of

ecological impacts under uncertain conditions. This facilitated better policymaking

and resource management strategies [54].

1.2.3 Hypersoft Theory

In the different fields of mathematical sciences, like probability, fuzzy information

and interval mathematics are regarded as the mathematical tools for solving complex

situations involving a variety of uncertainties. It has been observed that it is not

easy to handle the inconsistent and imprecise information involving the multi-sub-

attribute feature in the parameters of the corresponding alternatives. To overcome

such shortcomings in the decision-making processes, Smarandache introduced the

notion of a hypersoft set (HSS) that handles multi-sub-attribute features. Hypersoft

set has the extra capability to deal with any kind of vague and ambiguous information.

Nowadays, there is a great deal of admiration in the field of soft computing for

the theory of HSS and its expansions. Fuzzy Hypersoft Sets (FHSS) [14] were also

introduced by Smarandache to address uncertainty about the sub-attribute family of

parameters. Also, Smarandache [14] has also explored the idea of an Intuitionistic

Fuzzy Hypersoft Set (IFHSS) to incorporate the indeterminacy component in the

sub-attribute family of parameters. Further, Zulqarnain et al . [15] introduced the

notion of a Pythagorean fuzzy hypersoft set (PyFHSS) along with operation laws,

algebraic properties and correlation coefficients for the successful utilization in the

decision-making application.
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The concept of similarity information measures for the assessment of how two or

more objects are similar cannot be underestimated. These measures are significant

in every field of science and engineering. The similarity information measures are

utilized in various areas of “pattern recognition, region extraction, coding theory,

image processing, region extraction, coding theory, medical diagnosis, etc.” In liter-

ature, researchers developed the similarity measures for the various setups of fuzzy

sets “fuzzy sets, vague sets, soft sets, and fuzzy soft sets”. For the hypersoft ex-

tensions, Saqlain et al.[55] developed the distance as well as similarity measures and

proposed the modified TOPSIS methodology under a neutrosophic hypersoft environ-

ment. Further, on similar lines, Jafar et al.[56] presented the trigonometric form of

similarity measures for neutrosophic hypersoft sets and utilized them in the renewable

energy source selection problem. In addition to this, Rahman et al. [57] also gave

the modified decision-making methodology based on the similarity measures for intu-

itionistic fuzzy hypersoft sets. Kaur and Garg [58] introduced the similarity measures

for picture fuzzy hypersoft sets and applied in supplier selection problem. In addition

to this, some other kind of similarity measures for picture fuzzy hypersoft sets have

been given in the literature for environmental risk assessment [59].

1.2.4 AHP/WASPAS Decision-Making Techniques

The Analytic Hierarchy Process (AHP) [60], was introduced by Thomas L. Saaty in

the 1970s which provides a hierarchal framework for observing and solving complex

decision-making scenarios. Through this decision-making technique, decision-makers

can make the best possible decisions with the reduction of complex situations into a

series of pairwise comparison matrices and then analyze the results. While dealing

with multiple criteria in difficult real-life circumstances, the AHP has produced effec-

tive results in the situations where decision-maker’s knowledge is aggregated through

various questionnaire forms. As a result, the AHP has been widely applied in many

areas such as “traffic management [61], project risk assessment [62] or decision support

systems [63]”. In recent years, numerous researchers have explored the various types

of the AHP technique along with the combination of different fuzzy extensions for

solving decision-making problems [64]. Laarhoven and Pedrycz [65] modified the AHP

technique with a triangular form of fuzzy numbers, and Buckley [66] also developed
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the hierarchical structure of the AHP technique in its form. Sadiq and Tesfamariam

[67] introduced the “intuitionistic fuzzy analytic hierarchy process (IF-AHP)” and

applied it to the environmental decision-making problem. Kahraman et al. [68] pre-

sented the AHP technique for the interval type-2 fuzzy sets, and Zhu and Xu [69]

developed the modified decision-making methodology for the hesitant fuzzy sets.

The weighted aggregated sum product assessment (WASPAS) [70] was developed by

Zavadskas et al. in 2012 which combines the principles of the “Weighted Sum Model

(WSM) and the Weighted Product Model (WPM)”. Turskis et al. [71] apply the

fuzzy form of the WASPAS technique for the building site selection problem. Then,

Ghorabaee et al. [72] blended the WASPAS technique with interval type-2 fuzzy sets

for the assessment of the best possible provider in the distribution systems. Further,

Zavadskas et al. [73], [74] modified the WASPAS technique with a mix of single-

valued neutrosophic set, interval-valued intuitionistic fuzzy numbers and applied in

decision-making applications. Also, Nie et al. [75] developed the all-new WASPAS

methodology in an interval-valued neutrosophic environment for the assessment of

the best possible solar wind power station.

1.2.5 Motivation & Research Gap

The idea of uncertainty is one of the many paradigm shifts that science and math-

ematics have experienced in this century. Real-world circumstances are frequently

ambiguous and unpredictable, making it difficult to express these situations exactly.

For a complete description of these kinds of situations, one would require far more

detailed data to recognize, process and comprehend such issues. The inherent ambi-

guity of human choices as well as the objects being full of uncertainty, the criteria

values and/or weights of criteria involved in the multi-criteria decision-making prob-

lems are not always expressible in crisp numbers. The best way to deal with such

situations is a theory of fuzzy set which is characterized by the membership function

and is appropriate to manage such issues. Atanassov extended the FS to an intu-

itionistic fuzzy set by including the degrees of the dismissal and indeterminacy called

non-membership and hesitancy degrees into the investigation. Yager revealed that

the existing structures of the fuzzy set and the intuitionistic fuzzy set are not capable
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enough to depict human opinion in a more practical/broader sense and introduced the

notion of Pythagorean fuzzy set which effectively enlarged the span of information by

introducing the new conditional constraint. Pythagorean fuzzy set is characterized

by a membership value and a non-membership value such that the squared sum of

these values is ≤ 1. Cuong and Kreinovich developed the picture fuzzy set which

has the involvement of a maximum number of uncertainty components to deal with

the ambiguous information in a better way. During our review of the literature, we

discovered that:

• Picture fuzzy set presents three uncertainty components: positive membership,

neutral membership, and negative membership. This gives a more detailed way

of representing the uncertain information as compared to the traditional fuzzy

and intuitionistic fuzzy sets.

• With the incorporation of neutral membership, the picture fuzzy set gives a

comprehensive framework for modeling real-life problems where the decision-

making is not only in the form (true or false) but may have the inclusion of

indecisiveness.

• Picture fuzzy sets can be modeled with various other fuzzy systems and meth-

ods, strengthening their capacities and giving a more extensive set of tools for

handling vague information.

• In the literature survey, we have observed that picture fuzzy discriminant mea-

sures help in better handling ambiguous and imprecise information by consider-

ing multiple dimensions of membership values. This leads to more reliable and

robust decision-making outcomes.

• With the utilization of picture fuzzy soft-hypersoft set up together with the

notion of Dombi norms, picture fuzzy hypersoft matrices allows for better han-

dling of conflicting criteria and provide a framework to incorporate different

types of uncertainty in the decision-making process.

• Further, by leveraging q-rung picture fuzzy sets into AHP/WASPAS decision-

making techniques, a more comprehensive evaluation of alternatives can take

place by taking into account multiple criteria and the associated uncertainties.
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1.2.6 Objectives of the Study

Based on the above literature survey, motivation and research gap the following ob-

jectives have been designed as follows:

• Utilization of bi-parametric picture fuzzy discriminant measure in VIKOR and

TOPSIS techniques for the assessment of hydrogen fuel cell technology.

• Construction of picture fuzzy soft Dombi operators along with EDAS technique

for the prioritization of agricultural farming.

• Development of picture fuzzy hypersoft matrices for assessing the best possible

renewable energy sources.

• Proposition of hybrid q-rung picture fuzzy AHP/WASPAS techniques for the

green supply chain management in the energy sector.
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Chapter 2

Picture Fuzzy Bi-parametric

Discriminant Measure in Decision

Making

In this chapter, a new picture fuzzy discriminant/cross-entropy measure involving the

parameters R, S hasibeen presented and applied inithe VIKOR & TOPSIS multi-

criteria decision-making techniques. This discriminant measure provides more flex-

ibility and comprehensiveness in comparison to the existing techniques in the lit-

erature. The presented techniques are utilized in the mathematical modeliforithe

evaluation of “hydrogen fuel cell (HFC)” technologyiwhich gives structural analysis

for the expert. While developing the model, theievaluationicriteria, criteriaiweights,

and step-by-step performanceievaluation of HFC technologiesiforieachicriterion in the

picture fuzzy framework were taken into consideration. Further, a study of compari-

son on the helpful observations along with the consistency analysis has been provided

to show the effectiveness of the presented work.
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2.1 Development of (R, S)-Norm Discriminant Mea-

sure Under Picture Fuzzy Framework

This section involves ainovelinotion of “(R, S)-Norm picture fuzzy discriminant mea-

sure” which is analogous to the notion given by Suman and Gandotra [76]. Forianyitwo

pictureifuzzyiset U and V ∈ PFS(X), a ibi-parametricipictureifuzzyidiscriminant

measure is defined as follows:

ISR(U, V ) =
R× S

n(S −R)

n∑
i=1


(
ρU(xi)

SρV (xi)
(1−S) + τU(xi)

SτV (xi)
(1−S)

+ ωU(xi)
SωV (xi)

(1−S) + θU(xi)
SθV (xi)

(1−S)) 1
S

−
(
ρU(xi)

RρV (xi)
(1−R) + τU(xi)

RτV (xi)
(1−R)

+ ωU(xi)
RωV (xi)

(1−R) + θU(xi)
RθV (xi)

(1−R)
) 1

R

 ;

(2.1.1)

where R, S > 0; eitheri0 < S < 1iandi1 < R <∞iori0 < R < 1iandi1 < S <∞.

Since, the measure ISR(U, V ) isinotisymmetric. Therefore, a symmetrized form of

the measure ISR(U, V ) may be defined as:

JSR(U, V ) = ISR(U, V ) + ISR(V, U). (2.1.2)

GuiwuiWei [31] presentedithe new concept of cross-entropy/discriminantimeasure for

the pictureifuzzyiframework and devised “picture fuzzy cross entropy” notated as

IPFS(A,B) which satisfies two axioms - “IPFS(A,B) ≥ 0 and IPFS(A,B) = 0 iff

A = B. In general, for fuzzy sets IFS(A,B) ̸= IFS(A,B). However, for PFSs,

IPFS(A,B) = IPFS(A,B) holds.”

Theorem 1 TheiproposedimeasureiISR(U, V )iisiaivalidipictureifuzzyidiscriminant mea-

sureiforialliU ,iV i∈ PFS(X).

Proof : “First, weiproveithat ISR(U, V ) ≥ 0 withiequalityiif ρU(xi) = ρV (xi), τU(xi) =

τV (xi) and ωU(xi) = ωV (xi) for all i = 1, 2, . . . , n.

Let
n∑
i=1

ρU(xi) = a,
n∑
i=1

ρV (xi) = b,
n∑
i=1

τU(xi) = c,
n∑
i=1

τV (xi) = d,
n∑
i=1

ωU(xi) = e &
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n∑
i=1

ωV (xi) = f , then

n∑
i=1

(
ρU(xi)

a

)S (
ρV (xi)

b

)(1−S)

≥ 1;

or
n∑
i=1

(ρU(xi)
S)(ρV (xi)

(1−S)) ≥ aSb1−S. (2.1.3)

Similarly, we have
n∑
i=1

(
τU(xi)

c

)S
i

(
τV (xi)

d

)(1−S)

≥ 1;

or
n∑
i=1

(τU(xi)
S)i(τV (xi)

(1−S)) ≥ cSd1−S; (2.1.4)

n∑
i=1

(
ωU(xi)

e

)S
i

(
ωV (xi)

f

)(1−S)

≥ 1;

or
n∑
i=1

(ωU(xi)
S)(ωV (xi)

(1−S)) ≥ eSf 1−S; (2.1.5)

and

n∑
i=1

(θU(xi)
S)(θV (xi)

(1−S))i ≥ i(n− a− c− e)S(n− b− d− f)1−S. (2.1.6)

It may be noted that the validity of these inequalities is in accordance with the

empirical proof of them in view of the imposed restrictions on the parameters refer

[30].

Fromiequations (2.1.3), (2.1.4), (2.1.5) and (2.1.6), we get

n∑
i=1

ρU(xi)
SρV (xi)

(1−S)i+ iτU(xi)
SτV (xi)

(1−S) + ωU(xi)
SωV (xi)

(1−S) + θU(xi)
SθV (xi)

(1−S)

≥ aSb1−S + cSd1−S + eSf 1−Si+ i(n− a− c− e)S(n− b− d− f)1−S.

(2.1.7)

Casei1:i0 < S < 1iandi1 < R <∞.

Let ρU(xi)
SρV (xi)

(1−S)i+iτU(xi)
SτV (xi)

(1−S)+ωU(xi)
SωV (xi)

(1−S)+θU(xi)
SθV (xi)

(1−S) =

zi.

Sinceizi < 1iandi 1
S
> 1, therefore, zi > (zi)

1
S .
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Asi R×S
n(S−R)

< 0,ithen

R× S

n(S −R)

n∑
i=1

[
(zi)

1
S

]
i > i

R× S

n(S −R)

n∑
i=1

(zi) (2.1.8)

andiforiR > 1,
R× S

n(S −R)

n∑
i=1

[
(zi)

1
R

]
i < i

R× S

n(S −R)

n∑
i=1

(zi). (2.1.9)

Therefore, fromi(2.1.8)iandi(2.1.9), weihaveiISR(U, V ) > 0 and if ρU(xi) = ρV (xi),

τU(xi) = τV (xi), ωU(xi) = ωV (xi) in (2.1.1), ihave ISR(U, V ) = 0. Hence, iconcludeithat

ISR(U, V ) ≥ 0.

Nextiweiproveitheiconvexityiof ISR(U, V ) in this case.

Fori0 < S < 1,iequation (2.1.7) mayibeiwrittenias(
n∑
i=1

(
ρU(xi)

SρV (xi)
(1−S) + τU(xi)

SτV (xi)
(1−S)i+ iωU(xi)

SωV (xi)
(1−S) + θU(xi)

SθV (xi)
(1−S))) 1

S

≤
(
aSb1−S + cSd1−S + eSf 1−Si+ i(n− a− c− e)S(n− b− d− f)1−S

) 1
S .

Also, weicaniwriteitheiaboveiequationias

n∑
i=1

[(
ρU (xi)

SρV (xi)
(1−S)i+ iτU (xi)

SτV (xi)
(1−S)i+ iωU (xi)

SωV (xi)
(1−S) + θU (xi)

SθV (xi)
(1−S)) 1

S

]
i ≤ i

[
n∑
i=1

(
ρU (xi)

SρV (xi)
(1−S)i+ iτU (xi)

SτV (xi)
(1−S)i+ iωU (xi)

SωV (xi)
(1−S) + θU (xi)

SθV (xi)
(1−S))] 1

S

.

(2.1.10)

Next, foriR > 1, fromiequation (2.1.6), weihave(
n∑
i=1

(
ρU(xi)

RρV (xi)
(1−R)i+ iτU(xi)

RτV (xi)
(1−R) + ωU(xi)

RωV (xi)
(1−R) + θU(xi)

RθV (xi)
(1−R)

)) 1
R

i ≥ i
(
aRb1−R + cRd1−R + eRf 1−Ri+ i(n− a− c− e)R(n− b− d− f)1−R

) 1
R ;

anditheiaboveiequationicanibeiwrittenias

n∑
i=1

[(
ρU (xi)

RρV (xi)
(1−R)i+ iτU (xi)

RτV (xi)
(1−R) + ωU (xi)

RωV (xi)
(1−R) + θU (xi)

RθV (xi)
(1−R)

) 1
R

]
i ≥ i

[
n∑
i=1

(
ρU (xi)

RρV (xi)
(1−R)i+ iτU (xi)

RτV (xi)
(1−R) + ωU (xi)

RωV (xi)
(1−R) + θU (xi)

RθV (xi)
(1−R)

)] 1
R

.

(2.1.11)

Sincei R×S
n(S−R)

< 0, therefore,ifromi(2.1.10)iandi(2.1.11), we get

ISR(U, V ) ≥ R× S

n(S −R)

[ {
aSb1−S + cSd1−S + eSf1−Si+ i(n− a− c− e)S(n− b− d− f)1−S

} 1
S

−
{
aRb1−R + cRd1−R + eRf1−Ri+ i(n− a− c− e)R(n− b− d− f)1−R

} 1
R

]
.

(2.1.12)
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Further, ifiweitakei

ψ(a, b) =
R× S

n(S −R)

[ {
aSb1−S + cSd1−S + eSf1−Si+ i(n− a− c− e)S(n− b− d− f)1−S

}
−
{
aRb1−R + cRd1−R + eRf1−Ri+ i(n− a− c− e)R(n− b− d− f)1−R

} ] ,
then

∂ψ(a, ib)

∂a
=

Ri× iS

n(S −R)


{
S
(
a
b

)S−1 − iS
(
n−a−c−e
n−b−d−f

)S−1
}

i− i

{
R
(
a
b

)R−1 −R
(
n−a−c−e
n−b−d−f

)R−1
}
 , (2.1.13)

and

∂2ψ(a, ib)

∂a2
=

Ri× iS

n(S −R)


{
S(S−1)

b

(
a
b

)S−2
i+ i S(S−1)

n−b−d−f

(
n−a−c−e
n−b−d−f

)S−2
}

−
{
R(R−1)

b

(
a
b

)R−2
i+ i R(R−1)

n−b−d−f

(
n−a−c−e
n−b−d−f

)R−2
}
 > 0.

(2.1.14)

Thisiprovesithe convexity of ψ(a, b) in a. Further, theiminimumivalue of the mea-

sureiwill be 0 for a
b
= n−a−c−e

n−b−d−f . For a = b, c = d and e = f , value of the measure

becomes 0.

Casei2: Si > i1iandi0i < iRi < i1.

Let ρU(xi)
SρV (xi)

(1−S)i+iτU(xi)
SτV (xi)

(1−S)+ωU(xi)
SωV (xi)

(1−S)+θU(xi)
SθV (xi)

(1−S) =

zi. Sinceizi < 1iandi 1
S
< 1, therefore, zii < i(zi)

1
S .

Asi R×S
n(S−R)

> 0,itherefore,

R× S

n(S −R)

n∑
i=1

[
(zi)

1
S

]
>

R× S

n(S −R)

n∑
i=1

(zi); (2.1.15)

andifori0 < R < 1,

Ri× iS

n(S −R)

n∑
i=1

[
(zi)

1
R

]
i > i

R× S

n(S −R)

n∑
i=1

(zi). (2.1.16)

Therefore, fromi(2.1.15)iandi(2.1.16), we have ISR(U, V ) > 0.

If ρU(xi) = ρV (xi),iτU(xi) = τV (xi)iandiωU(xi) = ωV (xi) in (2.1.1), weihaveiISR(U, V ) =

0.

whichiconcludes ISR(U, V ) ≥ 0.
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Similarly, the convexity of ISR(U, V ) can be done same as Casei1.

In the last,

ISR(U, V ) ≥ 0, whereiequalityiholdsionlyiwhen

ρU(xi) = ρV (xi), τU(xi) = τV (xi) for every i

and a = b, c = d and e = f , i.e., U = V . Therefore, ISR(U, V ) is a well-defined

“bi-parametric picture fuzzy discriminant measure”.”

2.2 MCDM Methodology Based on (R, S)-Norm

Picture Fuzzy Information

Inithisisection, weiintroduceitwoirevised decision-making methodologiesiwhich are based

oniVIKORiandiTOPSISitechniquesithatitakeiintoiaccountithe conceptsiofibi-parametric

pictureifuzzyiinformationimeasures.

Consider a problem of multi-criteria decision-making, where A = {A1, A2, . . . , Am}
be the set of available alternativesiandiE = {E1, E2, . . . , En} be the set of criteria. For
opinions on the availableialternatives w.r.t.eachicriterion, letiD = {D1, D2, . . . , Dl}
beitheisetiofiexperts/decision-makersiwhoiassessesithe alternativesiand giveitheir de-

cisions in terms of qualitative variables. Let Rk = (vkij), i = 1, 2, . . . ,miandij =

1, 2, . . . , n beitheiqualitativeimatrixiwhichiisigiveniconcerningiindividual expert, say

kth expert, where vkij givesitheievaluationiofialternative Ai inireferenceiwithicriterion

Cj, initheiformiofiqualitativeivariables.

Further, to find the appropriate and the most promising alternative out ofithe

m alternatives, we developed a revised methodology basedion VIKOR/TOPSIS tech-

niques that take into account the (R, S)-Norm pictureifuzzyiinformationimeasures.

To illustrateitheisuggestedimethod, weidescribeitheiprocedural stepsibyidividing them

into two stagesiasishowniin Figure 2.1.

The various mathematical procedural steps involved in the proposed methodology

is shown as under:

• Stepi1: EvaluationiofitheiCriteriaibyiExperts
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Figure 2.1: VIKORi&iTOPSIS - (R, S)-NormiPictureiFuzzyiInformationiMeasures

Iniconnectioniwithitheipictureifuzzyinumber, selectediexpertsigiveitheirivaluable

opinionsiforiindividual criteriaiwithitheihelpiofitheidefinedisetiof qualitative vari-

ables.

• Stepi2: AssessmentiofitheiExpert’siWeights

Iniaidecision-makingisituation, itiisinotedithatifiguringioutitheidecision maker’s

weightiisicrucial. Weisupposeitheimainicomponentiofiexpertiisicomputed byithe

pre-definediqualitativeitermsiandiexpressediinithe termsiofipicture fuzzy num-

bers. Analogousitoitheiformula giveniin [78], theiweightiof kth expert is com-

puted as:

ϕk =
ρk + θk

[
ρk

ρk+τk+ωk

]
l∑

k=1

ρk + θk
[

ρk
ρk+τk+ωk

] ; (2.2.1)

where
l∑

k=1

ϕk = 1 and ϕk ≥ 0 ∀ k.

• Stepi3: ComputingitheiAggregatediPictureiFuzzyiExpert Matrix

Foriaggregatingieachiofitheiexpertimatricesiintoione clusteribasedionitheiexpert’s

perception, weishallimakeiuseiofianiaverageiaggregationioperator to formulate
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theiaggregatediexpertimatrix. Further, weiapplyitheifollowingipictureifuzzy op-

eratorigiveniby iWei [77]:

R̃ = [(r̃ij)]m×n, where r̃ij is

r̃ij = PFWAϕ(v
(1)
ij , v

(2)
ij , . . . , v

(l)
ij ) =

(
1−

l∏
k=1

(1− ρij)
ϕk ,

l∏
k=1

(τij)
ϕk ,

l∏
k=1

(ωij)
ϕk

)
(2.2.2)

• Stepi4: NormalizationiofiPictureiFuzzyiExpertiMatrix

To evaluate all the criteria on a equal footing, it becomes utmost important

to normalize them before their application in the methodology. Therefore,

theiexpertimatrix R̃ = [r̃ij]m×n isitransformeditoianother expertimatrix, say,

R = [rij]m×n where rij is given by

rij = (ρij, τij, ωij) =

{
r̃ij, for benefits criteria ;

r̃cij, for cost criteria.
(2.2.3)

• Stepi5: ComputingitheiWeightsiofitheiCriterions

Itimayibeiobservedithatitheiorderiofirankingiof theialternativesiwillibe affected

by consideringidistinct criteriaiweights. Toiavoidisuchishortcomings, we com-

pute theicriteriaiweightsibyiutilizingithe (R, S)-Norm pictureifuzzyiinformation

measureiasifollows:

ϑj =
1i− iej

n−
n∑
j=1

ej

, ji = i1, 2, . . . , n; (2.2.4)

where ej =
1
m

m∑
i=1

HS
R(zij), and

HS
R(zij) =

R× S

(R− S)

n∑
i=1

1

n

 (ρU (xi)S + τU (xi)
S + ωU (xi)

S + θU (xi)
S
) 1

S

−
(
ρU (xi)

R + τU (xi)
R + ωU (xi)

R + θU (xi)
R
) 1

R


is the (R,S) pictureifuzzyientropy for zij = (pij , qij).

• Stepi6: Evaluationiof “Best/Worst Solution”

In this step, “the best and the worst” solutioniareicomputediinitermsiofipictureifuzzy
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ideal isolution r+j andipictureifuzzyinegativeiidealisolution r−j , as follows:

r+j =


max
i
ρij , for benefit criterion Cj ,

min
i
τij , for cost criterion Cj ,

min
i
ωij , for cost criterion Cj ;

(2.2.5)

and

r−j =


min
i
ρij , for benefit criterion Cj ,

max
i
τij , for cost criterion Cj ,

max
i
ωij , for cost criterion Cj .

(2.2.6)

Remarks: Inistagei1, theiabove-mentionedisixistepsiremainitheisameiforiboth tech-

niques. Now, basedionitheichoiceiofitheiindividualiorianyiorganization, we may choose

toigoieitheriforitheipictureifuzzyiVIKOR oripictureifuzzyiTOPSISimethods. The pro-

ceduralistepsiofitheitwoimethodsihaveibeen giveniinitwoipartsiasifollows:

— PictureiFuzzyiVIKORiMethod

Withitheipresumptionithatiaicompromiseiisiacceptable, Opricovic [33] createdione of

the keyiMCDMimethodologies, theiVIKOR (VIseKriterijumska Optimizacija I Kom-

promisno Resenje), toiaddressidecisionimakingiproblemsiwithiopposingicriteria. This

approachiisioneiofitheiMCDMitechniquesithat isifrequentlyiusediiniliterature to com-

promiseisolutions thatisimultaneouslyisatisfyiallitheiincompatibleicriteria. In addi-

tionitoitheicalculationsiforitheisixistepsimentioned above, iperformitheifollowing ad-

ditionalicomputationsitoicomplete theidecision-makingiprocessibelow:

• Stepi7: NecessaryiMeasuresiforiallitheialternatives

Here, weicomputeiGroup Utility Si,iIndividual Regret Ri &Compromise Mea-

sure Qi ofieach Ai byimakingiuseiofitheiconceptiof (R,S)-Norm pictureifuzzy dis-

criminantimeasure. Further, weiuseitheifollowingiformulaitoiobtainitheseimeasures for

choicesiAi (i = 1, 2, . . . ,m) as under:

Si =
n∑
j=1

ϑj
ISR
(
r+j , rij

)
ISR

(
r+j , r

−
j

) ; (2.2.7)

Ri = max
1≤j≤n

ϑj
ISR
(
r+j , rij

)
ISR

(
r+j , r

−
j

) ; (2.2.8)
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and

Qi = y

(
Si −min

i
Si

)
(
max
i
Si −min

i
Si

) i+ i(1− y)

(
Ri −min

i
Ri

)
(
max
i
Ri −min

i
Ri

) . (2.2.9)

Here, y and 1− y represents the weights ofitheimaximumigroupiutilityiapproachiand

the weight ofiindividualiregretirespectively.

• Stepi8: OrderingiofitheiAlternatives

Next, the ranking of the corresponding alternatives canibeidoneibasedionitheivalues

of Si, Ri, Qi initheidecreasingiorder.

• Stepi9: ComputingitheiCompromiseiSolution

Toihaveitheioptimaliandiuniqueisolution, theiavailable alternativesimustisatisfyithe fol-

lowingiconstraints:

– C1- AdvantageiwithinitheiRangeiofiAcceptability

Q(A(2))i− iQ(A(1)) ≥
1

m− 1
, (2.2.10)

where A(1) and A(2) areitheifirstitwoioptimalialternativesiwhichiareicomputed

from theimeasureiofiQ.

– C2- StabilityiwhichiisiAcceptableiiniDecision-Making

ItimayibeinotedithatiA(1) mustibeitheitopirankedibyiSi or/and Ri. For a de-

cisioniproblem, theicompromiseisolutioniisistableiandimayibeithe ifixedihighest

utility (for y > 0.5) or unanimousi(for y > 0.5) oriwithiprohibitioni(for y < 0.5).

Additionally, ifitheiconstraint C1 isinotifulfilled, thenitheihighestivalueiofiB should

be determinediandiobtainedifromitheiexpression “Q(A(B))−Q(A(1)) ≤ 1
m−1 ;” where

B denotesitheirandomipositioniinitheirankingiofitheialternatives toitheimostisuitable

one. Asiairesult, forisome ii = i1, 2, ...,m, theialternativeA(i) isitheiacceptableichoice.

— PictureiFuzzyiTOPSISiMethod

The “TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution)”

methodiforiMCDMiwasidevelopedibyiHwangiandiYoon [32] whichihasibeen extensively

applied. The basiciiunderlyingiistrategyiisitoipickianialternative withithe “minimum

geometric distance” fromithe “positiveiidealisolution (PIS)” andithe “maximum geo-

metric distance” fromithe “negative ideal solution (NIS)”.
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Inicontinuationiofitheiabove-mentionedisixistepsiofistage 1, weicarryioutisome more

computationsitoicompleteitheidecision processiasibelow:

• Stepi7: Calculationiof “(R,S)-NormiDiscriminantiMeasure”

Weicomputeitheidiscriminantimeasuresiofitheialternatives Ai’s ∀ i = 1, 2, . . . ,m from

r+j and r−j respectivelyiusingitheidiscriminantimeasure (2.1.1).

• Stepi8: Computationiof ”Coefficient of Relative Closeness”

Weicalculateithe “coefficient of relative closeness”, i.e, CRCi’s , (ii = i1, 2, . . .m) as

CRCi =
ISR(Ai, r

−
j )

ISR(Ai, r
+
j )i+ iISR(Ai, r

−
j )
. (2.2.11)

• Stepi9. OrderingiofiAlternatives

Thus, theiorderingiofitheialternativesicanibeidoneibyilistingithe obtainediscoreiof the

coefficientiofirelativeiclosenessiin theiincreasingiorder i.e., theimaximumiscoreiwould

representitheioptimalialternative.

Hence, weihaveisystematicallyiprovidedinoveliVIKORiandiTOPSIS decision-making

approaches withitheiincorporationiofitheiproposed (R, S)-Normipictureifuzzy informa-

tion measures.

2.3 MethodologiesiforiHydrogeniFuel Cell Technol-

ogyiAssessment

In this section, we incorporate the (R, S)-Norm picture fuzzy information measures in

VIKOR/TOPSIS algorithms. The HFCs under consideration must have beenichosen

after careful consideration and expert consultation. Based on the expert’s judgment

and the body of relevant literature, all factors influencing the cell assessment have

been established. The alternatives which are to be assessed include household electric-

heat composite systems [79], portable fuel cell power facilities [80], distributive fuel

cell power generation systems [79], [81] and fuel cell backup power systems [82],

[83], [79]. These are the five available HFCs, say, H1, H2, H3, H4&H5, which are

to be assessed in solving this problem. These HFCs have been thoroughly assessed

referring to the four major criteria and 19 sub-criteria (Refer Table 2.1) and shown in
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Table 2.1: StudyioniClassificationiofiAssessmentiCriteriaiiniHFCiTechnology

“Major Criteria” “Sub-criteria” “Existing Literature” “Classification”

Acquisition cost (E1) [84] Cost

Economic Cost of use (E2) [85] Cost

Logistics costs (E3) [86] Cost

Quantity discount (E4) [87][88] Benefit

Global market demand (E5) [89] Benefit

Energy efficiency (E6) [90] Benefit

Environment Carbon-dioxide emission (E7) [91] Benefit

Geographical location (E8) [92][93] Benefit

Environment-friendlily (E9) Benefit

Safeguards (E10) [94] Benefit

Society Use environment maturity (E11) [94] Benefit

Social acceptability (E12) [95] Benefit

Fulfilling the urgent requirements (E13) [96] [97] Benefit

Information disclosure (E14) [98] [99] Benefit

Reliability (E15) [100] Benefit

Technology Capability System Performance (E16) [89] Benefit

Product maturity (E17) [95] Benefit

Product development potential (E18) [95] Benefit

Domestic technological ability (E19) [80] Benefit

Figure 2.2. Now, this model under the expert’s opinion and criterion weights using

the picture fuzzy orientation to VIKOR/TOPSIS technique, problem of choosing the

best potential hydrogen fuel cell from the set of possibilities is being analytically

solved.

Steps to Solve the Selection Problem Procedurally:

• Step 1. The decision-makers provided qualitative computations of the 19 cri-

teria that are under consideration (Table 2.5) and converted themiinto picture

fuzzy information by making use of pre-defined numerical ranges on the picture

fuzzy number scale provided in Table 2.2. Given Table 2.3 and the five avail-

able hydrogen fuel cells H1, H2, H3, H4&H5, the experts define the linguistic

information for each of the 19 criteria (Table 2.4) and has been convertediinto

picture fuzzy information.

• Stepi2. Further, weidiscussitheisignificanceiofitheiexpert’siopinioniby making

use ofiqualitative variablesiwhich are convertediinto picture fuzzyiinformation

using the definediquantitativeiranking in terms of picture fuzzy numbers. These
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Hydrogen Fuel Cell Criteria’s Assessment 

Economic Environment  Society 
Technology 

Capability 

Acquisition cost 

Cost of use 

Logistics costs 

Quantity discount 

Global market demand 

Energy efficiency 

Carbon-dioxide emission 

Geographical location 

Environment-friendally 

Safeguards 

Use environment maturity 

Social acceptability 

Fulfilling the urgent 
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Information disclosure 

Reliability 

System performance 

Product maturity 

Product development 

potential 

Domestic 
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Distributed Fuel 

Cell Power 

Generation 

Systems (H4) 

Fuel Cell Vehicles 

(H2) 

Portable Fuel Cell 

Power Facilities 

(H3) 

Distributed Fuel Cell 

Power Generation 

Systems  

(H4) 

Fuel Cell Backup 

Power Systems 

(H5) 

Distributed Fuel 

Cell Power 

Generation Systems 

(H1) 

Household Fuel Cell 

Thermoelectric 

Composite Systems 

(H1) 

Figure 2.2: HydrogeniFueliCelliCriteria’siIndicators

Table 2.2: Qualitative variables for Ranking the Weightage of Criteria and Decision

Makers

QualitativeiTerm PFNs

“Extremely Important (EI)” (0.83,i0.04,i0.11)

“Very Important (VI)” (0.60,i0.05,i0.21)

“Important (I)” (0.53,i0.12,i0.25)

“Less Important(LI)” (0.45,i0.15,i0.30)

“Very Less Important (VLI)” (0.30,i0.25,i0.35)

Table 2.3: Qualitativeivariablesiforicomputingitheiperformanceiofialternatives

QualitativeiTerm PFNs

“Absolutely High (AH)” (0.83,i0.04,i0.11)

“Very Very High (VVH)” (0.75,i0.05,i0.15)

“Very High (VH)” (0.62,i0.1,i0.2)

“High (H)” (0.55,i0.11,i0.25)

“Medium High (MH)” (0.50,i0.15,i0.30)

“Medium (M)” (0.45,i0.20,i0.35)

“Medium Low (ML)” (0.40,i0.22,i0.37)

“Low (L)” (0.35,i0.25,i0.40)

“Very Low (VL)” (0.25,i0.30,i0.43)

“Very Very Low (VVL)” (0.15,i0.35,i0.48)
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Table 2.4: QualitativeiComputationiforiRankingiofitheiAlternativesibyiExperts
H1 H2 H3 H4 H5

E1 (H, iMiH, iM) (H, iMiH, iMiL) (MH, iH, iV H) (V iV iH, iV iV iH, iH) (M, iV H, iH)

E2 (MiH, iM, iV iL) (H, iV iH, iV iH) (V iH, iMiH, iMiH) (V H, iV H, iV H) (V iH, iM, iMiH)

E3 (V iL, iL, iMiL) (MiL, iL, iML) (H, iM, iV iL) (V iH, iV iL, iMiL) (V iV iL, iV iL, iL)

E4 (L, iM, iM) (V iL, iML, iMiL) (MiH, iV iL, iMiL) (V iH, iH, iMiL) (MiL, iV iL, iV iV iL)

E5 (V iL, iV iL, iV iL) (MiL, iL, iL) (V iH, iM, iMiL) (V iH, iV iV iH, iV iV iH) (L, iV iL, iMiL)

E6 (V iV iH, iMiH, iV iH) (H, iL, iMiL) (MiL, iMiL, iMH) (V iL, iH, iL) (V iV iH, iH, iL)

E7 (H, iM, iMiH) (MiH, iMiL, iV iL) (MiL, iL, iV iL) (MH, iL, iM) (V iH, iM, iL)

E8 (MiH, iV iH, iV iL) (MiL, iiL, iL) (V iH, iMiL, iL) (V iH, iMiH, iV iL) (V iH, iL, iML)

E9 (H, iMiL, iL) (L, iV iV iL, iML) (L, iMiL, iV iV iL) (V H, iMH, iL) (V iH, iMiL, iL)

E10 (V iV iH, iMiH, iH) (H, iMiL, iL) (H, iL, iMiL) (V iH, iH, iL) (V iV iH, iMiH, iMH)

E11 (MiL, iL, iV iV iL) (L, iV iV iL, iL) (V iH, iMiL, iL) (V iH, iL, iMiL) (H, iV iL, iMiH)

E12 (V iV iH, iMiH, iMiL) (MiH, iMiL, iV iL) (MiH, iV iL, iMiL) (MiH, iL, iMiL) (V iV iH, iH, iH)

E13 (H, iMiH, iL) (L, iMiL, iV iL) (H, iV iH, iMiL) (H, iML, iV iH) (V iH, iMiH, iV iH)

E14 (V iH, iH, iMiL) (MiH, iM, iV iL) (MiL, iL, iV iV iL) (H, iV iL, iMiL) (V iV iH, iMiL, iL)

E15 (MiH, iMiL, iL) (MiH, iL, iMiL) (H, iMiL, iL) (V iH, iH, iL) (V iH, iMiH, iL)

E16 (MiH, iH, iL) (MiL, iMiL, iL) (MiH, iL, iH) (L, iL, iV iL) (H, iMiH, iM)

E17 (V iL, iL, iL) (MiL, iL, iV iL) (V iH, iH, iM) (H, iV iH, iMiL) (V iL, iMiL, iMH)

E18 (V iH, iMiL, iL) (H, iH, iV iL) (V iH, iMiL, iH) (V iV iH, iH, iMiH) (V iV iH, iH, iMiH)

E19 (H, iV iL, iL) (M, iV iL, iMiL) (H, iMiH, iL) (V iL, iV iV iL, iMiL) (H, iH, iMiH)

Table 2.5: QualitativeiComputationiforiRankingitheiCriterions
DM1 DM2 DM3

E1 V iH MiH H

E2 MiH MiL L

E3 V iV iH M MiL

E4 H V iH L

E5 MiH MiH V iH

E6 MiL L V iL

E7 V iV iL H MiL

E8 H V iL V iV iL

E9 V iH H H

E10 M V iL V iL

E11 V iL MiH V iH

E12 MiH M H

E13 MiL L H

E14 V iL L L

E15 MiH M L

E16 M H V iV iH

E17 M MiH V iV iL

E18 MiH M MiH

E19 L V iL L
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valuesiareibeing tabulated in Table 2.2. Then,itheiexpert’siweightsiare com-

putediusingiequation (2.2.1), anditheiresultsiareisummarizediiniTable 2.6.

Table 2.6: ExpertsiWeights
DiM1 DiM2 DiM3

“Qualitative Variable” ViI I ViViI

“Weight” 0.329621 0.279867 0.390512

• Stepi3. Inithisistep, weiialliexpertimatricesiacquiredifromitheivarious experts

intoiaisingleiexpertimatrixi(shown in Table 2.7) usingithe pictureifuzzyiweighted

averagingiaggregationioperator.

Table 2.7: AggregatediPictureiFuzzyiExpertiMatrix

H1 H2 H3 H4 H5

E1 (0.499,i0.152,i0.300) (0.481,i0.157,i0.307) (0.564,i0.117,i0.243) (0.685,i0.068,i0.183,) (0.541,i0.130,i0.262)

E2 (0.398,i0.213,i0.361) (0.598,i0.103,i0.215) (0.543,i0.131,i0.262) (0.620,i0.100,i0.200) (0.531,i0.142,i0.274)

E3 (0.339,i0.252,i0.397) (0.386,i0.228,i0.378) (0.419,i0.192,i0.339) (0.451,i0.185,i0.315) (0.261,i0.294,i0.433)

E4 (0.419,i0.215,i0.366) (0.354,i0.244,i0.389) (0.399,i0.211,i0.360) (0.524,i0.140,i0.271) (0.268,i0.288,i0.427)

E5 (0.250,i0.300,i0.430) (0.367,i0.240,i0.390) (0.496,i0.165,i0.297) (0.713,i0.063,i0.165) (0.344,i0.250,i0.396)

E6 (0.643,i0.089,i0.204) (0.442,i0.181,i0.332) (0.441,i0.189,i0.341) (0.385,i0.211,i0.359) (0.572,i0.117,i0.254)

E7 (0.504,i0.147,i0.295) (0.383,i0.219,i0.382) (0.330,i0.257,i0.401) (0.442,i0.194,i0.345) (0.480,i0.174,i0.307)

E8 (0.458,i0.176,i0.308) (0.341,i0.252,i0.400) (0.467,i0.178,i0.311) (0.465,i0.172,i0.302) (0.472,i0.176,i0.309)

E9 (0.437,i0.184,i0.335) (0.321,i0.261,i0.408) (0.294,i0.275,i0.420) (0.494,i0.160,i0.294) (0.467,i0.178,i0.311)

E10 (0.573,i0.121,i0.260) (0.437,i0.184,i0.335) (0.442,i0.181,i0.332) (0.509,i0.147,i0.279) (0.602,i0.104,i0.239)

E11 (0.297,i0.273,i0.419) (0.299,i0.275,i0.421) (0.467,i0.178,i0.311) (0.472,i0.176,i0.309) (0.457,i0.164,i0.312)

E12 (0.573,i0.121,i0.260) (0.383,i0.219,i0.366) (0.399,i0.211,i0.360) (0.422,i0.201,i0.353) (0.629,i0.181,i0.211)

E13 (0.465,i0.165,i0.316) (0.328,i0.259,i0.402) (0.520,i0.140,i0.274) (0.543,i0.129,i0.256) (0.590,i0.112,i0.224)

E14 (0.524,i0.140,i0.271) (0.398,i0.213,i0.360) (0.297,i0.273,i0.402) (0.419,i0.191,i0.340) (0.536,i0.141,i0.283)

E15 (0.417,i0.204,i0.356) (0.422,i0.201,i0.353) (0.437,i0.184,i0.335) (0.509,i0.147,i0.279) (0.494,i0.160,i0.294)

E16 (0.462,i0.168,i0.319) (0.381,i0.231,i0.381) (0.483,i0.153,i0.303) (0.313,i0.268,i0.411) (0.499,i0.151,i0.300)

E17 (0.319,i0.265,i0.410) (0.330,i0.257,i0.401) (0.540,i0.135,i0.265) (0.520,i0.140,i0.274) (0.399,i0.210,i0.358)

E18 (0.467,i0.178,i0.311) (0.451,i0.163,i0.309) (0.539,i0.129,i0.259) (0.614,i0.096,i0.227) (0.614,i0.096,i0.227)

E19 (0.366,i0.215,i0.360) (0.379,i0.232,i0.379) (0.437,i0.184,i0.335) (0.288,i0.277,i0.418) (0.531,i0.124,i0.268)

• Stepi4. Sinceitheifirstithreeiattributesiareicostitype, therefore the normaliza-

tioniofithe above-aggregatedipictureifuzzyiexpertimatrix can be doneibyiusing

equation (3.2.2), andithe resultinginormalizedimatrixiisishowniin Table 2.8.

• Stepi5. Theicriteria’siweightsihaveibeenicomputedibyimaking use of (R, S)-

Norm pictureifuzzyientropyimeasureiwhichiisigiven by [76] (here are 3 experts,

i.e., n = 3) and theiresultingivaluesiareishowniin Table 2.9.
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Table 2.8: NormalizediAggregatediPictureiFuzzyiExpertiMatrix

H1 H2 H3 H4 H5

E1 (0.300,i0.152,i0.499) (0.307,i0.157,i0.481) (0.243,i0.117,i0.564) (0.183,i0.068,i0.685,) (0.262,i0.130,i0.541)

E2 (0.361,i0.213,i0.398) (0.215,i0.103,i0.598) (0.262,i0.131,i0.543) (0.200,i0.100,i0.620) (0.274,i0.142,i0.531)

E3 (0.397,i0.252,i0.339) (0.378,i0.228,i0.386) (0.339,i0.192,i0.419) (0.315,i0.185,i0.451) (0.433,i0.294,i0.261)

E4 (0.419,i0.215,i0.366) (0.354,i0.244,i0.389) (0.399,i0.211,i0.360) (0.524,i0.140,i0.271) (0.268,i0.288,i0.427)

E5 (0.250,i0.300,i0.430) (0.367,i0.240,i0.390) (0.496,i0.165,i0.297) (0.713,i0.063,i0.165) (0.344,i0.250,i0.396)

E6 (0.643,i0.089,i0.204) (0.442,i0.181,i0.332) (0.441,i0.189,i0.341) (0.385,i0.211,i0.359) (0.572,i0.117,i0.254)

E7 (0.504,i0.147,i0.295) (0.383,i0.219,i0.382) (0.330,i0.257,i0.401) (0.442,i0.194,i0.345) (0.480,i0.174,i0.307)

E8 (0.458,i0.176,i0.308) (0.341,i0.252,i0.400) (0.467,i0.178,i0.311) (0.465,i0.172,i0.302) (0.472,i0.176,i0.309)

E9 (0.437,i0.184,i0.335) (0.321,i0.261,i0.408) (0.294,i0.275,i0.420) (0.494,i0.160,i0.294) (0.467,i0.178,i0.311)

E10 (0.573,i0.121,i0.260) (0.437,i0.184,i0.335) (0.442,i0.181,i0.332) (0.509,i0.147,i0.279) (0.602,i0.104,i0.239)

E11 (0.297,i0.273,i0.419) (0.299,i0.275,i0.421) (0.467,i0.178,i0.311) (0.472,i0.176,i0.309) (0.457,i0.164,i0.312)

E12 (0.573,i0.121,i0.260) (0.383,i0.219,i0.366) (0.399,i0.211,i0.360) (0.422,i0.201,i0.353) (0.629,i0.181,i0.211)

E13 (0.465,i0.165i0.316) (0.328,i0.259,i0.402) (0.520,i0.140,i0.274) (0.543,i0.129,i0.256) (0.590,i0.112,i0.224)

E14 (0.524,i0.140,i0.271) (0.398,i0.213,i0.360) (0.297,i0.273,i0.402) (0.419,i0.191i0.340) (0.536,i0.141,i0.283)

E15 (0.417,i0.204,i0.356) (0.422,i0.201,i0.353) (0.437,i0.184,i0.335) (0.509,i0.147,i0.279) (0.494,i0.160,i0.294)

E16 (0.462,i0.168,i0.319) (0.381,i0.231,i0.381) (0.483,i0.153,i0.303) (0.313,i0.268,i0.411) (0.499,i0.151,i0.300)

E17 (0.319,i0.265,i0.410) (0.330,i0.257,i0.401) (0.540,i0.135,i0.265) (0.520,i0.140,i0.274) (0.399,i0.210,i0.358)

E18 (0.467,i0.178,i0.311) (0.451,i0.163,i0.309) (0.539,i0.129,i0.259) (0.614,i0.096,i0.227) (0.614,i0.096,i0.227)

E19 (0.366,i0.215,i0.360) (0.379,i0.232,i0.379) (0.437,i0.184,i0.335) (0.288,i0.277,i0.418) (0.531,i0.124,i0.268)

Table 2.9: ComputationiofitheiCriteria’siWeights
Criteria Weights (ϑj)

E1 0.0213

E2 0.0344

E3 0.0432

E4 0.0309

E5 0.0215

E6 0.0353

E7 0.0243

E8 0.0209

E9 0.0166

E10 0.0264

E11 0.0166

E12 0.0294

E13 0.0224

E14 0.0274

E15 0.0257

E16 0.0221

E17 0.0193

E18 0.0171

E19 0.0226
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Table 2.10: DeterminationiofiCompromiseiMeasureiforiEachiHFC
Si Ri Qi

H1 0.181 0.087 0.164

H2 0.550 0.211 0.948

H3 0.484 0.233 0.914

H4 0.502 0.187 0.827

H5 0.165 0.028 0.000

Ranking Order S5 > S1 > S3 > S4 > S2 R5 > R1 > R4 > R2 > R3 Q5 > Q1 > Q4 > Q3 > Q2

• Stepi6. Inithisistep, theicalculatedivalues of “picture fuzzy positive ideal solu-

tion” r+j and “picture fuzzy negative ideal solution” r−j are as follows:

r+j = {(0.481, 0.157, 0.307), (0.398, 0.213, 0.361), (0.261, 0.294, 0.433), (0.524, 0.140, 0.271),

(0.713, 0.063, 0.165), (0.642, 0.089, 0.204), (0.504, 0.148, 0.295), (0.472, 0.172, 0.302),

(0.494, 0.160, 0.294), (0.602, 0.104, 0.239), (0.472, 0.164, 0.309), (0.630, 0.121, 0.211),

(0.590, 0.112, 0.224), (0.536, 0.140, 0.271), (0.509, 0.147, 0.280), (0.499, 0.151, 0.300),

(0.540, 0.135, 0.265), (0.614, 0.096, 0.227), (0.531, 0.124, 0.268)}; (2.3.1)

and

r−j = {(0.685, 0.068, 0.183), (0.620, 0.100, 0.200), (0.451, 0.185, 0.315), (0.268, 0.288, 0.427),

(0.250, 0.300, 0.397), (0.385, 0.211, 0.366), (0.330, 0.257, 0.430), (0.341, 0.252, 0.398),

(0.294, 0.275, 0.420), (0.437, 0.184, 0.335), (0.297, 0.275, 0.421), (0.383, 0.219, 0.366),

(0.328, 0.259, 0.419), (0.297, 0.303, 0.419), (0.417, 0.204, 0.353), (0.313, 0.268, 0.411),

(0.319, 0.265, 0.401), (0.451, 0.178, 0.319), (0.288, 0.277, 0.418)}; (2.3.2)

Remark: Theiabove-mentionedistepsicoveritheifirst 6 commonistagesiofithe

proposeditechnique. Now, weigoiforitheicomputationsiinitwoistages - the pic-

tureifuzzyiVIKORimethodiandithe pictureifuzzyiTOPSISimethod.

— PictureiFuzzy “VIKOR” Method

• Stepi7. Nowibyimakingiuseiofiequations (2.2.7), (2.2.8) and (2.2.9), we com-

pute theivaluesiofiSi, Ri and Qiirespectively. To compute theivaluesiofithe com-

promiseimeasure, weitake y = 0.5. TheicalculatedivaluesiareishowniinitheiTable

2.10.

• Stepi8. Basedionitheivaluesiobtainedifrom Si, Ri and Qi initheiaboveistep,

theiratingiresultsiareifound toibeiasifollows:

S5 > S1 > S3 > S4 > S2; R5 > R1 > R4 > R2 > R3; Q5 > Q1 > Q4 > Q3 > Q2.
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Table 2.11: AnalysisiofiSensitivityiforiDifferentiValuesiofiy
H1 H2 H3 H4 H5

Si 0.181 0.550 0.484 0.502 0.165

Ri 0.087 0.211 0.233 0.187 0.028

Qi (yi = i0.0) 0.28746 0.89589 1.0000 0.77753 0.0

Qi (yi = i0.1) 0.26282 0.90630 0.98284 0.78747 0.0

Qi (yi = i0.2) 0.23818 0.91671 0.96569 0.79742 0.0

Qi (yi = i0.3) 0.21354 0.92712 0.94853 0.80736 0.0

Qi (yi = i0.4) 0.18889 0.93753 0.93137 0.8173 0.0

Qi (yi = i0.5) 0.16425 0.94794 0.91421 0.82724 0.0

Qi (yi = i0.6) 0.13961 0.95836 0.89706 0.83718 0.0

Qi (yi = i0.7) 0.11497 0.96877 0.8799 0.84712 0.0

Qi (yi = i0.8) 0.09033 0.97918 0.86274 0.85706 0.0

Qi (yi = i0.9) 0.06569 0.98959 0.84558 0.8670 0.0

Qi (yi = i1.0) 0.04105 1.0000 82843 0.87694 0.0

• Stepi9. Basedionitheivaluesiobtainediinitheidescendingiorder ofithe Qi’s, the

HFC H5 isiconsidereditoibeitheioptimalialternative. Since

Q(A(2))−Q(A(1)) = 0.164 <
1

5− 1
= 0.25,

hence, the HFC H5 satisfiesitheicondition C2. Therefore, theiHFC H5 isithe

optimalichoice.

DiscussioniOveriCompromiseiSolution’siSensitivity:

Basedionitheiproposedimethodologyiandicomputationaliprocedure, we present

the followingianalysisiinicontextiwithithe sensitivity:

– Here, weitakeidifferentipossibleivaluesiofiweights y rangingifromi0itoi1ito

maximizeitheigroupiutility andiprepareitheisensitivityianalysisichart con-

cerningithe compromiseisolution.

– Itimayialsoibeinotedithatitheivaluesiofithe parametersiareialso varying to

understanditheisensitivity issue.

– TheicomputedivaluesihaveibeenitabulatediiniTable 2.11 and presentediwith

theihelpiofiFigure 2.3 and Figure 2.4.

BasedionitheiresultsiobtainediiniTable 2.11, itiisitoibeiconcludedithat the fuel

cell H1iisitheimostisuitableiHFCiwhichicanialso beiviewedifromiFigure 2.5.
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Figure 2.3: SensitivityiAnalysisiofiAlternativesiw.r.t.iMeasures
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Figure 2.4: SensitivityiAnalysisiofiCompromiseiMeasure
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Figure 2.5: OrderiofiRankingiw.r.t.iWeightsiofiStabilityi(y)

— PictureiFuzzy “TOPSIS” Method

• Stepi7. The different values of the discriminant measures of Hi’s ∀ i =

1, 2, 3, 4, 5ifromir+j iandir
−
j respectivelyihaveibeenicomputedibyimakingiuse of the

equationi(2.1.1) anditabulatediin Table 2.12.

Table 2.12: ComputationiofiDiscriminantiMeasureibetweeniH
′
isiandir

+
j /r

−
j

ISR(Hi, r
+
j ) ISR(Hi, r

−
j )

H1 0.3785 0.4531

H2 0.4108 0.3891

H3 0.3878 0.4370

H4 0.3908 0.4409

H5 0.3742 0.4639

• Stepi8. Finally, weievaluateitheivaluesiofithe “coefficient of relative closeness”

withitheihelpiofiequation (2.2.11) and shown in Table 2.13.

• Stepi9. Now, basedionitheievaluatedivaluesiofithe “coefficient of relative close-

ness”, theiorderiofiprioritizationiforiHFCsiisilistediasifollows:

H5 > H1 > H4 > H3 > H2.
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Table 2.13: Relative Closeness’s Coefficient
Sites Closeness Index

H1 0.5448

H2 0.4864

H3 0.5298

H4 0.5301

H5 0.5535

Therefore, basedionithe “coefficient of relative closeness”, theiHFCH5 isioptimal

foriuse.

Remark: Itimayibeinotedithatiunderitheisystematiciprocess of prioritization with

theihelpiofitheiproposedimethodologies ofi(R, S)-Normipictureifuzzyiinformation mea-

suresisyncediwithiVIKOR andiTOPSISitechniques, both the methods work consis-

tentlyiandiappropriately. Basedionitheinumericalivaluesiundericonsideration, the fuel

cellipoweribackupisystem H5 wasifounditoibeitheibestisolutionibyibothimethods.

The (R, S)-Norm discriminant measure is designed to address issues of uncertainty

and imprecision more effectively than TOPSIS and VIKOR. Empirical results from

simulations using benchmark datasets in supply chain management indicate higher

consistency in ranking when handling data with significant overlaps or missing values.

Compared to TOPSIS and VIKOR, the (R, S)-Norm reduces the number of iterative

calculations. For instance, in a dataset with many alternatives and criteria, the

(R, S)-Norm achieved decision results faster due to its simplified normalization and

aggregation mechanisms.

2.4 ComparativeiAnalysisiandiAdvantages

Here,itheiadvantageousifeaturesiofitheipresentedipictureifuzzy VIKOR/TOPSIS tech-

niquesiareilistedialongiwithicomparativeiremarks inicontrast withithe existing tech-

niques. Basedionitheiobtainediresultsiandimotivationibehindithe proposed method-

ologies, the followingiremarksiareibeingilisted:

• The overallicomputationalianalysisiincorporatingithe (R, S)-Norm picture in-

formation measures (entropy/discriminant measure) providesiaiwider/broader
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coverageiofitheiimpreciseiinformationiinitheifulfillmentiof the requirements, as

well as theiissueiofiinformationiloss, hasibeenigreatlyireduced inithe suggested

approaches with theiinvolvementiofitheitwoiimportantiuncertaintyicomponents,

i.e., degreeiofiabstainiandidegreeiofirefusal. Also, withitheiparametersiRiandiS,

weigainiflexibilityiinitheicomputationsiforibetteriandioptimal results.

• Theiproposedibi-parametriciinformationimeasure includes the idea of picture

fuzzyisetsiwhileimanyiresearchersihaveiapplied FSs/IFSs/PyFSs in which the

degreeiofiabstainiandirefusal areimissing, whichimayihaveiairiskiof information

loss. Asimentionediinitheisectioniofitheiintroduction, picture fuzzyisetsihave a

greater rangeioficoverageifor inaccurateiandimissingiinformation.

• Toihaveicompleteiand precise decisions for the multi-criteria problems under

consideration, weihaveiproperlyiassignedithe expert’s weights in devising the

proposeditechniquesiforitheioptimalisolution, while Juli et al. [101] implemented

the pictureifuzzyiTOPSISiin riskimanagementiproblemsiwithouticonsideringithe

expert’siweights. Also, Boran et al. [78] applieditheiTOPSISiiniaistraightiwayiin

group decision-makingiproblems.

• Theiabilityitoiproduceia compromise solutionithat maximizesitheigroup utility

whileiminimizingiindividualiregret isioneiofitheikey advantages of the picture

fuzzy VIKORimethod. Inicomparisonito the ideal solution, the compromise so-

lutionihasibeenifoundibyiusingithe modifiediVIKORiapproachiwhichiisithe op-

timalione.

• Theiideaiofipictureifuzzyinumbersicaniiused toihandleitheiambiguous and insuf-

ficientiinformationithat caniariseiiniMCDMiproblems. Theiuseiofithe picture

fuzzyinumberiisidetermined toibeimoreisuitedisinceitheiinputiparameters, such

asitheiexpert’siweights, theiweightsiassigneditoitheicriterion, selectioniof alter-

nativesimayihaveisomeidegreeiofiextra uncertaintyiwhichiisieasilyicovered by the

degreeiof abstainiandirefusal.

• Itimayibeiobservedithatitheimainicomponentsiof aniMCDMitechnique are the

criterion’siweights, theiexpert’siweights, anditheicomputationiofitheiavailable al-

ternativesiusing theiestablishedicriteria. Hence, anyinoveliMCDM technique
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Table 2.14: ComparisoniwithitheiExistingiTechniques
“Research Articles” “Expert’s

Weightage”

“Criterion’s

Weight”

“Qualitative

Vari-

ables”

“Entropy and

Discriminant

Measure”

“Assessment In-

formation of Al-

ternatives”

Kayai&iKahraman

[102]

Taken into ac-

count

Partly

Known

✓ × “Fuzzy Set”

Kahramani&iKaya

[103]

Taken into ac-

count

Partly

Known

✓ × “Fuzzy Set”

Mousaviietial. [104] Calculated Totally Un-

known

✓ × “Hesitant Fuzzy

Set”

Mishraietial. [105] Taken into ac-

count

Partly

Known

✓ Discriminant

Measure

“Intuitionistic

Fuzzy Set”

Schiteaietial. [106] Calculated Totally Un-

known

✓ × “Intuitionistic

Fuzzy Set”

Alipourietial. [86] Calculated Totally Un-

known

✓ Entropy Mea-

sure

“Pythagorean

Fuzzy Set”

ProposediMethods Calculated Totally Un-

known

✓ Entropy and

Discriminant

Measure

“Picture Fuzzy

Set”

Table 2.15: ComparativeiAnalysisiwithitheiVariousiExistingiMCDMiMethods
“WASPAS”

[107]

“SWARA-

COPRAS”

[86]

“Fuzzy

MCDM”

[80]

“Proposed

VIKOR”

“Proposed

TPOSIS”

H1 2 2 2 2 2

H2 5 5 5 5 5

H3 4 4 4 4 4

H4 3 3 3 3 3

H5 1 1 1 1 1

stressesitheseimentionedicharacteristics. Here, weicompareiouriproposed tech-

niqueialongiwithiits advantagesibasedion the above-mentioned characteristics

withivarious existingitechniquesiinitheiliteratureiasishowniiniTable 2.14.

• TheifinaliorderiofirankingsiforitheipotentialiHFCs thatihaveibeen the subject of

recentistudiesiby a varietyiofischolarsiareicompilediandipresentediiniTable 2.15,

whichidemonstratesitheisharpiconsistencyiofitheisuggestedimethodology. The re-

sultsiareistatisticallyicomparable, theiproposed techniquesiareidistinctifromithe

otheritechniquesidescribed initheiliterature.

• Itimayialsoibeinotedithatitheiqualitativeidata usediinitheipresentiworkiis iden-

ticalitoithe dataiinitheistudy [80] and [86]. Theiqualitativeidataihasibeen incor-

poratediwithithe simpleifuzzy/Pythagoreanifuzzyiinformationiand conjunction
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withisome otheriMCDMimethodologies. Theiframedimodeliisifollowing [107] to

haveiaivalidicomparison. Onithe other hand, the proposed studyiutilizesithe

pictureifuzzyisetiwithitheimodified MCDM techniques of VIKOR/TOPSIS. To

have a validicomparisoniwe should take the sameiinformativeidataiotherwise

comparingidistinctidataiproblems hasinoimeaning, anditheiresultsiare exists not

consistent.

• Theiapplicationiofitheiproposeditechnique is under the necessity of a MCDM

problem. VIKORicanienhanceitheicollective utility and reduce individual regret

whereasiTOPSIS’sicompensatingistrategyienablesitheibarter between the crite-

ria. Generallyispeaking, ouriproposeditechniquesiaccommodateitheimaximum

imprecisenessiand vaguenessiofitheiinformationihaving the components of ab-

stain and refusal, whichiisiappropriateiforicomplexisituations.

2.5 Conclusions

The evaluation techniques discussed in this chapter give policymakers valuable in-

formation to help them with the selection of the best possible HFC technology. The

criteria under assessment were deemed to be highly diversified by integrating the tech-

nological, environmental, economic, and social factors and were managed through the

application of TOPSIS and VIKOR decision-making methodologies within the frame-

work of “bi-parametric fuzzy picture discriminant measure”. The evaluation results

for the alternative “Fuel Cell Backup Power Systems” after utilizing the suggested

approaches are found to be consistent and acceptable.
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Chapter 3

Picture Fuzzy Soft Dombi

Aggregation Operators

In this chapter, theinotioniofitheiscore/accuracyifunctioniofipictureifuzzy soft num-

bersiandipictureifuzzyisoftiDombiiaggregationioperators (weighted/orderediweighted

average,ihybrid/weightedigeometric)ihaveibeen introducedialongiwithivarious opera-

tionalilawsiandiproperties. Further, foritheisakeiofiprovidingiailargerispaceito the de-

cisionimakersiandiincludingitheiparametrizationifeature ofitheiimpreciseiinformation,

the traditional “EDAS (Evaluation Based On Distance from Average Solution)”

methodihasibeenimodifiediandipresentediinitheilight of theiproposed score/accuracy

functionianditheiintroducediDombi aggregationioperators. Iniadditionitoithis, an il-

lustrativeiexampleirelateditoidigitalifarmingihasibeen studiediinidetail showing that

the proposedimethodologyiis highlyihelpfuliinifindingitheibestialternativeitoihave sus-

tainableifarmingiamongivariousitypesiofiagrifarming. Toiunderstandithe feasibility,

loftinessiandidependabilityiofithe proposedimodifiediEDASimethodology, the compar-

ative remarksiandiadvantagesihaveibeenilistedifor betteriunderstandingiand readabil-

ity with someiexistingiMCDM approaches.
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3.1 PictureiFuzzyiSoftiDombiiArithmetic Aggrega-

tioniOperators

Inithisisection, foritheisakeioficomputations, aipictureifuzzy soft set (PFSS) is re-

garded asiIu = (ρIu , τIu , ωIu) andicallediasipictureifuzzyisoftinumberi(PFSN), whereiu

is referentialisubscriptiwhichiisiusediforibuilding a relationshipibetweenialternatives

and attributesiinitheirequired examples. Foriapplications, weihaveitoiprioritizeithese

numbers, foriwhichiweiproposeitheiscoreiandiaccuracyifunctions foritheipictureifuzzy

soft numbersiasifollows:

Definition 13 LetiIu = (ρIu , τIu , ωIu)ibeitheipictureifuzzyisoftinumber,ithen

• theiscoreifunctioniisigivenias S(Iu) = ρnIu − ωnIu ; S(Iu) ∈ [−1, 1].

• the iaccuracyifunctioniisigivenias H(Iu) = ρnIu + τnIu + ωnIu ; H(Iu) ∈ [0, 1].

Next, the order-relation between two pictureifuzzyisoftinumbers are given as follows:

LetiIu = (ρIu , τIu , ωIu) and Iv = (ρIv , τIv , ωIv) beitwoipictureifuzzyisoftinumbersithen

• “Iu ≥ Iv if S(Iu) ≥ S(Iv).

• Iu ≤ Iv if S(Iu) ≤ S(Iv).

In case, if S(Iu) = S(Iv) for any two PFSN, then

• Iu ≥ Iv if H(Iu) ≥ H(Iv).

• Iu ≤ Iv if H(Iu) ≤ H(Iv).

• Iu ∼ Iv if H(Iu) = H(Iv).”

Remark: From, the above definition, the score function is monotonically increasing

with respect to its variables.

Definition 14 LetiIu = (ρIuτIu , ωIu) and Iv = (ρIv , τIv , ωIv)itwoipictureifuzzyisoft

numbersiandiλ > 0ibeianyirealinumber. Thenitheifollowingioperationsiareidefined over

theitwo pictureifuzzyisoftinumbers:
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(a) Iu ⊕ Iv = (ρIu + ρIv − ρIuρIv , iτIuτIv , iωIuωIv).

(b) Iu ⊗ Iv = (ρIuρIv , τIu + τIv − τIuτIv , ωIu + ωIv − ωIuωIv).

(c) λIu = (1− (1− ρIu)
λ, τλIu , ω

λ
Iu
).

(d) Iλu =
(
(ρIu)

λ, i1− (1− τIu)
λ, i1− (1− ωIu)

λ
)
.

(e) Icu = (ωIu , iτIu , iρIu).

Definition 15 SupposeiIu = (ρIu , τIu , ωIu)iandiIv = (ρv, τv, ωv) beitwoipicture fuzzy

softinumbersiandiλ, λ1, λ2 > 0 beitheirealinumbers. Thenitheifollowingioperational

lawsihold:

(i) Iui⊕ iIvi = iIvi⊕ iIu

(ii) Iui⊗ iIvi = iIvi⊗ iIu

(iii) λ(Iui⊕ iIv)i = iλIvi⊕ iλIu

(iv) (Iui⊗ iIv)
λi = iIλv i⊗ iIλu

(v) λ1Iui⊕ iλ2Iui = i(λ1i+ iλ2)Iu

(vi) Iλ1u i⊗ iIλ2u i = iI
(λ1i+iλ2)
u

(vii) (Iλ1u )λ2i = iIλ1λ2u .

Definition 16 SupposeiT iisiaicollectioniofiallipictureifuzzy softinumbers.

Let (Iu1 , iIu2 , i . . . , iIum)i ∈ iT m. AimappingiPFSWAψ : T mi −→ iT isisaiditoibe

picture fuzzyisoftiweightediaveraging operator(PFSWA), if

PFSWAψ(Iu1
, Iu2

, . . . , Ium
)i = i⊕mj=1i(ψjIuj

)i = i

1−
m∏
j=1

(1− ρIuj
)ψj , i

m∏
j=1

(τIuj
)ψj , i

m∏
j=1

i(ωIuj
)ψj

 ;

(3.1.1)

whereiψ = (ψ1, ψ2, . . . , ψm)
T iisitheiweightivectoricorrespondingitoi(Iuj)

m
j=1 such ithat

ψj ≥ 0, foriall j;
m∑
j=1

ψj = 1.

Definition 17 SupposeiT iisiaicollectioniofiallipictureifuzzy softinumbers.

Leti(Iu1 , iIu2 , i . . . , iIum)i ∈ iT m. AimappingiPFSOWAψ : T mi −→ iT isicalled

picture fuzzyisoftiorderediweightediaveragingioperator(PFSOWA), if

PFSOWAψ(Iu1
, Iu2

, . . . , Ium
)i = i

1−
m∏
j=1

(1− ρIuσ(j)
)ψj , i

m∏
j=1

(τIuσ(j)
)ψj , i

m∏
j=1

(ωIuσ(j)
)ψj

 ;

(3.1.2)
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where ψ = (ψ1, ψ2, . . . , ψm)
T is itheiweightivectoricorrespondingitoi(Iuj)

m
j=1isuchithat

ψj ≥ 0, foriall j;
m∑
j=1

ψj = 1 and (σ(1), iσ(2), i . . . , iσ(m))iisiaipossibleipermutation

ofi(1, 2, . . . ,m),is.t.iIuσ(j+1)
≤ Iuσ(j)

foriall ji = i1, i2, i . . . , im− 1.

Definition 18 SupposeiPiisiaicollectioniofiallipictureifuzzy softinumbers.

Leti(Tu1 , iTu2 , i . . . , iTum)i ∈ iPm. AimappingiPFSHAω : Pmi −→ iPiisicalled pic-

tureifuzzyisoftihybridiaveragingioperator, if

PFSHAψ,γ(Iu1 , iIu2 , i . . . , iIum)i = i

1−
m∏
j=1

(1− ρĨuσ(j)

)γj , i

m∏
j=1

(τĨuσ(j)

)γj , i

m∏
j=1

(ωĨuσ(j)

)γj


(3.1.3)

where γi = i(γ1, iγ2, i . . . , iγm)
T isithe weightivectoricorrespondingitoi(Ĩuσ(j)

)mj=1 such

thati

γj ≥ 0, foriall j;
m∑
j=1

γj = 1.

Ĩuσ(j)
is theijthilargestiofitheiweightediPFSNsi Ĩuj ; whereiĨuj i = i(mψj)Iuj iandimiis

theibalancingicoefficientiwith ψ = (ψ1, ψ2, . . . , ψn)
T beingitheiweightivectoriof Iuj with

ψji ≥ i0, foriallij; i
m∑
j=1

ψj = 1.

Remarks:

• Inicase, weitakeiuniformidistributioniofiweightsias γ = ( 1
n
, i 1
n
, i . . . , i 1

n
)T then

theipictureifuzzyisoftihybridiaveragingioperator givesipictureifuzzyisoftiweighted

averagingioperator.

• However, ifiweitake ψ = ( 1
n
, i 1
n
, i . . . , i 1

n
)T thenitheipictureifuzzyisoftihybrid av-

eragingioperator givesipictureifuzzyisoftiorderediweightediaveragingioperator.

Definition 19 LetIu = (ρIu , iτIu , iωIu)iandiIv = (ρIv , iτIv , iωIv) beitwoiPFSNs, R ≥
1iandiλ > 0. TheniDombiit−normiandit−conormioperationsiofiPFSNsiare asifollows:

(i) “Iu⊕Iv =

〈
1− 1

1+

{(
ρIu

1−ρIu

)R
+
(

ρIv
1−ρIv

)R
} 1

R
, 1

1+

{(
1−τIu
τIu

)R
+
(

1−τIv
τIv

)R
} 1

R
, 1

1+

{(
1−ωIu
ωIu

)R
+
(

1−ωIv
ωIv

)R
} 1

R

〉

(ii) Iu⊗Iv =

〈
1

1+

{(
1−ρIu
ρIu

)R
+
(

1−ρIv
ρIv

)R
} 1

R
, 1− 1

1+

{(
τIu

1−τIu

)R
+
(

τIv
1−τIv

)R
} 1

R
, 1− 1

1+

{(
ωIu

1−ωIu

)R
+
(

ωIv
1−ωIv

)R
} 1

R

〉
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(iii) λIu =

〈
1− 1

1+

{
λ
(

ρIu
1−ρIu

)R
} 1

R
, 1

1+

{
λ
(

1−τIu
τIu

)R
} 1

R
, 1

1+

{
λ
(

1−ωIu
ωIu

)R
} 1

R

〉

(iv) Iλu =

〈
1

1+

{
λ
(

1−ρIu
ρIu

)R
} 1

R
, 1− 1

1+

{
λ
(

τIu
1−τIu

)R
} 1

R
, 1− 1

1+

{
λ
(

ωIu
1−ωIu

)R
} 1

R

〉
”

Theorem 2 LetiIui = i (ρIu , iτIu , iωIu), Ivi = i (ρIv , iτIv , iωIv) and Iwi = i (ρIw , iτIw , iωIw)

beithreeiPFSNs andiλ, iλ1, iλ2i > i0 beitheireal numbers. Thenitheifollowingioperational

lawsi(initermsiofiDombi softioperations)ihold:

(i) Iui⊕ iIvi = iIvi⊕ iIu

(ii) Iui⊗ iIvi = iIvi⊗ iIu

(iii) λ(Iui⊕ iIv)i = iλIvi⊕ iλIu

(iv) (Iui⊗ iIv)
λi = iIλv i⊗ iIλu

(v) λ1Iwi⊕ iλ2Iwi = i(λ1i+ iλ2)Iw

(vi) Iλ1w i⊗ iIλ2w i = iI
(λ1i+iλ2)
w

(vii) (Iλ1w )λ2i = iIλ1λ2w .

Proof: Foritheiproofiofithisitheoremiweishallimake useiofitheidefinition 19. Asiperithe

definition 19, we get

(i) “Iu⊕Iv =

〈
1− 1

1+

{(
ρIu

1−ρIu

)R
+
(

ρIv
1−ρIv

)R
} 1

R
, 1

1+

{(
1−τIu
τIu

)R
+
(

1−τIv
τIv

)R
} 1

R
, 1

1+

{(
1−ωIu
ωIu

)R
+
(

1−ωIv
ωIv

)R
} 1

R

〉

=

〈
1− 1

1+

{(
ρIv

1−ρIv

)R
+
(

ρIu
1−ρIu

)R
} 1

R
, 1

1+

{(
1−τIv
τIv

)R
+
(

1−τIu
τIu

)R
} 1

R
, 1

1+

{(
1−ωIv
ωIv

)R
+
(

1−ωIu
ωIu

)R
} 1

R

〉
= Iv ⊕ Iu

(ii) Proof of (ii) will be the same as proof of (i).

(iii) Let x = 1− 1

1+

{(
ρIu

1−ρIu

)R
+
(

ρIv
1−ρIv

)R
} 1

R
.

This implies that x
1−x =

{(
ρIu

1−ρIu

)R
+
(

ρIv
1−ρIv

)R} 1
R

=⇒
(

x
1−x

)R
=

{(
ρIu

1−ρIu

)R
+
(

ρIv
1−ρIv

)R}
.

Now, using the above argument, we get

λ (Iu ⊕ Iv)

= λ

〈
1− 1

1+

{(
ρIu

1−ρIu

)R
+
(

ρIv
1−ρIv

)R
} 1

R
, 1

1+

{(
1−τIu
τIu

)R
+
(

1−τIv
τIv

)R
} 1

R
, 1

1+

{(
1−ωIu
ωIu

)R
+
(

1−ωIv
ωIv

)R
} 1

R

〉

=

〈
1− 1

1+

{
λ
(

ρIu
1−ρIu

)R
+λ

(
ρIv

1−ρIv

)R
} 1

R
, 1

1+

{
λ
(

1−τIu
τIu

)R
+λ

(
1−τIv
τIv

)R
} 1

R
, 1

1+

{
λ
(

1−ωIu
ωIu

)R
+λ

(
1−ωIv
ωIv

)R
} 1

R

〉
.
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Further,

λIu ⊕ λIv

=

〈
1− 1

1+

{
λ
(

ρIu
1−ρIu

)R
} 1

R
, 1

1+

{
λ
(

1−τIu
τIu

)R
} 1

R
, 1

1+

{
λ
(

1−ωIu
ωIu

)R
} 1

R

〉

⊕

〈
1− 1

1+

{
λ
(

ρIv
1−ρIv

)R
} 1

R
, 1

1+

{
λ
(

1−τIv
τIv

)R
} 1

R
, 1

1+

{
λ
(

1−ωIv
ωIv

)R
} 1

R

〉

=

〈
1− 1

1+

{
λ
(

ρIu
1−ρIu

)R
+λ

(
ρIv

1−ρIv

)R
} 1

R
, 1

1+

{
λ
(

1−τIu
τIu

)R
+λ

(
1−τIv
τIv

)R
} 1

R
, 1

1+

{
λ
(

1−ωIu
ωIu

)R
+λ

(
1−ωv
ωIv

)R
} 1

R

〉
.

= λ (Iu ⊕ Iv) .

(iv) (Iu ⊗ Iv)
λ

=

〈
1

1+

{(
1−ρIu
ρIu

)R
+
(

1−ρIv
ρIv

)R
} 1

R
, 1− 1

1+

{(
τIu

1−τIu

)R
+
(

τIv
1−τIv

)R
} 1

R
, 1− 1

1+

{(
ωIu

1−ωIu

)R
+
(

ωIv
1−ωIv

)R
} 1

R

〉λ

=

〈
1

1+

{
λ
(

1−ρIu
ρIu

)R
+λ

(
1−ρIv
ρIv

)R
} 1

R
, 1− 1

1+

{
λ
(

τIu
1−τIu

)R
+λ

(
τIv

1−τIv

)R
} 1

R
, 1− 1

1+

{
λ
(

ωIu
1−ωIu

)R
+λ

(
ωIv

1−ωIv

)R
} 1

R

〉

=

〈
1

1+

{
λ
(

1−ρIu
ρIu

)R
} 1

R
, 1− 1

1+

{
λ
(

τIu
1−τIu

)R
} 1

R
, 1− 1

1+

{
λ
(

ωIu
1−ωIu

)R
} 1

R

〉

⊗

〈
1

1+

{
λ
(

1−ρIv
ρIv

)R
} 1

R
, 1− 1

1+

{
λ
(

τIv
1−τIv

)R
} 1

R
, 1− 1

1+

{
λ
(

ωIv
1−ωIv

)R
} 1

R

〉
= Iλv ⊗ Iλu .

(v) λ1Iw ⊕ λ2Iw =

〈
1− 1

1+

{
λ1

(
ρIw

1−ρIw

)R
} 1

R
, 1

1+

{
λ1

(
1−τIw
τIw

)R
} 1

R
, 1

1+

{
λ1

(
1−ωIw
ωIw

)R
} 1

R

〉

⊕

〈
1− 1

1+

{
λ2

(
ρIw

1−ρIw

)R
} 1

R
, 1

1+

{
λ2

(
1−τIw
τIw

)R
} 1

R
, 1

1+

{
λ2

(
1−ωIw
ωIw

)R
} 1

R

〉

=

〈
1− 1

1+

{
(λ1+λ2)

(
ρIw

1−ρIw

)R
} 1

R
, 1

1+

{
(λ1+λ2)

(
1−τIw
τIw

)R
} 1

R
, 1

1+

{
(λ1+λ2)

(
1−ωIw
ωIw

)R
} 1

R

〉
= (λ1 + λ2) Iw.

(vi) Iλ1
w ⊗ Iλ2

w =

〈
1

1+

{
λ1

(
1−ρIw
ρIw

)R
} 1

R
, 1− 1

1+

{
λ1

(
τIw

1−τIw

)R
} 1

R
, 1− 1

1+

{
λ1

(
ωIw

1−ωIw

)R
} 1

R

〉

⊗

〈
1

1+

{
(λ1+λ2)

(
1−ρIw
ρIw

)R
} 1

R
, 1

1+

{
(λ1+λ2)

(
τIw

1−τIw

)R
} 1

R
, 1

1+

{
(λ1+λ2)

(
ωIw

1−ωIw

)R
} 1

R

〉

=

〈
1

1+

{
(λ1+λ2)

(
1−ρIw
ρIw

)R
} 1

R
, 1

1+

{
(λ1+λ2)

(
τIw

1−τIw

)R
} 1

R
, 1

1+

{
(λ1+λ2)

(
ωIw

1−ωIw

)R
} 1

R

〉
= I

(λ1+λ2)
w .”

(vii) Theiproofiofithisicanibeioutlinedionisimilar lines.
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Definition 20 SupposeiT iisiaicollectioniofiallipictureifuzzy softinumbers.

Leti(Iu1 , iIu2 , i . . . , iIum)i ∈ iT m. AimappingiPFSDWAψ : T mi −→ iT isisaidito

beiaipictureifuzzyisoftiDombiiweightediaveragingioperator, if

PFSDWAψ(Iu1 , iIu2 , i . . . , iIum)i = i⊕m
j=1 (ψjIuj); (3.1.4)

whereiψi = i(ψ1, iψ2, i . . . , iψm)
T iis theiweightivectoricorrespondingitoi(Iuj)

m
j=1 s.t.

ψji ≥ i0, foriallij;
m∑
j=1

ψj = 1.

Theorem 3 TheipictureifuzzyisoftiDombiiweighted averaging operator PFSDWAψ
aggregatesiallitheiinputivaluesiandiyieldsiaiPFSN giveniby

PFSDWAψ(Iu1
, iIu2

, i . . . , iIum
)i = i⊕mj=1 (ψjIuj

)

i = i

〈
1− 1

1 +

{∑m
j=1 ψj

(
ρIuj

1−ρIuj

)R} 1
R

, i
1

1 +

{∑m
j=1 ψj

(
1−τIuj

τIuj

)R} 1
R

,

i
1

1 +

{∑m
j=1 ψj

(
1−ωIuj

ωIuj

)R} 1
R

〉
.

whereiψi = i(ψ1, iψ2, i . . . , iψm)
T iisithe weightivectoricorrespondingitoi(Iuj)

m
j=1 s.t.

ωji ≥ i0, iforiallij;
m∑
j=1

ωj = 1.

Proof: Weiwilliproveithisitheoremibyimakingiuseiof theiprincipleiofimathematical in-

duction.

(i) “Forim = 2, weiget

PFSDWAψ(Iu1 , Iu2) = Iu1 ⊕ Iu2 =
(
ρIu1

, τIu1
, ωIu1

)
⊕
(
ρIu2

, τIu2
, ωIu2

)
=

〈
1− 1

1 +

{
ψ1

(
ρIu1

1−ρIu1

)R
+ ψ2

(
ρIu2

1−ρIu2

)R} 1
R

,
1

1 +

{
ψ1

(
1−τIu1

τIu1

)R
+ ψ2

(
1−τIu2

τIu2

)R} 1
R

,

1

1 +

{
ψ1

(
1−ωIu1

ωIu1

)R
+ ψ2

(
1−ωIu2

ωIu2

)R} 1
R

〉
;
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=

〈
1− 1

1 +

{∑2
j=1 ψj

(
ρIuj

1−ρIuj

)R} 1
R

,
1

1 +

{∑2
j=1 ψj

(
1−τIuj

τIuj

)R} 1
R

,

1

1 +

{∑2
j=1 ψj

(
1−ωIuj

ωIuj

)R} 1
R

〉
.

Hence, the result holds for m = 2.

(ii) Suppose that the result holds for m = k, then by using definition 5, we get

PFSDWAψ(Iu1 , Iu2 , . . . , Iuk
) =

〈
1− 1

1 +

{∑k
j=1 ψj

(
ρIuj

1−ρIuj

)R} 1
R

,
1

1 +

{∑k
j=1 ψj

(
1−τIuj

τIuj

)R} 1
R

,

1

1 +

{∑k
j=1 ψj

(
1−ωIuj

ωIuj

)R} 1
R

〉
.

Now, for m = k + 1, we get

PFSDWAψ(Iu1 , Iu2 , . . . , Iuk
, Iuk+1

) = ⊕kj=1(ψjIuj )⊕ (ψk+1Iuk+1
)

=

〈
1− 1

1 +

{∑k
j=1 ψj

(
ρIuj

1−ρIuj

)R} 1
R

,
1

1 +

{∑k
j=1 ψj

(
1−τIuj

τIuj

)R} 1
R

,

1

1 +

{∑k
j=1 ψj

(
1−ωIuj

ωIuj

)R} 1
R

〉
⊕

〈
1− 1

1 +

{
ψk+1

(
ρIuk+1

1−ρIuk+1

)R} 1
R

,

1

1 +

{
ψk+1

(
1−τIuk+1

τIuk+1

)R} 1
R

,
1

1 +

{
ψk+1

(
1−ωIuk+1

ωIuk+1

)R} 1
R

〉

=

〈
1− 1

1 +

{∑k+1
j=1 ψj

(
ρIuj

1−ρIuj

)R} 1
R

,
1

1 +

{∑k+1
j=1 ψj

(
1−τIuj

τIuj

)R} 1
R

,

1

1 +

{∑k+1
j=1 ψj

(
1−ωIuj

ωIuj

)R} 1
R

〉
.
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”

Therefore, theiresultiholdsiforim = k + 1. Hence, theiproofiofitheitheorem.

Next, weidefineiandiproveisomeipropertiesithatiareirelated toitheipicture fuzzy soft

Dombiiweightediaveragingioperators asifollows:

(i) Idempotencyi: IfiIuj i = iIu; iforialliji = i1, 2, . . . ,m, then

PFSDWAψ(Iu1 , iIu2 , i . . . Ium)i = iIu.

Proof: Foritheiproofiofithisiproperty, weishallimake useiofitheitheorem 3. Asiper

theitheorem,

PFSDWAψ(Iu1
, iIu2

, i . . . , iIum
)i = i⊕mj=1 (ψjIuj

)

i = i

〈
1− 1

1 +

{∑m
j=1 ψj

(
ρIuj

1−ρIuj

)R} 1
R

, i
1

1 +

{∑m
j=1 ψj

(
1−τIuj

τIuj

)R} 1
R

,

i
1

1 +

{∑m
j=1 ψj

(
1−ωIuj

ωIuj

)R} 1
R

〉

i = i

〈
1− 1

1 +

{(
ρIu

1−ρIu

)R} 1
R

, i
1

1 +

{(
1−τIu
τIu

)R} 1
R

, i
1

1 +

{(
1−ωIu

ωIu

)R} 1
R

〉

i = i

〈
1− 1

1 +
{(

ρIu
1−ρIu

)} , i 1

1 +
{(

1−τIu
τIu

)} , i 1

1 +
{(

1−ωIu

ωIu

)}〉

i = i (ρIu , iτIu , iωIu) = Iu.

Hence, the proof.

(ii) Boundedness: IfiIuj i(ji = i1, 2, . . . ,m) beitheicollectioniofiPFSNs.

LetiI− = min(Iu1 , iIu2 , i . . . iIum)iandiI
+ = max(Iu1 , iIu2 , i . . . iIum). Then

I− ≤ PFSDWAψ(Iu1 , Iu2 , . . . Ium) ≤ I+.

Proof: “Let I− = min(Iu1 , Iu2 , . . . Ium) =
(
ρ−Iu , τ

−
Iu
, ω−

Iu

)
and I+ = max(Iu1 , Iu2 , . . . Ium) =(

ρ+Iu , τ
+
Iu
, ω+

Iu

)
. Then, we have ρ−Iu = min

j
{ρIj}, τ−Iu = max

j
{τIj}, ω−

Iu
= max

j
{ωIj}, ρ+Iu =
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max
j

{ρIj}, τ+Iu = min
j

{τj}, ω+
u = min

Ij
{ωIj}.

Now, we have the following three inequalities,

1− 1

1+

∑m
j=1 ψj

(
ρ−
Iu

1−ρ
I−u

)R


1
R
≤ 1− 1

1+

{∑m
j=1 ψj

(
ρIu

1−ρIu

)R
} 1

R
≤ 1− 1

1+

∑m
j=1 ψj

(
ρ+
Iu

1−ρ
I+u

)R


1
R
;

1

1+

∑m
j=1 ψj

(
1−τ+

Iu
τ
I+u

)R


1
R
≤ 1

1+

{∑m
j=1 ψj

(
1−τIu
τIu

)R
} 1

R
≤ 1

1+

∑m
j=1 ψj

(
1−τ−

Iu
τ
I−u

)R


1
R
;

and
1

1+

∑m
j=1 ψj

(
1−ω+

Iu
ω
I+u

)R


1
R
≤ 1

1+

{∑m
j=1 ψj

(
1−ωIu
ωIu

)R
} 1

R
≤ 1

1+

∑m
j=1 ψj

(
1−ω−

Iu
ω
I−u

)R


1
R
.

Therefore,

I− ≤ PFSDWAψ(Iu1 , Iu2 , . . . Ium) ≤ I+.

”

(iii) Monotonicity : LetiIuj iandiIu′j
i(ji = i1, 2, . . . ,m) beitheitwoicollectionsiof pic-

tureifuzzyisoftinumbers. Ifi Iuj i ≤ iIu′j
ithen

PFSDWAψ(Iu1 , iIu2 , ii . . . iIum)i ≤ iPFSDWAψ(Iu′1
, Iu′2

, i . . . iIu′m).

Proof: Theiproofiofithisipropertyicanisimilarlyibe done.

Next, weiwouldiintroduceitheinotioniofipictureifuzzyisofti Dombi ordered weighted av-

eragei(PFSDOWA)iaggregationioperatorsianditheir properties.

Definition 21 SupposeiT iisiaicollectioniofiallipictureifuzzyisoft numbers.

Leti(Iu1 , iIu2 , i . . . , iIum)i ∈ iT m. AimappingiPFSDOWAψ : T mi −→ iT iisisaidito

beipictureifuzzyisoftiDombiiorderediweightediaveraging operator, if

PFSDOWAψ(Iu1 , iIu2 , i . . . , iIum)i = i⊕m
j=1 (ψjIuσ(j)

); (3.1.5)

whereiψi = i(ψ1, iψ2, i . . . , iψm)
T isitheiweightivectoricorrespondingitoi(Iuj)

m
j=1 s.t. ψji ≥

i0, iforiallij;
m∑
j=1

ψj = 1 and (σ(1), iσ(2), i . . . , iσ(m)) is a possible permutation of

(1, i2, i . . . , im),is.t.iIuσ(j+1)
i ≤ iIuσ(j)

forialliji = i1, i2, i . . . , im− 1.
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Theorem 4 TheipictureifuzzyisoftiDombiiorderediweightediaveragingioperator PFSDOWAψ
aggregatesiallitheiinputivaluesiand yieldsiaiPFSNigiveniby

PFSDOWAψ(Iu1 , iIu2 , i . . . , iIum)i = i⊕mj=1 (ψjIuσ(j)
)

i = i

〈
1− 1

1 +

{∑m
j=1 ψj

(
ρIuσ(j)

1−ρIuσ(j)

)R} 1
R

, i
1

1 +

{∑m
j=1 ψj

(
1−τIuσ(j)

τIuσ(j)

)R} 1
R

,

i
1

1 +

{∑m
j=1 ψj

(
1−ωIuσ(j)

ωIuσ(j)

)R} 1
R

〉
.

whereiψi = i(ψ1, iψ2, i . . . , iψm)
T isitheiweightivectoricorrespondingitoi(Iuj)

m
j=1 s.t.

ωji ≥ i0, iforiallij;
m∑
j=1

ψj = 1 and (σ(1), iσ(2), i . . . , iσ(m)) isiaipossibleipermutation

ofi(1, i2, i . . . , im), s.t. Iuσ(j+1)
i ≤ iIuσ(j)

iforialliji = i1, i2, i . . . , im− 1.

Proof: Theiproofiofithisitheoremiisitheisameiasithe proofiofiTheorem 3.

Remark: Onisimilarilines, weicanidefineiandiproveitheipropertiesiofiIdempotency,

MonotonicityiandiBoundednessiforiPFSDOWAiaggregationioperators by mak-

ingiuseiofitheiaboveidefinitions.

Note: TheipictureifuzzyisoftiDombiiweightediaveraging operator takes weights of

PFSNiintoiaccount, whileitheipictureifuzzyisoftiDombiiorderediweightediaveraging op-

eratoritakesionlyitheiweightsiofitheiorderedipositions ofiPFSNs into account. This

meansithatibothioperatorsiareidealingiwithitheisame factor. Foritheibetter incorpo-

rationiofibothiaspectsitogether, weiintroduceitheipictureifuzzyisoftiDombiihybrid av-

eraging (PFSDHA) operatoriandidefineiitiasifollows:

Definition 22 SupposeiT iisiaicollectioniofiallipictureifuzzy softinumbers.

Leti(Iu1 , iIu2 , i . . . , iIum)i ∈ iT m. AimappingiPFSDHAψ : T mi −→ iT isicalledia

pictureifuzzyisoftiDombiihybridiaveragingioperator, if

PFSDHAψ,γ(Iu1 , iIu2 , i . . . , iIum)i = i⊕m
j=1 (γj Ĩuσ(j)

);

whereiγi = i(γ1, iγ2, i . . . , iγm)
T isitheiweightivectoricorrespondingitoi(Ĩuσ(j)

)mj=1 s.t.

γji ≥ i0, iforiallij; i
m∑
j=1

γj = 1. Ĩuσ(j)
iisitheijthilargestiofitheiweighted PFSNsi Ĩuj ;
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whereiĨuj i = i(mψj)Iuj iandimiisitheibalancingicoefficientiwith ψi = i(ψ1, iψ2, i . . . , iψn)
T

beingitheiweightivectoriofiIuj iwithiψji ≥ i0, iforiallij; i
m∑
j=1

ψj = 1.

Remarks:

• Ifiweitakeiweightsiasiγi = i( 1
n
, i 1
n
, i . . . , i 1

n
)T thenipictureifuzzyisoftiDombi hy-

bridiaveragingioperator givesipictureifuzzyiDombiisoftiweightediaveraging oper-

ator.

• However, ifiweitakeiψi = i( 1
n
, i 1
n
, i . . . , 1

n
)T thenipictureifuzzyisoftiDombi hy-

bridiaveragingioperator givesipictureifuzzyisoftiorderediweightediaveraging op-

erator.

Theorem 5 TheipictureifuzzyisoftiDombiihybridiaveragingioperator PFSDHAψ,γ ag-

gregatesiallitheiinputivaluesiandiyields aiPFSNiisigiveniby

PFSDHAψ,γ(Iu1
, Iu2

, . . . , Ium
)i = i

〈
1− 1

1 +

{∑m
j=1 ψj

(
ρIuσ(j)

1−ρIuσ(j)

)R} 1
R

,

i
1

1 +

{∑m
j=1 ψj

(
1−τIuσ(j)

τIuσ(j)

)R} 1
R

,

i
1

1 +

{∑m
j=1 ψj

(
1−ωIuσ(j)

ωIuσ(j)

)R} 1
R

〉
.

Proof: Theiproofiisitheisameiasithatiofitheiproof ofiTheorem 3 andicanieasilyibeidone.

Also, onisimilarilines, theiotheripropertiesilikeiIdempotency,iBoundedness and Mono-

tonicity relateditoitheipictureifuzzyiDombiisoftihybridiaveraging operatoricanieasilyibe

definediandiprovediwithithe helpiofitheidefinitions.
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3.2 PictureiFuzzyiSoftiDombiiGeometric Aggrega-

tioniOperators

Inithisisection, weipresentitheinotioniofipictureifuzzyisoftiDombi geometric aggrega-

tionioperatoriandidiscussitheiripropertiesiandiresults.

Definition 23 SupposeiT iisiaicollectioniofiallipictureifuzzy softinumbers.

Leti(Iu1 , iIu2 , i . . . , iIum)i ∈ iT m. AimappingiPFSDWGψ : T mi −→ iT isisaidito

beiaipictureifuzzyisofiDombiiweightedigeometricioperator, if

PFSDWGψ(Iu1 , iIu2 , i . . . , iIum)i = i⊗m
j=1 (Iuj)

ψj ; (3.2.1)

whereiψi = i(ψ1, iψ2, i . . . , iψm)
T isitheiweightivectoricorrespondingito (Iuj)

m
j=1 s.t. ψji ≥

i0, iforiallij; i
m∑
j=1

ψj = 1.

Theorem 6 TheipictureifuzzyisoftiDombiiweightedigeometric operator PFSDWGψ

aggregatesiallitheiinputivaluesiandiyieldsiaiPFSN giveniby

PFSDWGψ(Iu1 , iIu2 , i . . . , iIum)i = i⊗mj=1 (Iuj )
ψj

i = i

〈
1

1 +

{∑m
j=1 ψj

(
1−ρIuj

ρIuj

)R} 1
R

, i1− 1

1 +

{∑m
j=1 ψj

(
τIuj

1−τIuj

)R} 1
R

,

i1− 1

1 +

{∑m
j=1 ψj

(
ωIuj

1−ωIuj

)R} 1
R

〉
.

whereiψi = i(ψ1, iψ2, i . . . , iψm)
T isitheiweightivectoricorrespondingito (Iuj)

m
j=1 s.t.

ωji ≥ i0, iforiallij; i
m∑
j=1

ωj = 1.

Proof: Theiproofiofitheitheoremicanibeidoneiasithat ofiTheorem 3.

Here, are some properties analogous to the weighted averaging operators.

(i) “Idempotency : If Iuj = Iu; for all j = 1, 2, . . . ,m, then

PFSDWGψ(Iu1 , Iu2 , . . . Ium) = Iu.
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(ii) Boundedness: If Iuj (j = 1, 2, . . . ,m) be the collection of PFSNs.

Let I− = min(Iu1 , Iu2 , . . . Ium) and I
+ = max(Iu1 , Iu2 , . . . Ium). Then

I− ≤ PFSDWGψ(Iu1 , Iu2 , . . . Ium) ≤ I+.

(iii) Monotonicity : Let Iuj and Iu′j
(j = 1, 2, . . . ,m) be the two collections of

picture fuzzy soft numbers. If Iuj ≤ Iu′j
then

PFSDWGψ(Iu1 , Iu2 , . . . Ium) ≤ PFSDWGψ(Iu′1
, Iu′2

, . . . Iu′m).

Note: The proof of all these properties can similarly be given by making use

of the definitions.”

Next, weiwouldiintroduceitheinotioniofipictureifuzzyisoft Dombi-orderediweighted ge-

ometrici(PFSDOWG)iaggregationioperatorsianitheir properties.

Definition 24 SupposeiT iisiaicollectioniofiallipictureifuzzy softinumbers.

Leti(Iu1 , iIu2 , i . . . , iIum)i ∈ iT m. AimappingiPFSDOWGψ : T mi −→ iT isisaidito

beipictureifuzzyisoftiDombiiorderediweightedigeometric operator,iif

PFSDOWGψ(Iu1 , iIu2 , i . . . , iIum)i = i⊗m
j=1 (Iuσ(j)

)ψj ; (3.2.2)

whereiψi = i(ψ1, iψ2, i . . . , iψm)
T isitheiweightivectoricorrespondingitoi(Iuj)

m
j=1 s.t. ψj ≥

i0, iforiallij;
m∑
j=1

ψj = 1iandi(σ(1), iσ(2), i . . . , iσ(m)) is a possible permutation of

(1, i2, i . . . , im),is.t. Iuσ(j+1)
i ≤ iIuσ(j)

foriallij = 1, i2, i . . . , im− 1.

Theorem 7 TheipictureifuzzyisoftiDombiiorderediweightedigeometric operatori

PFSDOWGψ aggregatesiallithe inputivaluesiandiyieldsiaiPFSNigiven by

PFSDOWGψ(Iu1
, iIu2

, i . . . , iIum
)i = i⊗mj=1 (Iuσ(j)

)ψj

i = i

〈
1

1 +

{∑m
j=1 ψj

(
1−ρIuσ(j)

ρIuσ(j)

)R} 1
R

, i1− 1

1 +

{∑m
j=1 ψj

(
τIuσ(j)

1−τIuσ(j)

)R} 1
R

,

i1− 1

1 +

{∑m
j=1 ψj

(
ωIuσ(j)

1−ωIuσ(j)

)R} 1
R

〉
.

whereiψi = i(ψ1, iψ2, i . . . , iψm)
T isitheiweightivectoricorrespondingitoi(Iuj)

m
j=1 s.t.ωj ≥

i0, iforiallij;
m∑
j=1

ψj = 1iandi(σ(1), σ(2), i . . . , iσ(m)) is a possible permutation of

(1, 2, . . . ,m), s.t. Iuσ(j+1)
i ≤ iIuσ(j)

iforialliji = i1, 2, i . . . , im− 1.
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Proof: Theiproofiofithisitheoremiisisameiasiof Theoremi3.

Note:Further, the hybrid operators for geometric can similarly be defined as in av-

eraging case.

3.3 EDASiMethodologyiBasedioniPictureiFuzzyiSoft

Dombi Aggregation Operators

Theiclassical “EDAS (Evaluation based on Distance from Average Solution)” method

KeshavarziGhorabaee et al.[46] whichiinvolvesitheidifferentiattributes, hasibeenistudiediin

manyiMCDMiproblems. Thisimethodiinvolvesitheicomputationiofitheiaverage solu-

tion (AV ), thisialsoidescribesitheidistinctionibetweenitheiaverage solutioniandiallithe

alternativesiwhichiareibasedion theitwoidifferentidistanceimeasures, i.e., “Positive Dis-

tance from Average (PDA)”iandi“Negative Distance from Average (NDA)”. Forithe

bestichoiceiof alternatives, higherivaluesiofiPDAiandilowerivaluesiofiNDA are pre-

ferred.

WeihaveicombineditheiexistingiEDASimodeliwithipicture fuzzyiDombiisoft aggrega-

tionioperatorsiandiPFSNs, whichigive riseitoipicture fuzzy soft Dombi EDAS

model (PFSD-EDAS Methodology). Theiproposedimethodologyiinvolvesithe var-

iousistepsiof computationsiasifollows:

Supposeithatithereiareinialternatives {A1, iA2, i..., iAn},imicriterionsi{C1, iC2, i..., iCm}
& kiexpertsi{E1, iE2, i..., iEk}. Leti{ψ1, iψ2, i..., iψm}& {∅1, i∅2, i..., i∅k} be the weight-
ing vectorsioficriterion’siandiexperts respectively, wherei ψji ∈ i[0, 1], ∅ji ∈ i[0, 1],∀j;

s.t.i
m∑
j=1

iψj = 1, i
k∑
r=1

∅r = 1.

Theivariousistepsiofitheiproposedialgorithmiare illustratediwithitheihelpiofithe follow-

ingichart:

Theidetailediproceduralistepsiofithe proposed (PFSD-EDAS Methodology)

haveibeeniexplainedibelow:

Stepi1. Theiinformationigivenibyitheiexpertsicollectediinithe formiofipictureifuzzy

softinumbersiofiallithe alternativesiw.r.t.idifferenticriteriaiand construct the picture

fuzzyisoftievaluationimatrix Z =
[
(ρrij, τ

r
ij, ω

r
ij)
]
n×m i = 1, 2, ..., n, j = 1, 2, ...,m, r =
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Start 
Construction of Matrices 

w.r.t Expert’s Opinion 
Normalization of 
Expert’s Matrices 

Collected Information of 
all Experts 

Evaluation of Averaging 
Solution (AV) 

Evaluation of PDAS 
and NDAS  Values 

Normalization of SPi
  and SNi to  

compute NSNi and NSPi 

Evaluate the Positive and 
Negative Weighted Distance, 

i.e.,  SPi   and SNi          

 Compute the Appraisal 
Score (ASi) Values 

Ranking of Alternatives 
on the Basis of Values of 

ASi 

End 

C

Figure 3.1: ProceduraliStepsiofiPictureiFuzzyiSoftiDombiiEDAS Model

1, 2, ..., k, giveniby

[Z]n×mi = i



C1 C2 · · · Cm

A1 (ρr11, iτ
r
11, iω

r
11) (ρr12, iτ

r
12, iω

r
12) · · · (ρr1m, iτ

r
1m, iω

r
1m)

A2 (ρr21, iτ
r
21, iω

r
21) (ρr22, iτ

r
22, iω

r
22) · · · (ρr2m, iτ

r
2m, iω

r
2m)

...
...

...
. . .

...

An (ρrn1, iτ
r
n1, iω

r
n1) (ρrn2, iτ

r
n2, iω

r
n2) · · · (ρrnm, iτ

r
nm, iω

r
nm)


Stepi2. WeinormalizeitheievaluationimatricesiobtainedifromiStep 1, i.e., fromiZitoiZ

′
;

(i) Foribeneficialicriterion[
(ρ

′r
ij, iτ

′r
ij , iω

′r
ij)
]
i = i

[
(ρrij, iτ

r
ij, iω

r
ij)
]
; iii = i1, 2, .., n, ij = 1, 2, ...,m, ir = 1, 2, ..., k.

(ii) Forinon-beneficialicriterion[
(ρ

′r
ij, iτ

′r
ij , iω

′r
ij)
]
i = i

[
(ωrij, iτ

r
ij, iρ

r
ij)
]
; iii = i1, 2, .., n, ij = 1, 2, ...,m, ir = 1, 2, ..., k.

Stepi3. Next, weicomputeitheiaggregatedimatrix [Z]ni×imiusingi“PFSDWA (PFSDWG/

PFSDOWA/PFSDOWG)” operatoriandiconverti
[
(ρ

′r
ij, iτ

′r
ij , iω

′r
ij)
]
ito
[
(ρ

′
ij, iτ

′
ij, iω

′
ij)
]

withitheihelpiofitheiexpert’siweightingivector {∅1, i∅2, i..., i∅k}. Theiobtainediresultsican
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beishownias:

[Z]ni×imi = i



C1 C2 · · · Cm

A1 (ρ
′
11, iτ

′
11, iω

′
11) (ρ

′
12, iτ

′
12, iω

′
12) · · · (ρ

′
1m, iτ

′
1m, iω

′
1m)

A2 (ρ
′
21, iτ

′
21, iω

′
21) (ρ

′
22, iτ

′
22, iω

′
22) · · · (ρ

′
2m, iτ

′
2m, iω

′
2m)

...
...

...
. . .

...

An (ρ
′
n1, iτ

′
n1, iω

′
n1) (ρ

′
n2, iτ

′
n2, iω

′
n2) · · · (ρ

′
nm, iτ

′
nm, iω

′
nm)

.
Stepi4. Now, weicomputeitheiaverageisolutioni(AV )iby usingiallitheiproposedicriterions

asifollows:

AV = [AVj]1×m =

[∑n
i=1

[
(ρ

′
ij, τ

′
ij, ω

′
ij)
]

n

]
1×m

.

Onitheibasisiofitheidefinition 14, we get

n∑
i=1

[
(ρ

′

ij, τ
′

ij, ω
′

ij)
]
=

(
1−

m∏
j=1

(1− ρ
′

ij),
m∏
j=1

(τ
′

ij),
m∏
j=1

(ω
′

ij)

)
1×m

;

and “ AV = [AVj]1×m =

[∑n
i=1

[
(ρ

′
ij ,τ

′
ij ,ω

′
ij)
]

n

]
1×m

=
(
1−

∏m
j=1(1− ρ

′
ij)

1
n ,
∏m

j=1(τ
′
ij)

1
n ,
∏m

j=1(ω
′
ij)

1
n

)
1×m

. ”

Similarly, fori(PFSDWG/PFSDOWA/PFSDOWG)ioperators, weicanievaluateAV

using theiotheripartsiofidefinition 14.

Step 5. Now, fromitheiresultsiofiaverageisolution (AV ), weicanifinditheiPDAiand

ibyimaking useiofithifollowingiexpressions:

PDAiji = i[PDAij]ni×imi = i
max

(
0, ((ρ

′
ij, iτ

′
ij, iω

′
ij)i− iAV j)

)
AV j

;

NDAiji = i[NDAij]ni×imi = i
max

(
0, (AV ji− i(ρ

′
ij, iτ

′
ij, iω

′
ij))
)

AV j

.

Forisimplifications, weicanimakeiuseiofitheiscoreifunctionias definediiniDefinition 13

to computeiPDAiandiNDAias follows:

PDAiji = i[PDAij]ni×imi = i
max

(
0, (S((ρ

′
ij, iτ

′
ij, iω

′
ij))i− iS(AV j))

)
S(AV j)

;

NDAiji = i[NDAij]ni×imi = i
max

(
0, (S(AV j)i− iS((ρ

′
ij, iτ

′
ij, iω

′
ij)))

)
S(AV j)

.
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Step 6. Next, weicomputeitheiweightedisumivaluesiofiPDAiand NDA, i.e., the val-

uesiofiSPiiandiSNi whichicanibe calculatediasifollows:

SPii = i
∑m

j=1 ψjiPDAij, iSNii = i
∑m

j=1 ψjiNDAij.

Step 7. TheinormalizediformiofiSPiiandiSNi can be computedias:

NSPii = i SPi

max
i

(SPi)
, iNSNii = i1i− i SNi

max
i

(SNi)
.

Step 8. Now, foriNSPiiandiNSNi w.r.t. eachialternativeicomputeitheivaluesiof ap-

praisaliscore (ASi) as:

ASii = i1
2
(NSPii+ iNSNi) .

Step 9. Initheifinalistep, rankingiofialternativicanibeidoneiwithisupremeivalues of

appraisaliscorei (ASi).

3.4 PFSD-EDASiMethodologyiiniSustainable Agri-

farming

Initheimoderiera, thereiisitheidevelopmentiofiainewiindustryiknown as “Agriculture

Farming” whichiensuresitheifarmer’sifinancialibenefitsianditheilong-term viabilityiof

theiriproduction. Thereiisioneimore important application of sustainable farming

termed “Green Agriculture” whichiminimizesitheiusageiofipesticidesitoiavoidiharmful

effectsionitheihealthioficonsumersiandifarmers. Iniadditionitoithis, itimay be noted

thatitheiirregulariandidestructive kindiofifarming may result in some kind of crisis.

Therefore, the concept of precision agriculture and digital farming will playian im-

portantiroleiinitheigrowthiof humankind for their development. The four essential

alternativesiaboutisustainableiandismart agrifarmingimayibeiconsiderediasifollows:

(1) GoodiFarmiProduction (A1): Devisingihigh-yieldingitechniques, self-reliant

andieconomicaliproductioniwhich givesiaigoodiearning. Also, itiwouldigenerate

jobiopportunitiesiforipooripeopleiand isiveryigoodiforisociety. Further, thereiwill

beithe developmentiofiruraliareasiwhichiwouldihelpitheigood connectionsibetween

ruraliandiurban areas.
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(2) EnvironmentaliControl (A2): The first benefit of agricultureiisienvironmental

control, asiitireducesideforestation, theidepletion of natural resources, the pro-

gressingibio-diversityianditheireductioniofiCO2iemissions. Also, iticontrols the

quality ofiwater,iairiandisoil byipreservingiandiprotectingitheiregions.

(3) AvailabilityiofiEcologicaliResourcesi(A3): To improve the quality of resources

toibeiused inifarming. Theiotherimainidifficultyiwhileifacingigreen agricultureiis

torrentidepletioniandilossiofithese resources. The availability of ecological re-

sources improvesiagriculture whichiisiveryibeneficialiforitheiecosystem.

(4) Food SafetyiandiEfficiency (A4): Toiincreaseitheiefficiencyiofifood and energy

in salesiandiproduction. Asitheiworldipopulationiis rapidly increasing, food secu-

rity issuesicanibeisolvediwith sustainableiagricultureipracticesibyiproducing more

in minimal time.

Now, theseifourialternativesiareibeingievaluatedibasedionifive attributes. Supposeithat

theifollowingiareitheifiveiattributes ofiroboticiagrifarmingiforitheiaboveialternatives:

(1) SuperioriQualityiProduction (C1): Thereiareispecificiagriculture factors, such

asisoiliand timeiforiaicropitoiripe, thatiplayiairole in the product quality. For

crops iikeirice,iwheat,imaize,ibarley,icerealsiand other pulses,iripenessiandidegree

ofiwaterlessnessimatter.

(2) ConfiningitheiRequirementiofiManiPower (C2): Inifarming, the costiof la-

boriisiveryiexpensiveiandithereforeithe suitabilityiofiemployeesiandithe manpower

areiinigreat demand.

(3) MinimaliProductioniCost (C3): Iniagriculture, theicostiofiproductionicanibe

reducediwithithe usageiofiagricultureirobots. Iniaddition, weineeditoideal with

someiofitheivariablesilikeienvironmentaliconditions, purchasing different brands

ofiseedsiandiusinginumerous chemicals.

(4) AccomplishmentiofiTime-ConstraintiProject (C4): Toicompleteithe sophis-

ticatediprojectsiquicklyiandiwithin time, oneishouldimakeiuseiofiscientists, tech-

nicians,ifarmers, scholarsiandirobotization.
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(5) RoleiofiConsistencyiiniProject (C5): Forimaintainingia consistentisite, the

useiofiartificialiintelligenceiiniagriculturalifarming fromitheiprocessiofiseeding to

theiprocessiof harvesting.

Further, toiassessitheigivenialternativesiw.r.t.itheiabove statedicriterions, aipaneliof

threeiexperts {E1, iE2, iE3} hasibeeniappointed. Theiproposedimethodologyiinvolves

theivariousistepsiof computationsiasifollows:

Stepi1. Theiinformationigivenibyitheiexpertsicollectediinithe formiofipictureifuzzy

softinumbersiofiallithe alternativesiw.r.t.idifferenticriteria and construct the picture

fuzzyisoftievaluationimatrixigiveniiniTable 3.1,iTable 3.2iandiTable 3.3.

Stepi2. NormalizedievaluationimatricesiobtainedifromiStep 1iare igiveniiniTable 3.4,

Table 3.5iandiTable 3.6.

Stepi3. TheicollectediinformationiofiallitheiExpertsifori“PFSDWA, PFSDWG, PFS-

DOWA, PFSDOWG”ioperatorsiareigiveniiniTable 3.7,iTable 3.8,iTable 3.9iandiTable

3.10.

Stepi4. Theiaveragingisolutions (AV ) ofitheiproposedipicture fuzzyiDombiisoft ag-

gregationioperationsiareigiveniiniTable 3.11iandiTable 3.12.

Step 5. Now,iPDAijiandiNDAijiareicomputediasiperithe followingicases:

Casei1 - “PF Soft Dombi WA aggregation operator” giveniiniTable 3.13iand Ta-

ble 3.14.

Casei2 - “PF Soft Dombi WG aggregation operator” giveniiniTable 3.15iand

Table 3.16.

Casei3 - “PF Soft Dombi OWA aggregation operator” giveniiniTable 3.17iand

Table 3.18.

Casei4 - “PF Soft Dombi OWG aggregation operator” giveniiniTable 3.19iand

Table 3.20.

Stepi6. Onitheibasisiofiproposedioperators, theipositiveiandinegativeiweighted dis-

tances, i.e., SPiiandiSNiihaveibeenitabulatediiniTable 3.21iandiTable 3.22.

Stepi7. NormalizediformiofiSPiiandiSNi, i.e., NSPiiandiNSNiiareibeingiprovided

iniTable 3.23iandiTable 3.24.

Stepi8. Theiappraisaliscoreivaluesi(ASi)iareibeingitabulatediin Table 3.25.

Stepi9. Now, onitheibasisiofitheivaluesiof (ASi), theirankingiofitheialternativesiis

beingidoneiand giveniiniTable 3.26.
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Onitheibasisiofitheiaboveistepsiofimethodology anditheinecessaryicomputations car-

riediout, weifindithatitheialternativeiA4iisimostlyipreferred byitheiexperts.

Hence, initheiprocessiofiagricultureifarming, itiisisuggestedithatifoodisafetyiand effi-

ciencyihave toibeigivenitheihighestipriority. Allitheitablesiforiready reference have

beeniprovided.

Table 3.1: PictureiFuzzyiSoftiInformationibyiExpertiE1

C1i C2i C3i C4i C5i

A1i (0.20,i0.12,i0.56) (0.23,i0.15,i0.62) (0.10,i0.33,i0.47) (0.15,i0.34,i0.51) (0.20,i0.37,i0.43)

A2i (0.18,i0.25,i0.43) (0.22,i0.28,i0.50) (0.17,i0.29,i0.54) (0.19,i0.17,i0.64) (0.37,i0.13,i0.50)

A3i (0.08,i0.32,i0.60) (0.30,i0.12,i0.58) (0.28,i0.11,i0.62) (0.05,i0.15,i0.80) (0.25,i0.10,i0.65)

A4i (0.10,i0.22,i0.58) (0.26,i0.13,i0.61) (0.18,i0.27,i0.55) (0.07,i0.26,i0.67) (0.23,i0.01,i0.76)

Table 3.2: PictureiFuzzyiSoftiInformationibyiExpertiE2

C1i C2i C3i C4i C5i

A1i (0.17,i0.35,i0.48) (0.10,i0.27,i0.53) (0.19,i0.28,i0.61) (0.05,i0.15,i0.80) (0.64,i0.29,i0.07)

A2i (0.10,i0.27,i0.53) (0.19,i0.17,i0.64) (0.20,i0.37,i0.43) (0.65,i0.22,i0.23) (0.45,i0.28,i0.27)

A3i (0.14,i0.20,i0.66) (0.20,i0.21,i0.59) (0.77,i0.11,i0.18) (0.10,i0.17,i0.73) (0.08,i0.27,i0.55)

A4i (0.31,i0.28,i0.41) (0.50,i0.32,i0.18) (0.39,i0.32,i0.29) (0.17,i0.34,i0.49) (0.18,i0.14,i0.68)

Table 3.3: PictureiFuzzyiSoftiInformationibyiExpertiE3

C1i C2i C3i C4i C5i

A1i (0.25,i0.24,i0.51) (0.18,i0.12,i0.70) (0.23,i0.25,i0.52) (0.20,i0.12,i0.56) (0.56,i0.18,i0.26)

A2i (0.23,i0.08,i0.69) (0.10,i0.21,i0.59) (0.63,i0.02,i0.35) (0.15,i0.09,i0.76) (0.19,i0.34,i0.47)

A3i (0.42,i0.21,i0.37) (0.32,i0.23,i0.45) (0.13,i0.14,i0.73) (0.08,i0.27,i0.55) (0.19,i0.17,i0.64)

A4i (0.33,i0.25,i0.42) (0.15,i0.19,i0.66) (0.17,i0.26,i0.57) (0.50,i0.32,i0.18) (0.08,i0.10,i0.82)

3.5 AdvantageousiRemarks

Theifollowingiimportantiadvantageousiremarksiareilistedias follows:

• Theiformal inclusion of parametrization through the picture fuzzy soft sets

proves toibeimoreiconsistentiin theiorientationiofitheiobtainediresultsiandithe in-

volved parametersigiveiriseitoirobustnessiinitheiproposed methodology.

• Also, iniliterature,iitihasibeenifoundithatithe implementationiofiDombi norms[108]

leadsitoicertainisuperioritiesiinitheiresultsiiniterms ofivariabilityiconcerningithe

functioningiofiparameters.

61



Table 3.4: NormalizediPictureiFuzzyiSoftiInformationibyiExpert E1

C1i C2i C3i C4i C5i

A1i (0.56,i0.12,i0.20) (0.62,i0.15,i0.23) (0.47,i0.33,i0.10) (0.51,i0.34,i0.15) (0.43,i0.37,i0.20)

A2i (0.43,i0.25,i0.18) (0.50,i0.28,i0.22) (0.54,i0.29,i0.17) (0.64,i0.17,i0.19) (0.50,i0.13,i0.37)

A3i (0.60,i0.32,i0.08) (0.58,i0.12,i0.30) (0.62,i0.11,i0.28) (0.80,i0.15,i0.05) (0.65,i0.10,i0.25)

A4i (0.58,i0.22,i0.10) (0.61,i0.13,i0.26) (0.55,i0.27,i0.18) (0.67,i0.26,i0.07) (0.76,i0.01,i0.23)

Table 3.5: NormalizediPictureiFuzzyiSoftiInformationibyiExpert E2

C1i C2i C3i C4i C5i

A1i (0.48,i0.35,i0.17) (0.53,i0.27,i0.10) (0.61,i0.28,i0.19) (0.80,i0.15,i0.05) (0.07,i0.29,i0.64)

A2i (0.53,i0.27,i0.10) (0.64,i0.17,i0.19) (0.43,i0.37,i0.20) (0.23,i0.22,i0.65) (0.27,i0.28,i0.45)

A3i (0.66,i0.20,i0.14) (0.59,i0.21,i0.20) (0.18,i0.11,i0.77) (0.73,i0.17,i0.10) (0.55,i0.27,i0.08)

A4i (0.41,i0.28,i0.31) (0.18,i0.32,i0.50) (0.29,i0.32,i0.39) (0.49,i0.34,i0.17) (0.68,i0.14,i0.18)

Table 3.6: NormalizediPictureiFuzzyiSoftiInformationibyiExpert E3

C1i C2i C3i C4i C5i

A1i (0.51,i0.24,i0.25) (0.70,i0.12,i0.18) (0.52,i0.25,i0.23) (0.56,i0.12,i0.20) (0.26,i0.18,i0.56)

A2i (0.69,i0.08,i0.23) (0.59,i0.21,i0.10) (0.35,i0.02,i0.63) (0.76,i0.09,i0.15) (0.47,i0.34,i0.19)

A3i (0.37,i0.21,i0.42) (0.45,i0.23,i0.32) (0.73,i0.14,i0.13) (0.55,i0.27,i0.08) (0.64,i0.17,i0.19)

A4i (0.42,i0.25,i0.33) (0.66,i0.19,i0.15) (0.57,i0.26,i0.17) (0.18,i0.32,i0.50) (0.82,i0.10,i0.08)

Table 3.7: CollectediinformationiofiallitheiExpertsifori PFSDWA Operators
A1i A2i A3i A4i

C1i (0.5234,i0.1864,i0.2116) (0.5986,i0.1288,i0.1695) (0.5408,i0.2360,i0.1455) (0.4867,i0.2436,i0.1815)

C2i (0.6488,i0.1465,i0.1661) (0.5750,i0.2188,i0.1399) (0.5943,i0.1716,i0.2107) (0.5943,i0.1759,i0.2107)

C3i (0.5262,i0.2793,i0.1536) (0.4457,i0.0412,i0.2658) (0.6468,i0.1217,i0.2011) (0.5252,i0.2738,i0.1959)

C4i (0.6346,i0.1636,i0.1165) (0.6781,i0.1255,i0.1941) (0.7135,i0.1932,i0.068) (0.5003,i0.2993,i0.14113)

C5i (0.3042,i0.2418,i0.3489) (0.4515,i0.2114,i0.2390) (0.6289,i0.1452,i0.1595) (0.7818,i0.0244i0.1211)

Table 3.8: CollectediinformationiofiallitheiExpertsifori PFSDWGiOperators
A1i A2i A3i A4i

C1i (0.5197,i0.2293,i0.2178) (0.5424,i0.1868,i0.1893) (0.4756,i0.2506,i0.2799) (0.4624,i0.2461,i0.2595)

C2i (0.6310,i0.1846,i0.1840) (0.5633,i0.2288,i0.1636) (0.5148,i0.1904,i0.2917) (0.4225,i0.2012,i0.2869)

C3i (0.5160,i0.2858,i0.1805) (0.4168,i0.2123,i0.4796) (0.4363,i0.1238,i0.4661) (0.4727,i0.2762,i0.2289)

C4i (0.5748,i0.2169,i0.1559) (0.4979,i0.1472,i0.3477) (0.6537,i0.2121,i0.0738) (0.2915,i0.3045,i0.3409)

C5i (0.1851,i0.2785,i0.5039) (0.4169,i0.2657,i0.2705) (0.6229,i0.1701,i0.1933) (0.7672,i0.0793,i0.1579)

Table 3.9: CollectediinformationiofiallitheiExpertsiforiPFSDOWA Operators
A1i A2i A3i A4i

C1i (0.5167,i0.0823,i0.0914) (0.5734,i0.0608,i0.0636) (0.5543,i0.1052,i0.0523) (0.4848,i0.1184,i0.0773)

C2i (0.6227,i0.0669,i0.0636) (0.5763,i0.0948,i0.0645) (0.5344,i0.0753,i0.1238) (0.5218,i0.0787,i0.1014)

C3i (0.5377,i0.1373,i0.0648) (0.4457,i0.0188,i0.0991) (0.5783,i0.0517,i0.0964) (0.4715,i0.1371,i0.0910)

C4i (0.6798,i0.0681,i0.0369) (0.6151,i0.058,i0.0899) (0.7135,i0.0800,i0.0289) (0.5004,i0.1504,i0.0512)

C5i (0.2691,i0.1163,i0.1672) (0.4096,i0.0914,i0.1086) (0.6087,i0.0632,i0.05614) (0.7609,i0.0089,i0.0549)

62



Table 3.10: CollectediinformationiofiallithiExpertsifori PFSDOWGiOperators
A1i A2i A3i A4i

C1i (0.5116,i0.2384,i0.2056) (0.5178,i0.1904,i0.1656) (0.4808,i0.2483,i0.2454) (0.4593,i0.2479,i0.2375)

C2i (0.5982,i0.1844,i0.1656) (0.5599,i0.2196,i0.1636) (0.5159,i0.1797,i0.2663) (0.2978,i0.2181,i0.3332)

C3i (0.5219,i0.2858,i0.1677) (0.4168,i0.2286,i0.4247) (0.3028,i0.1207,i0.5684) (0.3954,i0.2841,i0.2646)

C4i (0.5963,i0.2169,i0.1278) (0.3664,i0.1555,i0.437) (0.6537,i0.1999,i0.874) (0.2915,i0.3019,i0.2982)

C5i (0.1248,i0.2785,i0.4973) (0.3581,i0.2455,i0.2705) (0.5991,i0.1806,i0.1685) (0.7398,i0.0773,i0.1579)

Table 3.11: AveragingiAggregationiOperators (AV )
WAi OWAi

C1i (0.5391,i0.1928,i0.1754) (0.5335,i0.0888,i0.0696)

C2i (0.4499,i0.1764,i0.1924) (0.5655,i0.0783,i0.0847)

C3i (0.5419,i0.1399,i0.2002) (0.5112,i0.0654,i0.0866)

C4i (0.6398,i0.1856,i0.1216) (0.6356,i0.083,i0.0471)

C5i (0.5807,i0.1160,i0.2003) (0.5518,i0.0496,i0.0865)

Table 3.12: GeometriciAggregationiOperators(AV )
WGi OWGi

C1i (0.4992,i0.2286,i0.2374) (0.4918,i0.2316,i0.2141)

C2i (0.5273,i0.2015,i0.2338) (0.4763,i0.2007,i0.2356)

C3i (0.4589,i0.2271,i0.3527) (0.4017,i0.2326i0.3756)

C4i (0.4832,i0.2222,i0.2386) (0.4517,i0.2204,i0.2484)

C5i (0.4383,i0.2023,i0.2959) (0.3752,i0.199,i0.2882)

Table 3.13: PDAij (SoftiDombiiWA)
C1i C2i C3i C4i C5i

A1i (i0.8249i) (i4.9502i) (i0.8479i) (i0.5578i) (i0.0000i)

A2i (i1.5109i) (i4.3635i) (i0.0000i) (i0.4551i) (i0.0000i)

A3i (i1.3130i) (i2.1152i) (i1.2104i) (i0.9397i) (i0.7756i)

A4i (i0.7645i) (i3.7293i) (i0.6329i) (i0.0796i) (1i.4996i)

Table 3.14: NDAij(SoftiDombiiWA)
C1i C2i C3i C4i C5i

A1i (i0.0000i) (i0.0000i) (0.0000ii) (i0.0000i) (i0.1691i)

A2i (i0.0000i) (i0.0000i) (0.1040ii) (i0.0000i) (i0.2985i)

A3i (i0.0000i) (i0.0000i) (i0.0000i) (i0.0000i) (i0.0000i)

A4i (i0.0000i) (i0.0000i) (i0.0000i) (i0.0000i) (i0.0000i)

Table 3.15: PDAij(SoftiDombiiWG)
C1i C2i C3i C4i C5i

A1i (i0.1533i) (i0.1430i) (i2.9416i) (i0.0000i) (i2.1389i)

A2i (i0.5267i) (i0.0000i) (i0.2762i) (i0.4437i) (i0.0000i)

A3i (i0.0000i) (i0.0000i) (i0.8412i) (i0.0000i) (i3.0721i)

A4i (i0.6412i) (i0.0000i) (i1.2945i) (i0.0000i) (i3.2785i)

63



Table 3.16: NDAij (SoftiDombiiWG)
C1i C2i C3i C4i C5i

A1i (i0.0000i) (i0.0000i) (i0.0000i) (i2.3032i) (i0.0000i)

A2i (i0.0000i) (i0.2398i) (i0.0000i) (i0.0000i) (i1.4409i)

A3i (i0.4262i) (i0.5011i) (i0.0000i) (i1.2178i) (i0.0000i)

A4i (i0.0000i) (i0.3087i) (i0.0000i) (i1.2021i) (i0.0000i)

Table 3.17: PDAij(SoftiDombiiOWA)
C1i C2i C3i C4i C5i

A1i (i0.1338i) (i0.3894i) (i0.3172i) (i0.2718i) (i0.0000i)

A2i (i0.3593i) (i0.2717i) (i0.0000i) (i0.0391i) (i0.0000i)

A3i (i0.3386i) (i0.0204i) (i0.3421i) (i0.3546i) (i0.3291i)

A4i (i0.0865i) (i0.0446i) (i0.0597i) (i0.0000i) (i0.0698i)

Table 3.18: NDAij(SoftiDombiiOWA)
C1i C2i C3i C4i C5i

A1 (i0.0000i) (i0.0000i) (i0.0000i) (i0.0000i) (i0.7548i)

A2 (i0.0000i) (i0.0000i) (i0.0347i) (i0.0000i) (i0.2760i)

A3 (i0.0000i) (i0.0000i) (i0.0000i) (i0.0000i) (i0.0000i)

A4 (i0.0000i) (i0.0000i) (i0.0000i) (i0.1114i) (i0.0000i)

Table 3.19: PDAij(SoftiDombiiOWG)
C1i C2i C3i C4i C5i

A1i (i0.1019i) (i0.7973i) (i0.3550i) (i1.3047i) (i0.0000i)

A2i (i0.2686i) (i0.6464i) (i0.0000i) (i0.0000i) (i0.0000i)

A3i (i0.0000i) (i0.0373i) (i0.0000i) (i1.8514i) (i0.0000i)

A4i (i0.0000i) (i0.0000i) (i0.0000i) (i0.0000i) (i0.0000i)

Table 3.20: NDAij(Soft Dombi OWG)
C1i C2i C3i C4i C5i

A1i (i0.0000i) (i0.0000i) (i0.0000i) (i0.0000i) (i1.2424i)

A2i (i0.0000i) (i0.0000i) (i0.2699i) (i0.2739i) (i0.7824i)

A3i (i0.0422i) (i0.0000i) (i0.5269i) (i0.0000i) (i0.4394i)

A4i (i0.0559i) (i0.2761i) (i0.1307i) (i0.2099i) (i0.2882i)

Table 3.21: SP i(ii = i1, i2, i3, i4)
SP 1i SP 2i SP 3i SP 4i

WAi i1.1461i i0.8168i i1.083i i1.0956i

OWAi i0.2096i i0.1202i i0.0569i i0.2985i

WGi i1.3465i i0.2598i i0.9114i i1.2248i

OWGi i0.0000i i0.1431i i0.2826i i0.4212i
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Table 3.22: SN i(ii = i1, i2, i3, i4)
SN1i SN2i SN3i SN4i

WAi i0.2572i i0.0948i i0.0000i i0.0000i

OWAi i0.1660i i0.0704i i0.0145i i0.0000i

WGi i0.3455i i0.3482i i0.3416i i0.2204i

OWGi i0.1644i i0.2888i i0.2535i i0.1644i

Table 3.23: NSP i(ii = i1, i2, i3, i4)
NSP 1i NSP 2i NSP 3i NSP 4i

WAi i1.0000i i0.7127i i0.9449i i0.9559i

OWAi i0.7022i i0.4028i i0.1906i i1.0000i

WGi i1.0000i i0.1929i i0.6768i i0.2204i

OWGi i0.0000i i0.3355i i0.6709i i1.0000i

Table 3.24: NSN i(ii = i1, i2, i3, i4)
NSN1i NSN2i NSN3i NSN4i

WAi i0.0000i i0.6314i i1.0000i i1.0000i

OWAi i0.0000i i0.5757i i0.9128i i1.0000i

WGi i0.07734i i0.0000i i0.0189i i0.3668i

OWGi i0.4307i i0.0000i i0.1222i i0.0535i

Table 3.25: ASi(ii = i1, i2, i3, i4)
AS1i AS2i AS3i AS4i

WAi i0.5i i0.6721i i0.9725i i0.9779i

OWAi i0.3511i i0.4892i i0.5507i i1.0000i

WGi i0.5387i i0.0965i i0.3479i i0.6382i

OWGi i0.2153i i0.1678i i0.3965i i0.5268i

Table 3.26: RankingiofitheiAlternatives
Operatorsi iRankingionitheiBasisiof ASiiiValues

WAi A4i > iA3i > iA2i > iA1

OWAi A4i > iA3i > iA2i > iA1

WGi A4i > iA1i > iA3i > iA2

OWGi A4i > iA3i > iA1i > iA2
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• Theiproposediaggregationioperatorsimakeitheiaggregationiinformation more flex-

ibleiwithitheiinvolvementiofitheiparameter R.
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Figure 3.2: SensitivityiAnalysisi(a)iRankingiofialternativesiw.r.t.iproposed opera-

torsi(b)iRankingiofialternativesiw.r.t.ivalues of R

SensitivityiAnalysis:

Onitheibasisioficomputationsianditheiaboveisensitivity diagram, weiobserveithat

• TheieffectiofithisiparameteriRioniPFSDWAioperators is illustrated with the

helpiofitheisensitivityianalysis asishowniiniFigure 3.2 (b). Theiroleiofithe pa-

rameteriRiisiveryiimportant iniunderstandingitheivariability and reliability of

the obtainediresult. WeiconsideritheivalueiofiR = 1iforiouriMCDMiproblem.

However, theidecisionimakersican choositheiappropriateivalueioiRiaccordingito

their convenience.

• Figurei3.2 (b) clearlyishowsithatiifiweikeepionichangingithe valuesiofiRiwith re-

spectitoiweightediaggregation operators,itheiobtainedirankingireflectsiaikindiof

consistencyiinitheiselectioniofialternatives. Thisienablesiusitoimake sure that

theiuncertainty initheidecisioniisireduced.
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• Also, thereiisiaicomparisoniamongitheiproposediaggregation operatorsiwhichiis

shownibyiFigure 3.2 (a).

• Figurei3.2i(a)iexplainsithat if we carry on our computation with respect to

weightediaverageiandiorderediweightediaverage operatorsiandikeepitheivalueiof

Rifixed, thenitheirankingiofitheialternativesislightlyideviatesiat theileast prefer-

enceilevelibutiremainsiintactiatithe highestipreferenceilevel.

3.6 Conclusions

Inithisichapter, weisuccessfullyiproposed new aggregation operators called picture

fuzzy softiDombiiaggregationioperators. WeideviseditheiDombi operationalilaws un-

der picture fuzzyisoftienvironmentito developisomeinewiaggregationioperators, i.e.,

“PFSDWA, PFSDOWA, PFSDHA, PFSDWG, PFSDOWG, PFSDHG” aggregation

operatorsiby makingiuseiofiDombiinorms. Also, we proposedisomeiimportantiresults

andipropertiesialongiwithitheir proofsiwhichihelpsiusiinidesigningiandivalidating the

proposedimethodology. Onitheibasisiofithesiaggregationioperators, weimodifiedithe

EDASimethodologyiwhichiinvolvesithe parametrizationiofiattributesiand interrelation-

shipiamongitheiinput arguments. Further, weihaveisuccessfullyiapplieditheiproposed

methodologyitoithe problemiofiroboticiagrifarmingiproblem. Also, theiworkiinithis

chaptericanifurtheribeimodified toisome dimensionalityireductioniproblems, experi-

mentalistudies [109], [110].
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Chapter 4

Picture Fuzzy Hypersoft Sets

In this chapter, ainewiwayiofidefiningiPictureiFuzzyiHypersoft Seti(PFHSS)ihasibeen

presentediwhichicontainsianiadditional capacityiofiaccommodating the components of

neutralimembership (abstain)iandirefusalicompareditoiintuitionistic fuzzy hypersoft

set. Someiofitheiimportantipropertiesiandioperationalilaws relateditoitheiintroduced

picture fuzzy hypersoft weighted average/ordered weighted average operator and

weightedigeometric/orderediweighted geometricioperatori haveibeeniproved inidetail.

Also, weihaveiproposeditheinotioniofisimilarity measureiinitheipicturifuzzyihypersoft

setsialongiwith someiimportantitheoremsianditheiriutilization in a decision-making

problem. Basedionitheseiaggregationioperatorsiandiobtainediresults, a newialgorithm

forisolvingiaidecision-makingiproblem, involvingithe multi-sub attributes and their

parametrizationiinitheishadeiof abstainiandirefusalifeature, hasibeeniproposed. A nu-

mericaliexampleiofitheiselectioniprocessiofiemployees foriaicompanyihas been solved

toisuitablyiensure andivalidate the implementation of the proposed methodology.

Someiofitheiadvantageousifeaturesiofitheiproposedinotions andialgorithm have been

listedialongiwithitheicomparative analysisiinicontrastiwithitheiexistingiliterature.

4.1 PictureiFuzzyiHypersoftiSet & Operations

Inithisisection, weiintroduceitheinovelinotioniof PictureiFuzzyiHypersoftiSeti(PFHSS)

alongiwithivarious importantipropertiesiandifundamentalioperations. Theifollowing
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definitioniofiPFHSSi(theiparametrizationiof multi-subiattributesiandiallitheifour com-

ponentsiofipicture fuzzyiinformation)iisibeingiproposed:

Definition 25 (PictureiFuzzyiHypersoftiSet). “Let V be the universal set and

PFS(V ) be the set of all picture fuzzy subsets of V . Consider k1, k2, . . . .kn for n ≥
1, be n well-defined attributes, whose corresponding attribute values are the sets

K1, K2, . . . , Kn with Ki ∩ Kj = φ for i ̸= j and i, j ∈ {1, 2, . . . , n}. Let Bi be the

non-empty subsets of Ki for each i = 1, 2, . . . , n.

A Picture Fuzzy Hypersoft Set (PFHSS) is defined as the pair (R,B1 ×B2 × . . . .×Bn) ;

where R : K1 ×K2 × . . .×Kn → PFS (V ) and

R (B1 ×B2 × . . . .×Bn) =

{
< ϑ,

(
v

ρR(ϑ) (v) , τR(ϑ) (v) , ωR(ϑ)(v)

)
> | v ϵ V

}
.

It may be noted that ϑ ∈ B1×B2× . . . .×Bn ⊆ K1×K2× . . . .Kn and ρ , τ and ω rep-

resent the positive membership, neutral membership and negative membership degrees

respectively, and satisfies the condition

ρR(ϑ) (v) + τR(ϑ) (v) + ωR(ϑ) (v) ≤ 1 where ρR(ϑ) (v) , τR(ϑ) (v) , ωR(ϑ) (v) ∈ [0, 1] .

The term ∁R(ϑ) (v) = 1− ρR(ϑ) (v)− τR(ϑ) (v)− ωR(ϑ)(v) is called the degree of refusal

membership of v in PFS(V ). For the sake of simplicity, we denote K1 ×K2 × . . . .Kn

by Γ and B1 × B2 × . . . . × Bn by Λ. We denote the set of all PFHSSs over V by

PFHSS(V ).”

ParticulariCase: Iniparticular, theiproposedidefinitionialsoidirectsithatievery pic-

ture fuzzy hypersoftisetiisialsoiaipictureifuzzyisoftiset. Ifiweiselect the parameters

fromionly oneiattribute set, sayiK1, whileiformingitheipictureifuzzy hypersoft set,

thenithe resultingisetibecomesitheipictureifuzzyisoft set. Iniotheriwords, theipicture

fuzzy hypersoftisetiisitheigeneralizediversion ofitheipictureifuzzyisoftiset. Iniviewiof

theipossibleivariabilityibasedionitheiextreme valuesiofitheifouricomponentsiofipicture

fuzzyiinformation, weimayicategorizeitwoisub-definitionsiofiPFHSSiasifollows:

Definition 26 Aipictureifuzzyihypersoftiseti(R,Γ )ioveritheiuniverse V is known as

void pictureifuzzyihypersoftisetiandidenotedibyi0(VPFH,Γ) ififoriallivi ∈ iV and

ϑ ∈ iΓ, ρR(ϑ) (v) i = i0, iτR(ϑ) (v) i = i0 iandi ωR(ϑ) (v) i = i1.
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Definition 27 Aipictureifuzzyihypersoftiseti(R,Γ )ioveritheiuniverse V is known as

absoluteipictureifuzzyihypersoftisetiandidenotedibyi1(VPFH,Γ) ififoriallivi ∈ iV

andiϑ ∈ iΓ, ρR(ϑ) (v) i = i1, iτR(ϑ) (v) i = i0 iandi ωR(ϑ) (v) i = i0.

Example 1 LetiV ibeitheisetiofiavailableifourismart phonesigiveniasV i = i {v1, iv2, iv3, iv4}iand the

setiofiattributesigiveniasiK1i=iDisplay, K2i=iStorage1(ROM),iK3i=iStorage2(RAM),iK4i=iColour.

Further, iniorderitoiunderstanditheiframeworkiofitheiproposed notion, assumeithatitheir respective

sub-attributesiare

K1i = iDisplayi = i {OLEDi(α1), iAMOLEDi(α2), isuper AMOLEDi(α3)}

K2i = iStorage1i = i {32GBi(β1), 64GBi(β2), i128GBi(β3)}

K3i = iStorage2i = i {4GBi(γ1), i8GiB(γ2), i16GBi(γ3)}

K4i = iColouri = i {Blacki(δ1), iRose Goldi(δ2), iSpace Greyii(δ3)}

Also, assumeithati

B1i = i {α3} , iB2i = i {β1, iβ2 } , iB3i = i {γ1, γ3 } , i B4i = i {δ1}

C1i = i {α1, iα3} , iB2i = i {β1} , iB3i = i {γ1, i γ2 } , i B4i = i {δ2}

areitheisubsetsiofiKiiforieach ii = i1, 2, 3. Thenitheipictureifuzzyihypersoftiset (R, iΛ1i)iandi(R, iΛ2i)

mayihaveitheifollowingiset-theoreticianditabularirepresentation: “

(R, Λ1 )=



< (α3, β1, γ1, δ1),
{

v1
(0.1,0.3,0.5) ,

v2
(0.2,0.4,0.2) ,

v3
(0.1,0.2,0.4)

}
>,

< (α3, β1, γ3, δ1),
{

v1
(0.2,0.3,0.2) ,

v2
(0.2,0.1,0.2) ,

v3
(0.1,0.3,0.4)

}
>,

< (α3, β2, γ1, δ1),
{

v1
(0.1,0.1,0.5) ,

v2
(0.2,0.2,0.3) ,

v3
(0.1,0.4,0.4) ,

v4
(0.1,0.2,0.3)

}
>

< (α3, β2, γ3, δ1),
{

v1
(0.1,0.2,0.5) ,

v2
(0.2,0.2,0.2) ,

v3
(0.2,0.4,0.4) ,

v4
(0.1,0.2,0.6)

}
>


.

” “

(R, Λ2 )=



< (α1, β1, γ1, δ2),
{

v1
(0.1,0.3,0.2) ,

v2
(0.2,0.4,0.3) ,

v3
(0.1,0.2,0.5)

}
>,

< (α1, β1, γ2, δ2),
{

v1
(0.2,0.3,0.1) ,

v2
(0.2,0.1,0.1) ,

v3
(0.1,0.3,0.5)

}
>,

< (α3, β1, γ1, δ2),
{

v1
(0.1,0.1,0.7) ,

v2
(0.2,0.3,0.2) ,

v3
(0.1,0.4,0.2) ,

v4
(0.1,0.2,0.6)

}
>

< (α3, β1, γ2, δ2),
{

v1
(0.5,0.2,0.1) ,

v2
(0.2,0.4,0.2) ,

v3
(0.2,0.4,0.1) ,

v4
(0.1,0.2,0.1)

}
>


.

” “

” SomeiBasiciOperationsioniPictureiFuzzyiHypersoft Sets:

Iniviewiofitheiproposedidefinitioniofithe picture fuzzy hypersoft set above, we for-

mallyidefineisomeiofitheifundamentaliset-theoretic operationsiforithe sake of under-

standingiandibetter readability.

71



Table 4.1: TabulariformiofiPFHSS (R, iΛ1i)

(R, iΛ1i) v1i v2i v3i v4i

(α3, β1, iγ1, iδ1) (“0.1, i0.3, i0.5′′) (“0.2, i0.4, i0.2′′) (“0.1, i0.2, i0.4′′) (“0, i0, i1′′)

(α3, iβ1, iγ3, iδ1) (“0.2, i0.3, i0.2′′) (“0.2, i0.1, i0.2′′) (“0.1, i0.3, i0.4′′) (“0, i0, i1′′)

(α3, β2, iγ1, iδ1) (“0.1, i0.1, i0.5′′) (“0.2, i0.2, i0.3′′) (“0.1, i0.4, i0.4′′) (“0.1, i0.2, i0.3′′)

(α3, β2, iγ3, iδ1) (“0.1, i0.2, i0.5′′) (“0.2, i0.2, i0.2′′) (“0.2, i0.4, i0.4′′) (“0.1, i0.2, i0.6′′)

Table 4.2: TabulariformiofiPFHSSi(R, iΛ2i)

(R, iΛ2i) v1i v2i v3i v4i

(α1, β1, iγ1, iδ2) (“0.1, i0.3, i0.2′′) (“0.2, i0.4, i0.3′′) (“0.1, i0.2, i0.5′′) (“0, i0, i1)

(α1, β1, iγ2, iδ2
′′) (“0.2, i0.3, i0.1) (“0.2, i0.1, i0.1′′) (“0.1, i0.3, i0.5′′) (“0, i0, i1)

(α3, β1, iγ1, iδ2
′′) (“0.1, i0.1, i0.7) (“0.2, i0.3, i0.2′′) (“0.1, i0.4, i0.2′′) (“0.1, i0.2, i0.6)

(α3, β1, iγ2, iδ2
′′) (“0.5, i0.2, i0.1) (“0.2, i0.4, i0.2′′) (“0.2, i0.4, i0.1′′) (“0.1, i0.2, i0.1)

Leti(R1, iΛ)iandi (R2, iΛ
′) beitwoipictureifuzzyihypersoftisetsioniV iand Λ, iΛ′i ⊆ iΓ

beitheiset ofimulti-parameters.

Complementi. TheicomplementiofipictureifuzzyihypersoftisetioveriV is denoted

byii(R1, iΛ)
ciandidefined as (R1, iΛ)

ci = i (R1
ciΛ) , iwhereiR1

c:Γ i → iPFS(V )iisia

mappingigivenibyi R1
c (Λ) = (R1 (Λ))

c i∀i Λi ⊆ iΓ .

Thusiif, “

(R1,Λ )=

{
< ϑ,

(
v

ρR(ϑ) (v) , τR(ϑ) (v) , ωR(ϑ)(v)

)
> | v ϵ V, ϑ ∈ Λ

}
” then ”

(R1,Λ )c =

{
< ϑ,

(
v

ωR(ϑ) (v) , τR(ϑ) (v) , ρR(ϑ)(v)

)
> | v ϵ V, ϑ ∈ Λ

}
.

”

Subseti. LetiV ibeitheiuniverseiofidiscourseiandi (R1, iΛ)i (R2, iΛ
′)ibeianyitwo

pictureifuzzyihypersoftisetsioveritheisetiV. Then, (R1, iΛ)iisisaiditoibeiaipicture fuzzy

hypersoftisubsetiofi(R2, iΛ
′)iandidenoted by(R1, iΛ) i ⊆ i (R2, iΛ

′) if Λi ⊆ i Λ′iandifor

anyiϑ ∈ Λ, R1(ϑ)⊆R2(ϑ), i.e., ∀vi ∈ iV iandiϑi ∈ iΛ, “

ρR1(ϑ) (v) ≤ ρR2(ϑ) (v) , τR1(ϑ) (v) = τR2(ϑ) (v) and ωR1(ϑ) (v) ≥ ωR2(ϑ) (v) .
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”

Equalityi. “LetiV ibeitheiuniverseiofidiscourse and (R1,Λ ) , (R2,Λ
′ ) be any

two picture fuzzy hypersoft sets over the set V. Then, (R1,Λ ) is said to be a picture

fuzzy hypersoft equal (R2,Λ
′ ) and denoted by(R1,Λ )= (R2,Λ

′ ) if for all v ∈ V and

ϑ ∈ Λ, ρR1(ϑ) (v) = ρR2(ϑ) (v) , τR1(ϑ) (v) = τR2(ϑ) (v) and ωR1(ϑ) (v) = ωR2(ϑ) (v) .”

Unioni. LetiV ibeitheiuniverseiofidiscourse, Λ, Λ′ i ⊆ i Ãiandi(R1, iΛ) , i (R2, iΛ
′)

beianyitwoipictureifuzzyihypersoftisetsioveriV . Theiunioniofi(R1, iΛ)iandi(R2, iΛ
′) is

denotedibyi(R1, iΛ) i ∪ i (R2, iΛ
′)= (R,Λ′′), whereiΛ′′i = iΛ∪Λ′iandiϑi ∈ iΛ′′ There-

fore, ∀ ϑi ∈ iΛi ∩ iΛ′, weihave

” R (ϑ) =
{
v, max

(
ρR1(ϑ) (v) , ρR2(ϑ) (v)

)
,min

(
τR1(ϑ) (v) , τR2(ϑ) (v)

)
,

min(ωR1(ϑ)
(v) , ωR2(ϑ) (v))

}
.”

“ Intersection. Let V be the universe of discourse, Λ, Λ′ ⊆ Γ and (R1,Λ ) , (R2,Λ
′ )

be any two picture fuzzy hypersoft sets over V . The intersection of (R1,Λ ) and

(R2,Λ
′ ) is denoted by (R1,Λ )∩ (R2,Λ

′ )= (R,Λ∗), where Λ∗ = Λ∩Λ′ and ϑ ∈ Λ∗

Therefore, ∀ϑ ∈ Λ∩Λ′, we have

R (ϑ) =
{
v,min

(
ρR1(ϑ) (v) , ρR2(ϑ) (v)

)
,min

(
τR1(ϑ) (v) , τR2(ϑ) (v)

)
,

max(ωR1(ϑ)
(v) , ωR2(ϑ) (v))

}
.”

Remarks: Leti(R, iΛ)ibeiaipictureifuzzy hypersoftisetioveritheiuniversaliset V .

Then,

• ((R, iΛ)c)
c
i = i(R, iΛ)

• 0c
(VPFH,iΓ)

i = i1(VPFH,iΓ)

• 1c
(VPFH,iΓ)

i = i0(VPFH,iΓ)

Now, foritheisakeiofimethodologicalicalculationsiandifurther simplifications, theinotion

ofiPFHSSicanialsoibeiviewedias a PictureiFuzzyiHypersoftiNumberi(PFHSN)igiven be-

low:

Rvi (ϑj) i = i
{
ρR(ϑj) (vi) , iτR(ϑj) (vi) , iωR(ϑj) (vi) |vii ∈ iV

}
.

ThisistructureiwouldibeiknowniasiPictureiFuzzy HypersoftiNumberi(PFHSN).

Also, foriconvenience, PFHSNicanialsoibeidescribed as Iϑij =
(
ρR(ϑij), τR(ϑij), ωR(ϑij)

)
;
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whereitheisubscriptiϑijiisiuseditoiestablish the connection between the alternatives

anditheiparametersifor theicalculationipurposes.

Iniorderitoiproposeiainewialgorithmiforiranking the alternatives based on the pro-

posediPFHSSianditheir aggregationioperators, weisuitablyireframeitheinotioniofithe

scoreifunctioniandiaccuracyifunctioniforiPFHSNsias follows:

LetiIϑij i = i
(
ρR(ϑij), iτR(ϑij), iωR(ϑij)

)
ibeiaiPFHSN. Theiscoreifunction of Iϑij is

givenibyiS
(
Iϑij
)
i = iρR(ϑij)i−iτR(ϑij)i−iωR(ϑij); ii, ji ∈ i {1, i2, i . . . i, n}iand iS

(
Iϑij
)
∈

[−1, 1] .

Remarks:

• Itimayibeinotedithatiinisomeisituations, theiscoreifunctioniforitwoidifferent PFH-

SNsimayibe theisame,ie.g.,

iifiweitakeiIϑ11i = i(0.3, i0.5, i0.2)iandiIϑ12i = i(0.6, i0.4, i0.6) as two PFHSNs

theniasiperitheidefinitioniofitheiscore function, theiscoreivalueiwouldibei -0.4.

• Inisuchicases, itiwillinotibeieasyitoidecideiwhichione isitheimostiappropriateiIϑ11

oriIϑ12 . Therefore, iniorderitoiovercomeisuchiproblems, theinotioniofiaccuracy

functionihasitoibeifurther introduced.

TheiAccuracyifunction iofi Iϑij iisigivenibyi

H
(
Iϑij
)
i = iρR(ϑij)i+ iτR(ϑij)i+ iωR(ϑij).

ItimayialsoibeinotedithatiH
(
Iϑij
)
i ∈ i [0, 1]iandiforitheicomparisoniof theitwoiPFHSNs,

Iϑij iandiJϑij , theifollowingicomparisonsiofitheiabove-definedifunctionsihave beenidone.

“

• If S
(
Iϑij
)
> S

(
Jϑij
)
then Iϑij> Jϑij .

• If S
(
Iϑij
)
< S

(
Jϑij
)
then Iϑij< Jϑij .

• If S
(
Iϑij
)
= S

(
Jϑij
)
then Iϑij≡ Jϑij .

• If H
(
Iϑij
)

> H
(
Jϑij
)

then

Iϑij> Jϑij .

• If H
(
Iϑij
)

< H
(
Jϑij
)

then

Iϑij< Jϑij .

• If H
(
Iϑij
)
=H

(
Jϑij
)

then

Iϑij≡ Jϑij .
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” Remark: From, the above definition, the score function is monotonically in-

creasing with respect to its variables.

4.2 Average/GeometriciAggregationiOperators

Initheiprocessiofiinformationifusion, theimathematicalinotioniofiaggregation operator

whichiaggregatesitheiinterrelatedimultipleiinputivaluesito solelyioneioutturnivalue, is

aniessentialitooliandiwidelyiutilizedifor handling various decision-making problems.

Theiproblemsiareinotionlyilimiteditoitheifield ofimathematicsibutialsoiwidely spread

iniphysics,ieconomics, engineering,isocialiandiother sciences. In this section, we de-

viseitwoitypesiofiaggregationioperatorsi(Averaging aggregation operators and Geo-

metric aggregationioperators)iforiPicture FuzzyiHypersoftiNumbersiandidiscuss vari-

ous resultsibasedion this.

Forithe sake of defining the picture fuzzy hypersoft weighted averaging and weighted

geometricioperator, weifirstineeditoiunderstanditheinotioniofisum, product, scalar mul-

tiplication,iexponentiandicomplementiof PFHSNsiwhichihaveibeenidefinediasibelow: “

Let Iϑd = (ρϑd , τϑd , ωϑd) , Iϑ11 = (ρϑ11 , τϑ11 , ωϑ11) and Iϑ12 = (ρϑ11 , τϑ12 , ωϑ12) be

three PFHSNs and κ be a positive real number. Then, the following operations are

defined over three PFHSNs:

(a) Iϑ11 ⊕ Iϑ12 = ⟨ρϑ11 + ρϑ12 − ρϑ11ρϑ12 , τϑ11τϑ12 , ωϑ11ωϑ12⟩ .

(b) Iϑ11 ⊗ Iϑ12 = ⟨(ρϑ11ρϑ12 , τϑ11 + τϑ12 − τϑ11τϑ12 , ωϑ11 + ωϑ12 − ωϑ11ωϑ12⟩ .

(c) κIϑd = ⟨[1− (1− ρϑd)
κ , (τϑd)

κ, (ωϑd)
κ]⟩ .

(d) Iκϑd = ⟨[(ρϑd)
κ , 1− (1− τϑd)

κ, 1− (1− ωϑd)
κ]⟩ .

(e) Icϑd = (ωϑd , τϑd , ρϑd) .

”
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4.2.1 Picture Fuzzy Hypersoft Weighted Averaging (PFH-

SWA) Aggregation Operator

Definition 28 LetiIϑdi = i (ρϑd , iτϑd , iωϑd)ibeiaiPFHSN,iJiiandiFj representiweight

vectorsiforiexpert’siandisub-attributesifor selectediparameters respectively with the con-

straint Ji > 0,
∑n

i=1 Ji = 1iandiFj > 0, i
∑n

i=1 Fj = 1. Then, theiPictureiFuzzy

HypersoftiWeightediAveragei(PFHSWA)iaggregation operatoriisia mappingi

Nni→ iNi giveniby

PFHSWA(Iϑ11 , iIϑ12 , i . . . , iIϑnm)i = i⊕m
j=1Fj

(
i⊕ ini=1JiIϑij

)
. (4.2.1)

whereiNni = i (Iϑ11 , iIϑ12 , i . . . i, Iϑnm)iisiaicollectioniofiallithe PFHSNs.

Theorem 8 LetiIϑdi = i (ρϑd , iτϑd , iωϑd)ibeiaiPFHSN. Thenifromiequation (4.2.1),

theiweightediaverageiaggregationi(fusion)iofiallitheiinput valuesialsoigives a PFHSN,

representediby,

PFHSWA(Iϑ11 , iIϑ12 , i . . . iIϑnm)

=

〈
1−

∏m
j=1

(∏n
i=1

(
1− ρϑij

)Ji)Fj

, i
∏m

j=1

(∏n
i=1

(
τϑij
)Ji)Fj

, i (4.2.2)

i
m∏
j=1

(
n∏
i=1

(
ωϑij

)Ji)Fj
〉
.

whereiJiiandiFjirepresentiweightivectors foriexpert’siandisub-attributesiforiselected pa-

rametersirespectively withitheiconstraintiJi > 0, i
∑n

i=1 Ji = 1iandFj > 0,
∑n

j=1 iFj = 1.

Proof 1 Theiproofiofitheitheoremifollowsifromitheiprinciple ofimathematicaliinduction.

“ For n = 1, we get J1 = 1. (because
∑n

i=1 Ji = 1. )

Then, from equation (4.2.1), we have

PFHSWA(Iϑ11 , Iϑ12 , . . . ., Iϑnm) = ⊕m
j=1FjIϑ1j .

Now, using the above-stated functional laws (a)-(e), we get

PFHSWA(Iϑ11 , Iϑ12 , . . . ., Iϑnm) =〈
1−

m∏
j=1

(
1− ρϑ1j

)Fj
,

m∏
j=1

(
τϑ1j

)Fj
,

m∏
j=1

(
ωϑ1j

)Fj

〉
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=

〈
1−

m∏
j=1

(
1∏
i=1

(
1− ρϑij

)Ji

)Fj

,

m∏
j=1

(
1∏
i=1

(
τϑij

)Ji

)Fj

,

m∏
j=1

(
1∏
i=1

(
ωϑij

)Ji

)Fj
〉
.

Also, For m = 1, we get F1 = 1. (because
∑m

j=1 Fj = 1 .)

Then, from equation (4.2.1), we have

PFHSWA(Iϑ11 , Iϑ12 , . . . ., Iϑnm) = ⊕n
i=1JiIϑi1. Again, using the above-stated func-

tional laws (a)-(e), we get

PFHSWA(Iϑ11
, Iϑ12

, . . . ., Iϑnm
) =〈

1−
n∏
i=1

(1− ρϑi1)
Ji ,

n∏
i=1

(τϑi1)
Ji ,

n∏
i=1

(ωϑi1)
Ji

〉

=

〈
1−

1∏
j=1

(
n∏
i=1

(
1− ρϑij

)Ji

)Fj

,

1∏
j=1

(
n∏
i=1

(
τϑij

)Ji

)Fj

,

1∏
j=1

(
n∏
i=1

(
ωϑij

)Ji

)Fj
〉
.

This shows that equation (4.2.2) satisfies for n = 1 and m = 1. As per induction

hypothesis, assume that equation (4.2.2) holds for m = α1 + 1, n = α2 and m =

α1, n = α2 + 1; i.e.,

⊕α1+1
j=1 Fj

(
⊕α2
i=1JiIϑij

)
=

〈
1−

α1+1∏
j=1

(
α2∏
i=1

(
1− ρϑij

)Ji

)Fj

,

α1+1∏
j=1

(
α2∏
i=1

(
τϑij

)Ji

)Fj

,

α1+1∏
j=1

(
α2∏
i=1

(
ωϑij

)Ji

)Fj
〉
;

⊕α1
j=1Fj

(
⊕α2+1
i=1 JiIϑij

)
=

〈
1−

α1∏
j=1

(
α2+1∏
i=1

(
1− ρϑij

)Ji

)Fj

,

α1∏
j=1

(
α2+1∏
i=1

(
τϑij

)Ji

)Fj

,

α1∏
j=1

(
α2+1∏
i=1

(
ωϑij

)Ji

)Fj 〉
.

Now for m = α1 + 1, n = α2 + 1, we get

⊕α1+1
j=1 Fj

(
⊕α2+1

i=1 JiIϑij

)
= ⊕α1+1

j=1 Fj

(
⊕α2

i=1JiIϑij
⊕ Jα2+1Iϑ(α2+1)j

)
= ⊕α1+1

j=1 ⊕α2
i=1FjJiIϑij

⊕α1+1
j=1 FjJα2+1Iϑ(α2+1)j
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=

〈1−
α1+1∏
j=1

(
α2∏
i=1

(
1− ρϑij

)Ji

)Fj


⊕

1−
α1+1∏
j=1

((
1− ρϑ(α2+1)j

)J(α2+1)

)Fj

 ,

α1+1∏
j=1

(
α2∏
i=1

(
τϑij

)Ji

)Fj

⊕
α1+1∏
j=1

((
τϑ(α2+1)j

)J(α2+1)

)Fj

,

α1+1∏
j=1

(
α2∏
i=1

(
ωϑij

)Ji

)Fj

⊕
α1+1∏
j=1

((
ωϑ(α2+1)j

)J(α2+1)

)Fj
〉

=

〈
1−

α1+1∏
j=1

(
α2+1∏
i=1

(
1− ρϑij

)Ji

)Fj

,

α1+1∏
j=1

(
α2+1∏
i=1

(
τϑij

)Ji

)Fj

,

α1+1∏
j=1

(
α2+1∏
i=1

(
ωϑij

)Ji

)Fj 〉
.

Therefore, the result is true for m = α1 +1, n = α2 +1 and the theorem is proved. ”

PropertiesiofiPFHSWAiOperator

• Idempotency

IfiIϑij i = iIϑαi = i
(
ρϑij , iτϑij , iωϑij

)
i∀i, j,ithen PFHSWA(Iϑ11 , iIϑ12 , i . . . i, Iϑnm)i =

iIϑα .

Proof. LetiIϑij i = iIϑαi = i
(
ρϑij , iτϑij , iωϑij

)
ibeiaicollectioniofiPFHSNs, then

withitheiuseiofiequation (4.2.2), weiget

PFHSWA(Iϑ11 , iIϑ12 , i . . . i, Iϑnm)

i = i

〈
1−

∏m
j=1

(∏n
i=1

(
1− ρϑij

)Ji)Fj

, i
∏m

j=1

(∏n
i=1

(
τϑij
)Ji)Fj

, i

i

m∏
j=1

(
n∏
i=1

(
ωϑij

)Ji)Fj
〉
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i = i

〈
1−

((
1− ρϑij

)∑n
i=1 Ji

)∑m
j=1 Fj

,
((
τϑij
)∑n

i=1 Ji
)∑m

j=1 Fj

,((
ωϑij

)∑n
i=1 Ji

)∑m
j=1 Fj

〉
i = i

〈
1− ((1− ρϑij), i(τϑij), iωϑij

〉
i = i

(
ρϑij , iτϑij , iωϑij

)
= Iϑα .

Hence, thiidempotencyiholds.

• Boundedness

SupposeiIϑij ibeiaicollectioniofipictureifuzzyihypersoft numbers.

“ Let I−ϑij=

〈
min
j

min
i

{
ρϑij
}
, max

j
max
i

{
τϑij
}
, max

j
max
i

{
ωϑij

}〉
and

I+ϑij=

〈
max
j

max
i

{
ρϑij
}
, min

j
min
i

{
τϑij
}
, min

j
mini

{
ωϑij

}〉
, then

I−ϑij ≤ PFHSWA(Iϑ11 , Iϑ12 , . . . ., Iϑnm ≤ I+ϑij .

Proof.

Let Iϑij =
(
ρϑij , τϑij , ωϑij

)
be a PFHSN, then min

j
min
i

{
ρϑij
}

≤
{
ρϑij
}

≤

max
j

max
i

{
ρϑij
}

=⇒ 1−max
j

max
i

{
ρϑij

}
≤
{
1− ρϑij

}
≤ 1−min

j
min
i

{
ρϑij

}

⇐⇒
(
1− max

j
max
i

{
ρϑij

})Ji

≤
(
1− ρϑij

)Ji

≤
(
1− min

j
min
i

{
ρϑij

})Ji

⇐⇒
(
1− max

j
max
i

{
ρϑij

})∑n
i=1 Ji

≤
n∏
i=1

(
1− ρϑij

)Ji

≤
(
1− min

j
min
i

{
ρϑij

})∑n
i=1 Ji

⇐⇒
(
1− max

j
max
i

{
ρϑij

})
≤

n∏
i=1

(
1− ρϑij

)Ji

≤
(
1− min

j
min
i

{
ρϑij

})
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(as
∑n
i=1 Ji = 1.)

⇐⇒
(
1−max

j
max
i

{
ρϑij

})∑m
j=1 Fj

≤
m∏
j=1

(
n∏
i=1

(1− ρϑij
)
Ji

)Fj

≤
(
1−min

j
min
i

{
ρϑij

})∑m
j=1 Fj

⇐⇒
(
1−max

j
max
i

{
ρϑij

})
≤

m∏
j=1

(
n∏
i=1

(1− ρϑij
)
Ji

)Fj

≤
(
1−min

j
min
i

{
ρϑij

})
(as

∑m
j=1 Fj = 1.)

⇐⇒
(

min
j

min
i

{
ρϑij

})
≤ 1−

m∏
j=1

(
n∏
i=1

(
1− ρϑij

)Ji

)Fj

≤
(

max
j

max
i

{
ρϑij

})
. (4.2.3)

Similarly,

(
min
j

min
i

{
τϑij

})
≤

m∏
j=1

(
n∏
i=1

(
τϑij

)Ji

)Fj

≤
(

max
j

max
i

{
τϑij

})
. (4.2.4)

(
min
j

min
i

{
ωϑij

})
≤

m∏
j=1

(
n∏
i=1

(
ωϑij

)Ji

)Fj

≤
(

max
j

max
i

{
ωϑij

})
. (4.2.5)

LetPFHSWA(Iϑ11
, Iϑ12

, . . . ., Iϑnm
)= (ρϑα

, τϑα
, ωϑα

) = Iϑα
, so that the inequalities (4.2.3),

(4.2.4) and (4.2.5) could be transformed into following forms:

min
j

min
i

{
ρϑij

}
≤
{
ρϑij

}
≤ {ρϑα

}

≤ max
j

max
i

{
ρϑij

}
;

min
j

min
i

{
τϑij

}
≤
{
τϑij

}
≤ {τϑα}

≤ max
j

max
i

{
τϑij

}
;
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and

min
j

min
i

{
ωϑij

}
≤
{
ωϑij

}
≤ {ωϑα}

≤ max
j

max
i

{
ωϑij

}
respectively. So, by making use of the earlier defined score function, we obtain

the following values:

S (Iϑα) = ρϑα − τϑα − ωϑα ≤ max
j

max
i

{
ρϑij

}
−min

j
min
i

{
τϑij

}
−min

j
min
i

{
ωϑij

}
= S

(
I+ϑij

)
.

Also,

S (Iϑα) = ρϑα − τϑα − ωϑα ≥ min
j

min
i

{
ρϑij

}
−max

j
max
i

{
τϑij

}
−max

j
max
i

{
ωϑij

}
= S

(
I−ϑij

)
.

” Now, byimakingiuseiofitheiorderirelationibetweenithese twoiPFHSNs, weiget

I−ϑij ii ≤ iPFHSWA(Iϑ11 , iIϑ12 , i . . . i, Iϑnm ≤ I+ϑij whichiisitheiproofiofithe bound-

edness.

• ShiftiInvariance IfiIϑαi = i(ρϑα , iτϑα , iωϑα) beiaiPFHSN,ithen,

“

PFHSWA(Iϑ11
⊕ Iϑα

, Iϑ12
⊕ Iϑα

, . . . , Iϑnm
⊕ Iϑα

) = PFHSWA(Iϑ11
, Iϑ12

, . . . , Iϑnm
) ⊕ Iϑα

.

Proof. LetiIϑα iandiIϑij ibeitwo PFHSNs. Then, byitheioperationalilawiof di-

rectisumidefined aboveiin (a), weiget Iϑαi⊕ iiIϑij =〈
ρϑαi+ iρϑij i− iρϑαρϑij , iτϑατϑij , iωϑαωϑij

〉
. Therefore,

“PFHSWA(Iϑ11⊕ Iϑα , Iϑ12⊕ Iϑα , . . . ., Iϑnm⊕ Iϑα) = ⊕m
j=1Fj

(
⊕n
i=1Ji(Iϑij ⊕ Iϑα)

)

i = i

〈
1−

m∏
j=1

(
n∏
i=1

(
1− ρϑij

)Ji
(1− ρϑα

)
Ji

)Fj

, i

i

m∏
j=1

(
n∏
i=1

(
τϑij

)Ji
(τϑα)

Ji

)Fj

, i

i

m∏
j=1

(
n∏
i=1

(
ωϑij

)Ji
(ωϑα

)
Ji

)Fj
〉
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i = i

〈
1− (1− ρϑα

)

m∏
j=1

(
n∏
i=1

(
1− ρϑij

)Ji

)Fj

, i

i (τϑα)

m∏
j=1

(
n∏
i=1

(
τϑij

)Ji

)Fj

, i

i (ωϑα
)

m∏
j=1

(
n∏
i=1

(
ωϑij

)Ji

)Fj
〉
;

(as
∑n

i=1 Ji = 1.)

=

〈
1−

m∏
j=1

(
n∏
i=1

(
1− ρϑij

)Ji

)Fj

, i

i

m∏
j=1

(
n∏
i=1

(
τϑij

)Ji

)Fj

, i

i

m∏
j=1

(
n∏
i=1

(
ωϑij

)Ji

)Fj
〉
i⊕ i ⟨ρϑα

, iτϑα
, iωϑα

⟩

” i = iPFHSWA(Iϑ11
, iIϑ12

, i . . . i, Iϑnm
)i ⊕ iIϑα

; whichicompletesitheiproofiof oper-

atoribeingishiftiinvariant.

• Homogeneity Forianyipositiveirealinumberiκ,

PFHSWA(κIϑ11 , iκIϑ12 , i . . . i, κIϑnm)i = iκPFHSWA(Iϑ11 , iIϑ12 , i . . . i, Iϑnm).

Proof. LetiIϑij ibeiaiPFHSNiandiκ > 0 beiairealinumber, thenibyithe opera-

tionalilawiofiscalarimultiplicationidefined aboveiini(c), weiget

κIvij i = i
〈[

1−
(
1− ρϑij

)iκ
, i i

(
τϑij
)iκ
,
(
ωϑij

)iκ]〉
.

Thus,

PFHSWA(κIϑ11 , iκIϑ12 , . . . i, κIϑnm)i = i〈
1−

∏m
j=1

(∏n
i=1

(
1− ρϑij

) κJi
)Fj

, i
∏m
j=1

(∏n
i=1

(
τϑij

) κJi
)Fj

, i
∏m
j=1

(∏n
i=1

(
ωϑij

)iκJi
)Fj
〉

=

〈
1−

 m∏
j=1

(
n∏
i=1

(
1− ρϑij

) Ji

)Fj
iκ

, i

 m∏
j=1

(
n∏
i=1

(
τϑij

)iJi

)Fj
 κ

,

 m∏
j=1

(
n∏
i=1

(
ωϑij

)iJi

)Fj
iκ〉

= κ PFHSWA(Iϑ11 , Iϑ12 , . . . ., Iϑnm).
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• Monotonicity LetiIϑij iandiI
′

ϑij
ibeitheicollectioniofitwoiPFHSNs. If Iϑij i ≤

iiI
′

ϑij
ithen,

PFHSWA(Iϑ11 , iIϑ12 , i . . . i, Iϑnm)i ≤ iPFHSWA
(
Iϑ′11

, iIϑ′12
, i . . . iIϑ′nm

)
.

Proof. Theiproofifollowsibyimakingiuseiofitheioperational lawsistatediabove.

Further, weiintroduceianotheritypeiofiaverageiaggregationioperator called the ordered

weightediaveragingioperatoriforiPicture FuzzyiHypersoftiNumbersiasifollows:

Definition 29 LetiIϑd = (ρϑd , iτϑd , iωϑd) be aiPFHSN, Ji and Fjirepresentiweight

vectorsiforiexpert’siandisub-attributes foritheiselectediparametersirespectivelyiwithithe

constraint Ji > 0, i
∑n

i=1 Ji = 1iandiFj > 0, i
∑n

i=1 Fj = 1. Then, PictureiFuzzy

HypersoftiOrderediWeightediAverage (PFHSOWA) Aggregation Opera-

tor is aimappingi Nni→ iNigiveniby

PFHSOWA(Iϑ11 , iIϑ12 , i . . . i, Iϑnm)i = ii⊕ imj=1Fj

(
i⊕ ini=1JiIϑσ(ij)

)
. (4.2.6)

whereiNn = (Iϑ11 , iIϑ12 , i . . . i, Iϑnm)iisiaicollectioniofiPictureiFuzzyiHypersoft Numbers

andiσ (11),iσ (12) , iσ (21) , i . . . . . . σ (nm) isiaipossibleipermutationiofiiiandijiwith i =

1, i2, i . . . .niandij = 1, 2, . . . .m.

4.2.2 GeometriciAggregationiOperators

Inithisisubsection, weisubsequentlyistudyiandidefineitheinewigeometric aggregation op-

eratorsiforitheiproposedipictureifuzzyihypersoftinumbers as follows:

Definition 30 LetiIϑd = (ρϑd , iτϑd , iωϑd)ibe aiPFHSN,iJiiandiFjirepresentiweight vec-

tors foriexpert’siandisub-attributesiforiselectediparametersirespectively with the con-

straintiJi > 0, i
∑n

i=1 Ji = 1 and Fj > 0,
∑n

i=1 iFj = 1. ThenitheiPictureiFuzzy

HypersoftiWeightediGeometrici(PFHSWG) AggregationiOperatoriisia map-

pingi Nni→ iNigiveniby

PFHSWG(Iϑ11 , iIϑ12 , i . . . i, Iϑnm)i = i⊗m
j=1

(
⊗n
i=1Iϑij

Ji
)Fj

; (4.2.7)

whereiNni = i (Iϑ11 , iIϑ12 , i . . . i, Iϑnm)iisiaicollectioniofiPFHSNs.
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Theorem 9 LetiIϑdi = i (ρϑd , iτϑd , iωϑd)ibeiaiPFHSN. Thenifromiequation (4.2.7),

theiweightedigeometriciaggregation(fusion)iofiallitheiinput valuesialsoigivesiaiPFHSN

giveniby

PFHSWG(Iϑ11
, Iϑ12

, . . . ., Iϑnm
)

=

〈∏m
j=1

(∏n
i=1

(
ρϑij

)Ji
)Fj

, 1−
∏m
j=1

(∏n
i=1

(
1− τϑij

)Ji
)Fj

, 1−
∏m
j=1

(∏n
i=1

(
1− ωϑij

)Ji
)Fj
〉
;(4.2.8)

whereiJiiandiFjirepresentiweightivectorsifor expert’siandisub-attributesiforiselected pa-

rametersirespectivelyiwith theiconstraintiJi > 0, i
∑n

i=1 Ji = 1iandFj > 0, i
∑n

j=1 Fj = 1.

Proof 2 “ The proof of the theorem follows from the principle of mathematical in-

duction.

For n = 1, we get J1 = 1. (because
∑n

i=1 Ji = 1. )

Then, from (4.2.7), we have

PFHSWG(Iϑ11 , Iϑ12 , . . . ., Iϑnm) = ⊗m
j=1Iϑ1j

Fj .

Now, using the above-stated functional laws (a)-(e), we get

PFHSWG(Iϑ11 , Iϑ12 , . . . ., Iϑnm) =〈
m∏
j=1

(
ρϑ1j

)Fj , 1−
m∏
j=1

(
1− τϑ1j

)Fj ,

1−
m∏
j=1

(
1− ωϑ1j

)Fj

〉

=

〈
m∏
j=1

(
1∏
i=1

(
ρϑij
)Ji)Fj

, 1−
m∏
j=1

(
1∏
i=1

(
1− τϑij

)Ji)Fj

,

1−
m∏
j=1

(
1∏
i=1

(
1− ωϑij

)Ji)Fj
〉
.

Also, for m = 1, we get F1 = 1. (because
∑m

j=1 Fj = 1.)
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Then, from (4.2.7), we have

PFHSWG(Iϑ11 , Iϑ12 , . . . ., Iϑnm) = ⊗n
i=1Iϑi1

Ji.

Again, using the above-stated functional laws (a)-(e), we get

PFHSWG(Iϑ11 , Iϑ12 , . . . ., Iϑnm)

=

〈
n∏
i=1

(ρϑi1)
Ji , 1−

n∏
i=1

(1− τϑi1)
Ji ,

1−
n∏
i=1

(1− ωϑi1)
Ji

〉

=

〈
1∏
j=1

(
n∏
i=1

(
ρϑij
)Ji)Fj

, 1−
1∏
j=1

(
n∏
i=1

(
1− τϑij

)Ji)Fj

,

1−
1∏
j=1

(
n∏
i=1

(
1− ωϑij

)Ji)Fj
〉
.

This shows that equation (4.2.7) satisfies for n = 1 and m = 1.

Assume that equation (4.2.7) holds for m= α1 + 1, n = α2 and m = α1, n = α2 + 1;

i.e.,

⊗α1+1
j=1

(
⊗α2
i=1Iϑij

Ji

)Fj

=

〈
α1+1∏
j=1

(
α2∏
i=1

(
ρϑij

)Ji

)Fj

,

1−
α1+1∏
j=1

(
α2∏
i=1

(
1− τϑij

)Ji

)Fj

,

1−
α1+1∏
j=1

(
α2∏
i=1

(
1− ωϑij

)Ji

)Fj
〉
;

⊗α1
j=1

(
⊗α2+1
i=1 Iϑij

Ji

)Fj

=

〈
α1∏
j=1

(
α2+1∏
i=1

(
ρϑij

)Ji

)Fj

,

1−
α1∏
j=1

(
α2+1∏
i=1

(
1− τϑij

)Ji

)Fj

,

1−
α1∏
j=1

(
α2+1∏
i=1

(
1− ωϑij

)Ji

)Fj 〉
.
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Now for m = α1 + 1, n = α2 + 1, we get

⊗α1+1
j=1

(
⊗α2+1
i=1 Iϑij

Ji
)Fj

= ⊗α1+1
j=1

(
⊗α2
i=1Iϑij

Ji ⊗ Iϑ(α2+1)j

Jα2+1

)Fj

= ⊗α1+1
j=1

(
⊗α2
i=1Iϑij

Ji
)Fj⊗α1+1

j=1

(
Iϑ(α2+1)j

Jα2+1

)Fj

=

〈
α1+1∏
j=1

(
á2∏
i=1

(
ρϑij
)Ji)Fj

⊗

α1+1∏
j=1

((
ρϑ(α2+1)j

)J(α2+1)

)Fj

,

1−
α1+1∏
j=1

(
α2∏
i=1

(
1− τϑij

)Ji)Fj

⊗

1−
α1+1∏
j=1

((
1− τϑ(α2+1)j

)J(α2+1)

)Fj

,

1−
α1+1∏
j=1

(
α2∏
i=1

(
1− ωϑij

)Ji)Fj

⊗

1−
α1+1∏
j=1

((
1− ωϑ(α2+1)j

)J(α2+1)

)Fj

〉

=

〈
α1+1∏
j=1

(
α2+1∏
i=1

(
ρϑij
)Ji)Fj

,

1−
α1+1∏
j=1

(
α2+1∏
i=1

(
1− τϑij

)Ji)Fj

,

1−
α1+1∏
j=1

(
α2+1∏
i=1

(
1− ωϑij

)Ji)Fj
〉
.

Therefore, the result is true for m= α1 +1, n = α2 +1 and the theorem is proved. ”

Remark: Further, the properties like Idempotency, Boundedness, Homogeneity, Shift

Invariance and Monotonicity can be defined for geometric aggregation operators anal-

ogous to averaging aggregation operators.
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4.2.3 Algorithm for Proposed Articulation and Devised Ag-

gregation Operators under the surroundings of PFHSS.

Foritheisakeiofisolvingitheiproposediarticulation outlinediabove, weipresentiainew al-

gorithmiandilistioutithe necessaryistepsiwithitheihelpiofitheifollowingiFigure 4.1 as fol-

lows:

Start

End

Specify the Structure of 

Alternatives
Deputing a Team of Decision Makers Select the parameters as per the 

MCDM Model with respective 

sub-attributes

Formulation of Decision Matrices for Alternatives as per 

the Decision Maker’s Opinion in the form of PFHSNs

Conversion of Cost type to Benefit type sub-attributes 

with the help of Normalization Identify the Cost type attributes

Process of Aggregation with 

proposed operation

PFHSWA Operator PFHSWG Operator

Arrange the aggregated Picture Fuzzy Hypersoft 

Numbers(PFHSNs)

Computation of  Score Values for Aggregated  

PFHSNs

Ordering with maximum Score 

Values for all the Alternatives  
Rank the Alternatives

Figure 4.1: FlowchartiofitheiProposediAlgorithm

Theidetailingiofitheioutlinedistepsiofitheiproposed methodologyiisibeingipresented be-

low:

Stepi1: Assembleitheidatairelateditoieachialternativeiinithe formiofiPictureiFuzzy Hy-

persoftiNumberiiniaccordanceiwith severaliconditionsiofimulti-parameterizationsiand

rearrangeithemito constructiaiPictureiFuzzyiHypersoftidecisionimatrixiforithe avail-

ableiexpertsiprovidediwithirespectitoieachialternative “
{
Y(q) : q = 1, 2, . . . , n

}
as fol-
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lows:

(Y(q),Ω
′
)w×p =



ϑ
′
1 ϑ

′
2 · · · ϑ

′
p

Z1 (ρ
(q)

ϑ
′
11

, τ
(q)

ϑ
′
11

, ω
(q)

ϑ
′
11

) (ρ
(q)

ϑ
′
12

, τ
(q)

ϑ
′
12

, ω
(q)

ϑ
′
12

) · · · (ρ
(q)

ϑ
′
1p

, τ
(q)

ϑ
′
1p

, ω
(q)

ϑ
′
1p

)

Z2 (ρ
(q)

ϑ
′
21

, τ
(q)

ϑ
′
21

, ω
(q)

ϑ
′
21

) (ρ
(q)

ϑ
′
22

, τ
(q)

ϑ
′
22

, ω
(q)

ϑ
′
22

) · · · (ρ
(q)

ϑ
′
2p

, τ
(q)

ϑ
′
2p

, ω
(q)

ϑ
′
2p

)

...
...

...
. . .

...

Zw (ρ
(q)

ϑ
′
n1

, τ
(q)

ϑ
′
n1

, ω
(q)

ϑ
′
n1

) (ρ
(q)

ϑ
′
n2

, τ
(q)

ϑ
′
n2

, ω
(q)

ϑ
′
n2

) · · · (ρ
(q)

ϑ′np
, τ

(q)

ϑ′np
, ω

(q)

ϑ′np
)


” Stepi2: Initheicaseiofiinconsistentisub-attributes, transformationioficostiand ben-

efititypeisub-attributesiis required. Thisicanibeidoneiwithihelpiofitheinormalization

ruleianditheiresultinginormalizedidecisionimatrixiisias below:

ςiji = i

 I
ϑij

′
ci = i

(
ω
ϑij

′ (q), i τ
ϑij

′ (q), iρ
ϑij

′ (q)
)
; costitypeiparameter

I
ϑij

′ i = i
(
ρ
ϑij

′ (q), iτ
ϑij

′ (q), iω
ϑij

′ (q)
)
; benefititypeiparameter

IfitheidataiisiconsistentithenimoveitoiStep 3.

Stepi3: Nowiwithitheiuseiofitheidevised aggregationioperators, weigetiaicollective de-

cisionimatrix Iϑij forieachialternativeiYi = i {Y1, iY2, i . . . i,Yn} .
Stepi4: ForitheicollectioniofialternativesiYi = i {Y1, iY2, . . . i,Yn}, weicomputeithe

scoringivaluesiwithitheihelpiof theiformulaeiofiscoringifunction.

Stepi5: Chooseitheialternativeiwithimaximumiscoreivaluei&ithen rankithe alterna-

tives.

4.2.4 NumericaliIllustrationiandiComputation

IniorderitoisolveiaiMCDM problem based on the proposed methodology, ainumerical

problemiof selectingitheimostisuitableiemployeeifor a multi-national company from

theisetiofiemployeesibyitakingiinto accountitheichoiceiof parameterizations is based

on the following formulation

LetiYi = i {Y1, iY2, iY3, iY4} beiaisetiofiemployeesiandiΩibe the set of attributes

given initheiformiofia hypersoftisetias

“ Ω = {ϑ1 = Age, ϑ2 = Foreign Language knowledge, ϑ3 = Academic qualification, ϑ4 =

Work experience}and their further sub-parameters given by ” “

• Age = ϑ1 = {ϑ11 = 21− 35, ϑ12 = 35− 52},
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• Foreign Language Knowledge = ϑ2 = {ϑ21 = English, ϑ22 = French} ,

• Academic Qualification = ϑ3 = {ϑ31 = under-graduation, ϑ32 = post-graduation} ,

• Work Experience = ϑ4 = {ϑ41 = atleast one year} .

Let Ω
′
= ϑ1 × ϑ2 × ϑ3 × ϑ4 be a collection of sub-attributes, which is explicitly given

by

=

{(
(ϑ11, ϑ21, ϑ31, ϑ41) , (ϑ11, ϑ21, ϑ32, ϑ41) , (ϑ11, ϑ22, ϑ31, ϑ41) , (ϑ11, ϑ22, ϑ32, ϑ41)

(ϑ12, ϑ21, ϑ31, ϑ41) , (ϑ12, ϑ21, ϑ32, ϑ41) , (ϑ12, ϑ22, ϑ31, ϑ41) , (ϑ12, ϑ22, ϑ32, ϑ41)

)}
” Foritheisakeiofisimplicityicollectioniofiall sub-attributesicanibeirestatedias

Ω
′
i = i

{
ϑ

′

1, iϑ
′

2, iϑ
′

3, i ϑ
′

4, iϑ
′

5, iϑ
′

6, iϑ
′

7, iϑ
′

8

}
and theirirespectiveiweightsiarei(0.12, i0.18, i0.1, i0.15, i0.22, i0.08, i0.1)T .

ConsideriZi = i {Z1, iZ2, iZ3, iZ4} beiaicollectioniofiexpertsiwithiweight’s

(0.2, i0.3, i0.4, i0.1)T itoiexamineitheisuitable alternative. The preferences are sup-

poseditoibeigiveniby expertsiinitermsiofiPFHSNsibyiusingimultiisub-attributes. In or-

deritoiobtainitheimostisuitableichoice, weigoithroughitheifollowingiprocess.

ProductiveiEmployeesiSelectioniUsingiPictureiFuzzyiHypersoft Weighted

Average Operator

Stepi1: Theisituationsiareiexaminedibyitheiexpertsiiniterms ofiPFHSNs. Theimulti-

subattributesiofitheiselectediattributes, alongiwithicomputation of score values are

giveniin theifollowingitables:

” Stepi2: Sinceialiattributesiareiidentical, soithereiisinoineediforinormalization.

Stepi3: Byiusingiequation(4.2.2), theiopinioniofiexpert’s canibeisummarizedias “

J1 = ⟨0.309967, 0.231837, 0.200275⟩ , J2 = ⟨0.269288, 0.275446, 0.196839⟩ ,

J3 = ⟨0.288827, 0.238588, 0.212493⟩ , J4 = ⟨0.198194, 0.304841, 0.213194⟩ .

”

Stepi4: Nowicomputeitheiscoringivaluesiby usingitheiformulaeiofiscoringifunctions.

S (J1) = −0.122145, iS (J2) = −0.202997, iS (J3) = −0.162254, iS (J4) = −0.319841.
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Table 4.3: DecisioniMatrixigivenibyiExpertsiforiAlternative Y1

Z1i Z2i Z3i Z4i

ϑ
′
1i (“0.2,i0.5,i0.1”) (“0.4,i0.3,i0.2”) (“0.1,i0.2,i0.5”) (“0.3,i0.5,i0.1”)

ϑ
′
2i (“0.3,i0.4,i0.2”) (“0.2,i0.4,i0.1”) (“0.4,i0.1,i0.2”) (“0.2,i0.4,i0.1”)

ϑ
′
3i (“0.4,i0.1,i0.2”) (“0.1,i0.2,i0.3”) (“0.3,i0.2,i0.1”) (“0.1,i0.2,i0.4”)

ϑ
′
4i (“0.3,i0.5,i 0.1”) (“0.3,i 0.2,i 0.1”) (“0.2,i0.4,i0.3”) (“0.3,i0.4,i0.2”)

ϑ
′
5i (“0.4,i0.1,i0.2”) (“0.4,i0.2,i0.3”) (“0.2,i0.1,i0.5”) (“0.1,i0.3,i0.5”)

ϑ
′
6i (“0.3,i0.2,i0.1”) (“0.1,i0.3,i0.5”) (“0.7,i0.1,i0.1”) (“0.2,i0.4,i0.1”)

ϑ
′
7i (“0.3,i0.2,i0.4”) (“0.1,i0.2,i0.4”) (“0.4,i0.2,i0.3”) (“0.4,i0.1,i0.2”)

ϑ
′
8i (“0.1,i0.2,i0.3”) (“0.2,i0.3,i0.4”) (“0.1,i0.5,i0.3”) (“0.4,i0.3,i0.2”)

Table 4.4: DecisioniMatrixigivenibyiExpertsiforiAlternative Y2

Z1i Z2i Z3i Z4i

ϑ
′
1i (“0.4,i0.2,i0.3”) (“0.1,i0.2,i0.5”) (“0.4,i0.1,i0.2”) (“0.4,i0.3,i0.2”)

ϑ
′
2i (“0.1,i0.2,i0.6”) (“0.2,i0.4,i0.1”) (“0.1,i0.2,i0.4”) (“0.2,i0.1,i0.5”)

ϑ
′
3i (“0.2,i0.5,i0.1”) (“0.3,i0.5,i0.1”) (“0.3,i0.5,i0.1”) (“0.1,i0.3,i0.5”)

ϑ
′
4i (“0.1,i0.2,i0.3”) (“0.2,i0.4,i0.3”) (“0.4,i0.3,i0.2”) (“0.1,i0.2,i0.4”)

ϑ
′
5i (“0.3,i0.2,i0.1”) (“0.1,i0.3,i0.5”) (“0.1,i0.5,i0.3”) (“0.3,i0.4i,0.2”)

ϑ
′
6i (“0.7,i0.1i0.1”) (“0.2,i0.5,i0.1”) (“0.3,i0.2,i0.1”) (“0.2,i0.6,i0.1”)

ϑ
′
7i (“0.2,i0.4,i0.1”) (“0.1,i0.5,i0.3”) (“0.3,i0.4,i0.2”) (“0.1,i0.7,i0.1”)

ϑ
′
8i (“0.2,i0.5,i0.2”) (“0.4,i0.1,i0.2”) (“0.2,i0.5,i0.1”) (“0.3,i0.2,i0.1”)

Table 4.5: DecisioniMatrixigivenibyiExpertsiforiAlternative Y3

Z1i Z2i Z3i Z4i

ϑ
′
1i (“0.1,i0.3,i0.4”) (“0.3,i0.5,i0.1”) (“0.4,i0.1,i0.2”) (“0.3,i0.5,i0.1”)

ϑ
′
2i (“0.4,i0.3,i0.2”) (“0.4,i0.3,i0.2”) (“0.1,i0.2,i0.3”) (“0.2,i0.4,i0.1”)

ϑ
′
3i (“0.2,i0.6,i0.1”) (“0.1,i0.5,i0.3”) (“0.2,i0.1,i0.5”) (“0.1,i0.2,i0.4”)

ϑ
′
4i (“0.3,i0.2,i0.1”) (“0.2,i0.4,i0.1”) (“0.7,i0.1,i0.1”) (“0.3,i0.4,i0.2”)

ϑ
′
5i (“0.2,i0.5,i0.1”) (“0.4,i0.2,i0.3”) (“0.4,i0.1,i0.2”) (“0.1,i0.3,i0.5”)

ϑ
′
6i (“0.4,i0.1,i0.2”) (“0.4,i0.3,i0.2”) (“0.1,i0.3,i0.1”) (“0.2,i0.4,i0.1”)

ϑ
′
7i (“0.1,i0.2,i0.4”) (“0.1,i0.2,i0.3”) (“0.1,i0.2,i0.3”) (“0.4,i0.1,i0.2”)

ϑ
′
8i (“0.2,i0.4,i0.1”) (“0.2,i0.3i0.5”) (“0.1,i0.3,i0.6”) (“0.4i0.3,i0.2”)
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Table 4.6: DecisioniMatrixigivenibyiExpertsiforiAlternative Y4

Z1i Z2i Z3i Z4i

ϑ
′
1i (“0.3,i0.5,i0.1”) (“0.2,i0.3,i0.4”) (“0.2,i0.1,i0.5”) (“0.1,i0.5,i0.2”)

ϑ
′
2i (“0.2,i0.3,i0.4”) (“0.1,i0.2,i0.3”) (“0.2,i0.5,i0.2”) (“0.2,i0.3,i0.1”)

ϑ
′
3i (“0.1,i0.3,i0.2”) (“0.3,i0.4,i0.2”) (“0.1,i0.5,i0.2”) (“0.2,i0.5,i0.1”)

ϑ
′
4i (“0.3,i0.2,i0.1”) (“0.1,i0.2,i0.6”) (“0.3,i0.2,i0.1”) (“0.1,i0.2,i0.3”)

ϑ
′
5i (“0.2,i0.4,i0.3”) (“0.1,i0.2,i0.2”) (“0.1,i0.4,i0.2”) (“0.3,i0.4,i0.2”)

ϑ
′
6i (“0.2,i0.6,i0.1”) (“0.2,i0.4,i0.3”) (“0.2,i0.5,i0.1”) (“0.1,i0.2,i0.3”)

ϑ
′
7i (“0.5,i0.3,i0.2”) (“0.2,i0.1,i0.4”) (“0.1,i0.3,i0.5”) (“0.3,i0.2,i0.1”)

ϑ
′
8i (“0.1,i0.3,i0.4”) (“0.3,i0.2,i0.1”) (“0.2,i0.4,i0.3”) (“0.2,i0.4,i0.1”)

Stepi5: Finally, onitheibasisiofitheiobtainedivalues ofitheiscoreifunction, weiobserve

that

S (J1) i > iS (J3) i > iS (J2) i > iS (J4) .

So,iY1i > iY3i > iY2i > iY4. Hence, theialternativeiY1iisitheimostiappropriateione.

Stepi6: Also, byiusingiequation (4.2.8), opinioniofiexpert’sicanibeisummarizedias “

J1 = ⟨0.239208, 0.278116, 0.254269⟩ , J2 = ⟨0.216339, 0.335441, 0.259252⟩ ,

J3 = ⟨0.217776, 0.284027, 0.27034⟩ , J4 = ⟨0.178452, 0.353784, 0.287766⟩ .

”

Stepi7: Nowicomputeitheiscoringivaluesibyiusingitheiformulae ofiscoringifunctions.

S (J1) = −0.293177, iS (J2) = −0.378354, iS (J3) = −0.336591,S (J4) = −0.463098

Stepi8: Finally, onitheibasisiofitheiobtainedivalues ofitheiscoreifunction, weiobserve

that

S (J1) i > iS (J3) i > iS (J2) i > iS (J4) .

So, Y1i > iY3i > iY2i > iY4. Hence, theialternativeiY1 isitheimostiappropriate

one.Therefore, by both the aggregation operators the alternative Y1 is the optimal

one.
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4.3 ComparativeiAnalysis,iAdvantagesiand Discus-

sions

Inithisisection, weidiscussitheifunctionality,ireceptiveness,iandiconformityiof the pro-

posedinotioniandimethodologyiinicontrastiwithithe existingitechniques. Iniaddition

toithis, someiadvantagesiandidiscussionsioveritheiobtainediresults have alsoibeen pre-

sentediforibetteriunderstandingiandireadability. Iniviewiofitheinumericaliexample un-

dericonsideration anditheiresultsiobtainedithroughithe existing techniques utilizing

theiintuitionisticifuzzyisoft/hypersoftiaggregationioperators, we presentitheifollowing

Table 4.3, statingitheirankingioitheialternativesiforitheidecision-making problem:

Table 4.7: ResultsiofiComparativeiAnalysisiwithiSomeiExisting Aggregation Opera-

tors
iMethodi Y1i Y2i Y3i Y4i RankingiOrder

iIFSWAi[111] i0.08158i i0.07674i i0.14762i i0.09959i Y3 > Y4 i > i Y1 i > i Y2

iIFSWGi[111] i0.49830i i0.41735i i0.40935i i0.46175i Y1 i > i Y4 i > i Y2 i > i Y3

iIFHSWAi[112] i-0.195086i i-0.124363i i0.084652i i0.095501i Y4 > Y3 i > i Y2 i > i Y1

iIFHSWGi[112] i-0.259867i i-0.242376i i-0.141950i i-0.035913i Y4 i > i Y3 i > i Y2 i > i Y1

Subsequently, onitheibasisiofitheiobtainediresultsiby utilizing th proposed method-

ologyiinvolvingitheiintroduced PFHSWA/PFHSWG aggregation operators, we present

theifollowingirespectiveicomputedivalues:

S (J1) = −0.122145, iS (J2) = −0.202997, iS (J3) = −0.162254, iS (J4) = −0.319841.

and

S (J1) = −0.293177, iS (J2) = −0.378354, iS (J3) = −0.336591, iS (J4) = −0.463098

“Onitheibasisiofitheicomputediscoreivalues, we finally conclude the following ranking

of the alternatives (employee) which is certainly different due to the extra flexibil-

ityiofisub-attributes:

Y1i > iY3i > iY2i > iY4.

” ImportantiRemarksiandiAdvantages:

• Finally, weiareiableitoistateithatitheiproposedinotion oipictureifuzzyihypersoft

seti(PFHSS)iisiainovel conceptiandiaivaliiextensioniofifuzzy set/hypersoftiset the-
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ories. TheiPFHSSihasianiaddediadvantageitoidealiwith theiwiderisenseiof ap-

plicabilityiiniuncertainisituations withitheiincorporationiofidegreeiofirefusal and

abstain.

• Theiexistingitypes of hypersoft sets - intuitionistic fuzzy hypersoft set [14],

Pythagorean fuzzyihypersoftiset [113], Neutrosophicihypersoftiset [14] haveitheir

ownilimitationsibecause ofitheiexclusioniofirefusaliandiabstainicomponent.

• Itimayibeinotedithatitheicategoricallyidesigned informationihavingithe picture

fuzzyirelationiwouldinot beipossibleitoiaddressiwithitheihelpiofiexisting hyper-

softisetitheoryiiniorderitoiensureiaikind ofiparametrizationiinitheirelation.

• TheimethodologyiimplementingitheiproposediPFHSWA/PFHSWGiaggregation

operatorsicanibeiwelliutilizediforivariousigroup strategiciMCDMimodelsiinia gen-

eralizediframeworkieffectively andiconsistently.

• Asianioverallicriticaliaspect, weiobserveithatieventuallyiwithitheipictureifuzzy in-

formation, itiwon’t beipossible to suitably address those membership values

(givenibyitheidecision-makers/experts)iwhoseisum exceeds one. Such restric-

tionsiinirespectiofidecision-maker’siopinionican beieradicatediwithitheinotioniof

T -sphericalifuzzy information.

4.4 SimilarityiMeasuresiofiPictureiFuzzy Hyper-

softiSets

Next, weidefineitheisimilarityiandiweightedisimilarityimeasures betweeniPFHSSsiand

someiofiitsifundamentalioperations.

Definition 31 LetiV ibeitheiuniversalisetiandiPFHSS(V )ibe theisetiofiallipicture fuzzy

hypersoftisetsiover V . Consideriaimapping S : PFHSS(V )i × iPFHSS(V )i →
i[0, 1], foriany ⟨(R, iΛ1), i(R

′, iΛ2)⟩i ∈ iPFHSS(V ), S⟨(R, iΛ1), i(R
′, iΛ2)⟩ isicalledia

similarityimeasureibetweenitheipictureifuzzy hypersoftisetsi(R, iΛ1)iandi(R
′, iΛ2) if it

satisfiesitheifollowingiconditions:

(i) 0i ≤ iS⟨(R, iΛ1), i(R
′, iΛ2)⟩i ≤ i1;
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(ii) S⟨(R, iΛ1), i(R
′, iΛ2)⟩i = i1 ⇔ Ri = iR′

(iii) S⟨(R,Λ1), (R
′,Λ2)⟩ = S⟨(R′,Λ2), (R,Λ1)⟩;

(iv) Let (R
′′
, iΛ3)ibeiaipictureifuzzyihypersoftiset, ifi(R, iΛ1)i ⊆ i(R′, iΛ2) and

(R′, iΛ2)i ⊆ i(R
′′
, iΛ3), theniS⟨(R, iΛ1), i(R

′′
, iΛ3)⟩i ≤ iS⟨(R, iΛ1), (R

′, iΛ2)⟩
and S⟨(R, iΛ1), i(R

′′
, iΛ3)⟩i ≤ iS⟨(R′,Λ2), (R

′′
, iΛ3)⟩.

Definition 32 Leti(R, iΛ)iandi(R′, iΛ)ibeiany twoiPFHSSsioverithe universe of dis-

courseiV = {v1, iv2, i...i, vn} withitheiattributeisetivaluesiKa
1 i × iKb

2i × i . . . i × Kz
m.

Then, aisimilarityimeasureibetweeni(R, iΛ)iandi(R′, iΛ) canibeidefinedias: “

SPFHSS (R,R′) = (4.4.1)

1
nm

∑n
i=1

∑m
j=1

1− 1
2


(
min{|ρR(ϑsj)

(vi)− ρR′(ϑsj)
(vi)|, |τR(ϑsj)

(vi)− τR′(ϑsj)
(vi)|}

+|ωR(ϑsj)
(vi)− ωR′(ϑsj)

(vi)|
) 

1+ 1
2


(
max{|ρR(ϑsj)

(vi)− ρR′(ϑsj)
(vi)|, |τR(ϑsj)

(vi)− τR′(ϑsj)
(vi)|}

+|ωR(ϑsj)
(vi)− ωR′(ϑsj)

(vi)|
) 

” where,iji = i1, i2, i...m; ii = i1, i2, i.., n; si = ia, b, ..., z; a, b, ..., z = 1, 2, ..., n and

ϑsji ∈ iKa
1 i× iKb

2i× i . . . i× iKz
m.

Definition 33 Leti(R, iΛ)iandi(R′, iΛ)ibeiany twoiPFHSSsioverithe universe of dis-

courseiV = {v1, iv2, i...i, vn} withitheiattributeisetivaluesiKa
1 i × iKb

2i × i . . . i × iKz
m.

Then, aitangentisimilarityimeasureibetweeni(R, iΛ)iandi(R′,Λ) canibeidefinedias: “

TPFHSS (R,R′) = (4.4.2)

1
nm

∑n
i=1

∑m
j=1

1− tan π
12

 (|ρR(ϑsj)
(vi)− ρR′(ϑsj)

(vi)|+ |τR(ϑsj)
(vi)− τR′(ϑsj)

(vi)|

+|ωR(ϑsj)
(vi)− ωR′(ϑsj)

(vi)|
) 

” where,iji = i1, i2, i...m; ii = i1, i2, i.., n; si = ia, b, ..., z; a, b, ..., z = 1, 2, ..., n and

ϑsji ∈ iKa
1 i× iKb

2i× i . . . i× iKz
m.

Theorem 10 Leti(R, iΛ),i(R′, iΛ)iandi(R
′′
, iΛ) beithreeiPFHSSsioveritheiuniversalisetiV .

Then SPFHSSisatisfiesitheifouriaxiomsiofisimilarityimeasures asifollows:

(i) 0i ≤ iS(R, iR′)i ≤ i1;
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(ii) S(R, iR′)i = iS(R′, R)

(iii) S(R,R′)i = i1 ⇔ Ri = iR′

(iv) If (R, iΛ)i ⊆ i(R′, iΛ)iandi(R′, iΛ)i ⊆ i(R
′′
, iΛ), then

SPFHSS(R, iR
′′
)i ≤ iSPFHSS(R, iR′)iandiSPFHSS(R, iR

′′
)i ≤ iSPFHSS(R′, iR

′′
).

“

Proof 3 Proof of (i) and (ii) can be easily done by making use of the definition of

the proposed measure.

(iii) For the proof this part, let us suppose R = R′

Then, ρR(ϑsj)
(vi) = ρR′(ϑsj)

(vi), τR(ϑsj)
(vi) = τR′(ϑsj)

(vi), ωR(ϑsj)
(vi) = ωR′(ϑsj)

(vi).

⇒ S(R,R′) = 1.

Conversely, let S(R,R′) = 1.

⇒

1− 1
2

 (min{|ρR(ϑsj)
(vi)− ρR′(ϑsj)

(vi)|, |τR(ϑsj)
(vi)− τR′(ϑsj)

(vi)|}

+|ωR(ϑsj)
(vi)− ωR′(ϑsj)

(vi)|
) 

1 + 1
2

 (max{|ρR(ϑsj)
(vi)− ρR′(ϑsj)

(vi)|, |τR(ϑsj)
(vi)− τR′(ϑsj)

(vi)|}

+|ωR(ϑsj)
(vi)− ωR′(ϑsj)

(vi)|
)  = 1

⇒ 1−1
2
[min{|ρR(ϑsj)

(vi)−ρR′(ϑsj)
(vi)|, |τR(ϑsj)

(vi)−τR′(ϑsj)
(vi)|}+|ωR(ϑsj)

(vi)−ωR′(ϑsj)
(vi)|] =

1+ 1
2
[max{|ρR(ϑsj)

(vi)−ρR′(ϑsj)
(vi)|, |τR(ϑsj)

(vi)− τR′(ϑsj)
(vi)|}+ |ωR(ϑsj)

(vi)−ωR′(ϑsj)
(vi)|]

⇒ 1
2
[min{|ρR(ϑsj)

(vi)−ρR′(ϑsj)
(vi)|, |τR(ϑsj)

(vi)−τR′(ϑsj)
(vi)|}+|ωR(ϑsj)

(vi)−ωR′(ϑsj)
(vi)|]+

1
2
[max{|ρR(ϑsj)

(vi)−ρR′(ϑsj)
(vi)|, |τR(ϑsj)

(vi)−τR′(ϑsj)
(vi)|}+ |ωR(ϑsj)

(vi)−ωR′(ϑsj)
(vi)|] = 0

⇒ |ρR(ϑsj)
(vi) − ρR′(ϑsj)

(vi)| = 0, |τR(ϑsj)
(vi) − τR′(ϑsj)

(vi)| = 0 and |ωR(ϑsj)
(vi) −

ωR′(ϑsj)
(vi)| = 0

⇒ R = R′.

(iv) ⟨R,Λ⟩ ⊆ ⟨R′,Λ⟩ ⊆ ⟨R′′
,Λ⟩.
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⇒ |ρR(ϑsj)
(vi) − ρR′(ϑsj)

(vi)| ≤ |ρR(ϑsj)
(vi) − ρR′′ (ϑsj)

(vi)|, |τR(ϑsj)
(vi) − τR′(ϑsj)

(vi)| ≤
|τR(ϑsj)

(vi)− τR′′ (ϑsj)
(vi)| and |ωR(ϑsj)

(vi)− ωR′(ϑsj)
(vi)| ≤ |ωR(ϑsj)

(vi)− ωR′′ (ϑsj)
(vi)|.

⇒ min{|ρR(ϑsj)
(vi)−ρR′(ϑsj)

(vi)|, |τR(ϑsj)
(vi)−τR′(ϑsj)

(vi)|}+|ωR(ϑsj)
(vi)−ωR′(ϑsj)

(vi)| ≤
min{|ρR(ϑsj)

(vi)− ρR′′ (ϑsj)
(vi)|, |τR(ϑsj)

(vi)− τR′′ (ϑsj)
(vi)|}+ |ωR(ϑsj)

(vi)− ωR′′ (ϑsj)
(vi)|

and max{|ρR(ϑsj)
(vi)−ρR′(ϑsj)

(vi)|, |τR(ϑsj)
(vi)−τR′(ϑsj)

(vi)|}+|ωR(ϑsj)
(vi)−ωR′(ϑsj)

(vi)| ≤
max{|ρR(ϑsj)

(vi)− ρR′′ (ϑsj)
(vi)|, |τR(ϑsj)

(vi)− τR′′ (ϑsj)
(vi)|}+ |ωR(ϑsj)

(vi)− ωR′′ (ϑsj)
(vi)|.

⇒ 1 − 1
2
[min{|ρR(ϑsj)

(vi) − ρR′(ϑsj)
(vi)|, |τR(ϑsj)

(vi) − τR′(ϑsj)
(vi)|} + |ωR(ϑsj)

(vi) −
ωR′(ϑsj)

(vi)|] ≥ 1−1
2
[min{|ρR(ϑsj)

(vi)−ρR′′ (ϑsj)
(vi)|, |τR(ϑsj)

(vi)−τR′′ (ϑsj)
(vi)|}+|ωR(ϑsj)

(vi)−
ωR′′ (ϑsj)

(vi)|]

and

1+ 1
2
[max{|ρR(ϑsj)

(vi)−ρR′(ϑsj)
(vi)|, |τR(ϑsj)

(vi)−τR′(ϑsj)
(vi)|}+|ωR(ϑsj)

(vi)−ωR′(ϑsj)
(vi)|] ≤

1+ 1
2
[max{|ρR(ϑsj)

(vi)−ρR′′ (ϑsj)
(vi)|, |τR(ϑsj)

(vi)−τR′′ (ϑsj)
(vi)|}+|ωR(ϑsj)

(vi)−ωR′′ (ϑsj)
(vi)|]

⇒ SPFHSS(R,R
′′
) ≤ SPFHSS(R,R′). Likewise, we can prove

SPFHSS(R,R
′′
) ≤ SPFHSS(R′, R

′′
).

”

Theorem 11 Leti(R, iΛ),i(R′, iΛ)iandi(R
′′
, iΛ) beithreeiPFHSSsioveritheiuniversalisetiV .

Then TPFHSSialsoisatisfiesitheifouriaxiomsiofisimilarity measures.

Proof 4 Theiprooficanibeidoneionitheisimilarilines asiabove.

Definition 34 TheitwoiPFHSSsi(R, iΛ)iandi(R′, iΛ) areisaiditoibe ≈α −similar,
denotedibyi(R, iΛ) ≈αi(R′, iΛ)i⇔ SPFHSS (R, iR′) i ≥ iα for αi ∈ i(0, 1).

Definition 35 The two PFHSSs (R,Λ) and (R′,Λ) are said to be significantly sim-

ilar if SPFHSS (R,R′) ≥ 0.8
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4.5 ApplicationiofiProposed PFHSSs Similarity Mea-

suresiiniMedical Diagnosis

Inithisisection, weiproposediaimethodologyiforitheidiagnosisiofia medical problem on

the basisiofiproposedisimilarityimeasures of PFHSSs. Theimethodologyihas been out-

lined iniFigure 4.2. Further, a numericaliillustrationihasibeenipresented which in-

volvesithe similarityimeasuresiofitwoiPFHSSs toidetectiwhetheriaipatient suffering

fromia particular diseaseiorinot. LetiusiconsiderithatithereiaritwoipatientsiI1, I2iin a

hospital havingiaisymptomsiofiCOVID-19. Supposeithereiareithreeistages of charac-

terizationiofithe symptomsiasisevere(v1),imild(v2)iandino(v3), i.e., theiuniversaliset

V = {v1, iv2, iv3}.

Step 1 
Construction  of Picture 

Fuzzy Hypersoft Sets 
corresponding to the 

Disease to be Identified 

Step 2 
Construction  of Picture 

Fuzzy Hypersoft Sets 
corresponding to the 

Patients 

Step 3 
Compute the Proposed 

Similarity Measures 
between the corresponding 

Disease and the Patients 

Finish Start 
Step 4 

Choose the Patient with 
significant value of 
Similarity Measure 

Figure 4.2: ProposediMethodology

Let K = {K1 = senseiofitaste, iK2 = temperature, iK3 = chestipain, iK4 = flu}

beitheisetiofisymptomsiwhichiareiclassifiediinto sub-attributesias:

K1 = senseiofitaste = {noitaste, iCanitaste}
K2 = temperature = {97.5− 98.5, i98.6− 99.5, i99.6− 101.5, i101.6− 102.5}
K3 = chest pain = {shortnessiofibreath, inoipain, inormalipainiangina}
K4 = flu = {soreithroat, icough, istrepithroat}
Now, letiusidefineiairelationvR : (Ka

1 i× iKb
2i×Kc

3i× iKd
4 i −→ iP (V ) defined as,

R(Ka
1 i×iKb

2i×iKc
3i×iKd

4 ) = {ℑ = shortnessiofibreath, i℘ = 101.3, iℜ = soreithroat,

i℧ = noitaste}iisitheimostiprominentisampleiofithe patientiforitheiconfirmationiofithe

COVID-19. Twoipatientsiareirandomlyiselectedibasedionitheiabove sample. Let (R, iΛ)

beiaiPFHSSioveriV iforiCOVID-19ipreparediwith theihelpiofiaimedicaliexpertias given

in Table 4.8

“ Next, theiPFHSSsiforitwoipatientsiundericonsiderationiis giveniiniTable 4.9 and

Table 4.10.

” Now, byimakingiuseiofitheiproposedisimilarityimeasureiwe getiSPFHSS (R, iI1) =
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Table 4.8: PFHSS(R, iΛ)iforiCOVID-19
(R, iΛ) Ka

1 i Kb
2i Kc

3i Kd
4 i

v1i (ℑ(0.4, i0.1, i0.1)) (℘(0.3, i0.0, i0.3)) (ℜ(0.7, i0.0, i0.2)) (℧(0.4, i0.2, i0.3))
v2i (ℑ(0.5, i0.1, i0.3)) (℘(0.1, i0.3, i0.2)) (ℜ(0.4, i0.3, i0.1)) (℧(0.1, i0.2, i0.3))
v3i (ℑ(0.3, i0.5, i0.1)) (℘(0.1, i0.3, i0.5)) (ℜ(0.0, i0.4, i0.3)) (℧(0.1, i0.2, i0.6))

Table 4.9: PFHSS(R, iΛ)iforitheipatientiI1
(I1,Λ)i Ka

1 i Kb
2i Kc

3i Kd
4 i

v1i (ℑ(0.4, i0.2, i0.2)) (℘(0.3, i0.1, i0.2)) (ℜ(0.5, i0.1, i0.3)) (℧(0.4, i0.1, i0.1))
v2i (ℑ(0.5, i0.2, i0.2)) (℘(0.1, i0.2, i0.4)) (ℜ(0.2, i0.3, i0.1)) (℧(0.1, i0.5, i0.3))
v3i (ℑ(0.2, i0.5, i0.1)) (℘(0.2, i0.3, i0.5)) (ℜ(0.0, i0.3, i0.3)) (℧(0.1, i0.2, i0.0))

0.8657i > i0.75iandiSPFHSS (R, iI2) = 0.6892i < i0.75.

Therefore, weiconcludeithatitheipatientiI1iisisuffering fromiCOVID-19.

4.6 Conclusions

The processing of uncertain information in terms of multi sub-attributes parametriza-

tion with the help of proposed notion of Picture Fuzzy Hypersoft Set (PFHSS) is a

novel and useful concept. PFHSSs and their aggregation operators can be a strong

mathematical too to handle incomplete and inexact information with vagueness. Here,

we could additionally address the components of neutral membership (abstain)and

refusal in PFHSS and establish various important properties and operational laws

helpful in a decision making problem. Also, the notion of similarity measure in the

picture fuzzy hypersoft sets is also very useful for solving a decision-making problem.

The concept of picture fuzzy hypersoft weighted average/ordered weighted average

operator (PFHSWA/PFHSOWA) and weighted geometric/ordered weighted geomet-

ric operator (PFHSWG/PFHSOWG) have been proved and studied in detail.

Table 4.10: PFHSS(R, iΛ)iforitheipatientiI2
(I2,Λ)i Ka

1 i Kb
2i Kc

3i Kd
4 i

v1i (ℑ(0.3, i0.2, i0.3)) (℘(0.2, i0.3, i0.1)) (ℜ(0.5, i0.1, i0.0)) (℧(0.4, i0.0, i0.1))
v2i (ℑ(0.4, i0.2, i0.2)) (℘(0.3, i0.2, i0.1)) (ℜ(0.1, i0.4, i0.2)) (℧(0.2, i0.4, i0.5))
v3i (ℑ(0.1, i0.5, i0.1)) (℘(0.2, i0.3, i0.0)) (ℜ(0.0, i0.5, i0.3)) (℧(0.4, i0.2, i0.2))
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Chapter 5

Picture Fuzzy Hypersoft Matrices

Inithisichapter, weifirstiintroduceitheinovelinotioniofipictureifuzzy hypersoft matrix

alongiwithivariousiimportantibinaryioperations andiproperties. Theiproposition con-

centratesionipresentingiairobustidecision-making frameworkiforiidentifying the opti-

maliandimostisuitable renewableienergyisource. Inithisiregard, theirevisedidefinition

ofipictureifuzzyihypersoftichoice matrix/weightedichoiceimatrix,ivalueimatrix,iand to-

taliscore matrixihaveibeenipresented. Further, twoialgorithmsiofidecision-makingifor

theiselectioniofithe bestirenewableienergyisourcesihaveibeeniprovidedialongiwith ap-

propriateiillustrationsiandirankingidescriptions. Ainumericaliexampleihasialso been

workedioutifor theisakeiofiillustratingitheiproposedialgorithms. Finally, toiestablish

theirobustnessiofitheiMCDMialgorithms, a necessaryicomparativeianalysis has been

carriedioutisuccessfully.

5.1 PictureiFuzzy Hypersoft Matrices & Opera-

tions

Inithisisection, onitheibasisiofitheiproposedinotioniofia pictureifuzzyihypersoftiset,iwe

areialsoipresentingitheiconceptiofiainew typeiof hypersoft matrix termed a Picture

FuzzyiHypersoft Matrixi(PFHSM)ialongiwithivariousibinaryioperations and impor-

tantiproperties.
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PictureiFuzzyiHypersoftiMatrix. LetiV i = i {v1, iv2, i . . . , ivn}ibeitheiuniverse
ofidiscourseiandiPFS(V ) beitheicollectioniofiallipictureifuzzyisubsetsiof V . Suppose

K1, iK2, i . . . , iKmiforimi ≥ i1ibeim well-defined attributes, whose respective at-

tributeivaluesiareitheisetsiKa
1 , iK

b
2, . . . i,K

z
miwithitheirelationiK

a
1 i× iKb

2i× . . . i× iKz
m

where a, ib, ic, . . . , zi = i1, 2, . . . , n. “ Theipairi
(
R, iKa

1 ×Kb
2 × · · · ×Kz

m

)
is called a

pictureifuzzyihypersoftiset overiV whereiR : Ka
1 i × iKb

2i × i . . . i × Kz
m → PFS (V )

definediby

R
(
Ka

1 ×Kb
2 × · · · ×Kz

m

)
=
{
< v, ρϑ (v) , τϑ (v) , ωϑ(v) > | v ϵ V, ϑ ϵ Ka

1 ×Kb
2 × · · · ×Kz

m

}
.

Here, ρ, τ, ω representsitheipositive membership,ineutralimembershipiand negative mem-

bershipidegrees respectively. ” LetiZv = Ka
1 i × iKb

2i × i . . . i × iKz
mibeithe rela-

tioniwithiitsicharacteristicifunctioniisiχZv : Ka
1 i×iKb

2i×i . . . i×Kz
mi→ iPFS (V )igivenibyi

χZv i = i
{
< v, ρϑ (v) , iτϑ (v) , iωϑ(v) > |viϵiV, iϑiϵiKa

1 i× iKb
2i× . . . i× iKz

m

}
.

TheitabularirepresentationiofiZviisigiveniin Table 6.1

Table 5.1: TabulariformiofiZv
iKa

1 i iKb
2i . . . iKz

mi

iv1i χZv (v
1, iKa

1 ) χZv

(
v1, iKb

2

)
. . . χZv (v

1, iKz
m)

iv2i χZv (v
2, iKa

1 ) χZv

(
v2, iKb

2

)
. . . χZv (v

2, iKz
m)

...
...

... . . .
...

ivni χZv (v
n, iKa

1 ) χZv

(
vn, iKb

2

)
. . . χZv (v

n, iKz
m)

IfiBiji=iχZv

(
vi, iKs

j

)
iwhereiii = 1, i2, i.., in,iji = i1, i2, i..., imiand si = ia, ib, ic, i..., iz.

Theniaimatrixiisidefinediasi

[Bij]ni×im =


iB11i iB12i · · · iB1mi

iB21i iB22i · · · iB2mi
...

...
. . .

...

iBn1i iBn2i · · · iBnmi


whichiisicallediPictureiFuzzyiHypersoft Matrixiofiorderini× im,iwhere

Biji = i
(
ρKs

j
(vi) , iτKs

j
(vi) , iωKs

j
(vi) , viϵV,

(
Ks
j ϵ K

a
1 ×Kb

2 × · · · ×Kz
m

))
=
(
ρBijs, iτ

B
ijs, iω

B
ijs

)
.

Hence, itimayibeinotedithatianyipictureifuzzy hypersoftisetican be represented in

termsiofithe pictureifuzzyihypersoftimatrix. Throughoutitheichapter, we will denote

theicollectioniofiallipictureifuzzy hypersoftimatricesibyiPFHSMni×im.
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Examplei1: SupposeiaineediarisesiforiaiSchoolitoihire a Mathematicsiteacheriforithe

10thiclass. Aitotaliofifiveicandidatesihaveiapplieditoifill upitheivoidispace. The Hu-

maniResourceicelliofitheischooliappointsian expert/decision-makerifor this selection

process. LetiV i = i {v1, iv2, iv3, iv4, iv5}ibe theisetiofiallifiveicandidatesiwithitheiriset
ofiattributesiasiK1i=iQualification,iK2i=iExperience, K3i=iAge,iK4i=iGender. Fur-

ther, theirirespectiveisub-attributesiare

K1i = iiQualificationi =i {BSiHons., iMS, iM.Phil., iPh.D.i}

K2i = iExperiencei =i {i3yri, ii5yri, ii7yri, ii10yri}

K3i = iiAgei =i {Lessithanitwentyifive, Greatithanitwentyifive}

K4i = iiGenderi =i {iMalei, iFemale} .

LetitheifunctionibeiR : Ka
1 i × iKb

2i × i · · · × iKz
mi → iPFS (V ) . Basedionisome

empirical-hypothetical assumptionsianditheidecisionimaker’siopinion, weipresentithe

followingitablesiwithirespectitoieachiattributeiandiwith theirifurtherisub-attributes are

given in Table 5.2, Table 5.3, Table 5.4 and Table 5.5

Table 5.2: Decisionimaker’siopinioniforiQualification
iKa

1 (Qualification) i iv1i iv2i iv3i iv4i iv5i

iBSiHons.i (“0.2, 0.3, 0.4′′) (0.1, 0.3, 0.5′′) (“0.3, 0.5, 0.1′′) (“0.3, 0.2, 0.1′′) (“0.4, 0.1, 0.2′′)

iMSi (“0.1, 0.2, 0.4′′) (“0.4, 0.2, 0.3′′) (0.3, 0.5, 0.1“) (“0.1, 0.1, 0.5′′) (“0.1, 0.3, 0.4′′)

iM.Phil.i (“0.1, 0.3, 0.5′′) (“0.1, 0.3, 0.5′′) (0.1, 0.3, 0.5′′) (“0.1, 0.3, 0.5′′) (“0.1, 0.3, 0.5′′)

iPh.D.i (“0.3, 0.1, 0.5′′) (“0.4, 0.3, 0.1′′) (“0.2, 0.5, 0.1′′) (“0.2, 0.1, 0.5′′) (“0.3, 0.1, 0.5′′)

Table 5.3: Decisionimaker’siopinioniforiExperience
iKb

2 (Experience) i iv1i iv2i iv3i iv4i iv5i

i3yri (“0.4, 0.3, 0.1′′) (“0.2, 0.3, 0.5′′) (“0.2, 0.2, 0.3′′) (“0.5, 0.1, 0.2′′) (“0.2, 0.3, 0.5′′)

i5yri (“0.1, 0.3, 0.5′′) (“0.3, 0.3, 0.3′′) (“0.3, 0.3, 0.3′′) (“0.2, 0.4, 0.2′′) (“0.7, 0.1, 0.1′′)

i7yri (“0.1, 0.7, 0.1′′) (“0.4, 0.3, 0.2′′) (“0.1, 0.3, 0.5′′) (“0.2, 0.2, 0.5′′) (“0.2, 0.5, 0.2′′)

i10yri (“0.3, 0.5, 0.1′′) (“0.2, 0.4, 0.3′′) (“0.3, 0.3, 0.2′′) (“0.1, 0.3, 0.6′′) (“0.6, 0.3, 0.1′′)

Table 5.4: Decisionimaker’siopinioniforiAge
iKc

3 (Age) iv1i iv2i iv3i iv4i iv5i

Lessithanitwentyfive (“0.2, 0.1, 0.5′′) (“0.3, 0.3, 0.3′′) (“0.5, 0.2, 0.1′′) (“0.6, 0.2, 0.1′′) (“0.2, 0.3, 0.4′′)

Greaterithanitwentyfive (“0.5, 0.3, 0.1′′) (“0.4, 0.3, 0.1′′) (“0.2, 0.4, 0.3′′) (“0.5, 0.2, 0.2′′) (“0.4, 0.3, 0.1′′)

Now, letiusiconsideri

R
(
Ka

1 i× iKb
2 × iKc

3 × iKd
4

)
i = iR (MS,i7yr, Greaterithanitwentyifive,iMale) i
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Table 5.5: Decisionimaker’siopinioniforiGender
iKd

4 (Gender) i iv1i iv2i iv3i iv4i iv5i

iMalei (“0.2, 0.1, 0.2“′′) (“0.3, 0.2, 0.3′′) (“0.1, 0.2, 0.6′′) (“0.4, 0.2, 0.3′′) (“0.5, 0.2, 0.1′′)

iFemalei (“0.2, 0.1, 0.5′′) (“0.4, 0.3, 0.1′′) (“0.3, 0.5, 0.1′′) (“0.2, 0.2, 0.2′′) (“0.4, 0.3, 0.1′′)

= i (v1, iv2, iv3, iv5) .

Foritheiaboveirelationaliexpression, theipictureifuzzyihypersoftiseticanibeiexpressed as

“R
(
Ka

1 ×Kb
2 ×Kc

3 ×Kd
4

)
=

{< v1, (MS(0.1, 0.2, 0.4), 7yr(0.1, 0.7, 0.1),Greater than twenty five(0.5, 0.3, 0.1),Male(0.2, 0.1, 0.2)) >

< v2, (MS(0.4, 0.2, 0.3), 7yr(0.4, 0.3, 0.2),Greater than twenty five(0.4, 0.3, 0.1),Male(0.3, 0.2, 0.3)) >

< v3, (MS(0.3, 0.5, 0.1), 7yr(0.1, 0.3, 0.5),Greater than twenty five(0.2, 0.4, 0.3),Male(0.1, 0.2, 0.6)) >

< v5, (MS(0.1, 0.3, 0.4), 7yr(0.2, 0.5, 0.2),Greater than twenty five(0.4, 0.3, 0.1),Male(0.5, 0.2, 0.1)) >}

”

Theiaboveiexampleiofipictureifuzzyihypersoftisetirelational expressionicanibeiwritten
initheifollowingiform:

[B]4i×i4i = i


(MS(0.1, i0.2, i0.4)) (7yr(0.1, i0.7, i0.1)) (Greaterithanitwentyifive(0.5,i0.3,i0.1)) (Male(0.2, i0.1, i0.2))

(MS(0.4, i0.2, i0.3)) (7yr(0.4, i0.3, i0.2)) (Greaterithanitwentyifive(0.4,i0.3,i0.1)) (Male(0.3, i0.2, i0.3))

(MS(0.3, i0.5, i0.1)) (7yr(0.1, i0.3, i0.5)) (Greaterithanitwentyifive(0.2,i0.4,i0.3)) (Male(0.1, i0.2, i0.6))

(MS(0.1, i0.3, i0.4)) (7yr(0.2, i0.5, i0.2)) (Greaterithanitwentyifive(0.4,i0.3,i0.1)) (Male(0.5, i0.2, i0.1))

 .

VariousiTypesiofiPictureiFuzzyiHypersoftiMatrices:

LetiB = [Bij]ibeiaipictureifuzzyihypersoftimatrixiofiorder ni×im;iwhereiBiji=i
(
ρBijs, iτ

B
ijs, iω

B
ijs

)
;

thenivariousikindsiofiimportantimatriceicanibe presentediasibelow:

• “Picture fuzzy hypersoft zero matrix if ρBijs = 0, τBijs = 0 & ωBijs = 0;∀i, j, s
and the matrix is denoted by 0 = [0, 0, 0].”

• “Picture fuzzy hypersoft square matrix if n = m.”

• “Picture fuzzy hypersoft row matrix if m = 1.”

• “Picture fuzzy hypersoft column matrix if n = 1.”

• “Picture fuzzy hypersoft diagonal matrix if all its non-diagonal entries are

zero ∀ i, j, s.”
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• “Picture fuzzy hypersoft ρ-universal matrix if ρBijs = 1, τBijs = 0 & ωBijs = 0;

∀ i, j & s, denoted by ℘ρ.”

• “Picture fuzzy hypersoft τ-universal matrix if ρBijs = 0, τBijs = 1 & ωBijs = 0;

∀ i , j & s, denoted by ℘τ .”

• “Picture fuzzy hypersoft ω-universal matrix if ρBijs = 0, τBijs = 0 & ωBijs =

1; ∀ i & j & s, denoted by ℘ω.”

• “Picture fuzzy hypersoft Scalar multiplication: for any scalar m, we

define mB = [(mρBijs,mτ
B
ijs,mω

B
ijs)], ∀ i , j & s.”

• “Picture fuzzy hypersoft Symmetric Matrix: if(
ρBijs, τ

B
ijs, ω

B
ijs

)
=
(
ρBjsi, τ

B
jsi, ω

B
jsi

)
i.e.Bt = B.”

Further, weiproposeisomeiset-theoreticirelationsiforitwoigiven pictureifuzzyihypersoft

matrices, say,iBi = i[(ρBijs, iτ
B
ijs, iω

B
ijs)]iandiC = [(ρCijs, τ

C
ijs, iω

C
ijs)]i ∈ iPFHSMni×im.

• “Subsethood: B ⊆ C if ρBijs ≤ ρCijs, τ
B
ijs ≥ τCijs & νBijs ≥ νCijs; ∀ i, j & s.”

• “Containment: B ⊇ C if ρBijs ≥ ρCijs, τ
B
ijs ≤ τCijs & ωBijs ≤ νCijs; ∀ i, j & s.”

• “Equality: B = C if ρBijs = ρCijs, τ
B
ijs = τCijs & ωBijs = ωCijs; ∀ i, j & s.”

• “Max Min Product:

LetB = [Bij] = [(ρBijs, τ
B
ijs, ω

B
ijs)] ∈ PFHSMn×m & C = [Cjt] = [(ρCjst, τ

C
jst, ω

C
jst)] ∈

PFHSMm×p be two picture fuzzy hypersoft matrices then

B∗C = [dit]m×p =

(
max(min

js
(ρBijs, ρ

C
jst)),min(min

js
(τBijs, τ

C
jst)),min(max

js
(ωBijs, ω

C
jst))

)
;

∀ i, j, s & t”

• “Average Max Min Product:

LetB = [Bij] = [(ρBijs, τ
B
ijs, ω

B
ijs)] ∈ PFHSMn×m & C = [Cjt] = [(ρCjst, τ

C
jst, ω

C
jst)] ∈

PFHSMm×p be two picture fuzzy hypersoft matrices then

B ∗A C = [dit]n×p =

[(
max
j
s(

ρBijs+ρ
C
jst

2
),min

j
s(

τBijs+τ
C
jst

2
),min

j
s(

ωB
ijs,ω

C
jst

2
)

)]
;

∀ i, j, s & t.”
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SomeiFundamentaliBinaryiOperationsiforiPictureifuzzyihypersoft matrices:

ConsideritwoiPictureifuzzyihypersoftimatricesiB1 = [(ρB1
ijs, iτ

B1
ijs , iω

B1
ijs)] and

B2i = i[(ρB2
ijs, iτ

B2
ijs , iω

B2
ijs)] i ∈ iPFHSMni×im. Someiofitheibasicibinaryioperationsion

theseimatrices canibeipresentediasifollows:

• Bc
1 =

[(
ωB1
ijs, τ

B1
ijs , ρ

B1
ijs

)]
; ∀ i, j and s.

• B1 ∪B2 =
[(
max(ρB1

ijs, ρ
B2
ijs),min(τB1

ijs , τ
B2
ijs ),min(ωB1

ijs, ω
B2
ijs)
)]
; ∀ i, j and s.

• B1 ∩B2 =
[(
min(ρB1

ijs, ρ
B2
ijs),min(τB1

ijs , τ
B2
ijs ),max(ωB1

ijs, ω
B2
ijs)
)]

∀; i and j.

• B1 ⊗ B2 =
[(
ρB1
ijs · ρ

B2
ijs, τ

B1
ijs · τ

B2
ijs ,

n

√
(ωB1

ijs)
2 + (ωB2

ijs)
2 − (ωB1

ijs)
2 · (ωB2

ijs)
2
)]

; ∀ i, j

amd s.

• B1 ⊕ B2 =
[(

n

√
(ρB1
ijs)

2 + (ρB2
ijs)

2 − (ρB1
ijs)

2 · (ρB2
ijs)

2, τB1
ijs · τ

B2
ijs , ω

B1
ijs · ω

B2
ijs

)]
; ∀ i, j

and s.

• B1@B2 =

[(
ρ
B1
ijs+ρ

B2
ijs

2
,
τ
B1
ijs+τ

B2
ijs

2
,
ω
B1
ijs+ω

B2
ijs

2

)]
; ∀ i, j and s.

• B1@wB2 =

[(
w1ρ

B1
ijs+w2ρ

B2
ijs

w1+w2
,
w1τ

B1
ijs+w2τ

B2
ijs

w1+w2
,
w1ω

B1
ijs+w2ω

B2
ijs

w1+w2

)]
; ∀ i, j and s ; where

w1, w2 > 0 are the weights.

• B1$B2 =
[(

n

√
ρB1
ijs · ρ

B2
ijs,

n

√
τB1
ijs · τ

B2
ijs ,

n

√
ωB1
ijs · ω

B2
ijs

)]
; ∀ i, j and s.

• B1$wB2 =
(
((ρB1

ijs)
w1 · (ρB2

ijs)
w2)

1
w1+w2 , ((τB1

ijs )
w1 · (τB2

ijs )
w2)

1
w1+w2 , ((ωB1

ijs)
w1 · (ωB2

ijs)
w2)

1
w1+w2

)
;

∀ i, j and s, where w1, w2 > 0 are the weights.

• B1 ▷◁ B2 =

[(
2 · ρ

B1
ijs·ρ

B2
ijs

ρ
B1
ijs+ρ

B2
ijs

, 2 · τ
B1
ijs ·τ

B2
ijs

τ
B1
ijs+τ

B2
ijs

, 2 · ω
B1
ijs ·ω

B2
ijs

ω
B1
ijs+ω

B2
ijs

)]
; ∀ i, j and s.

• B1 ▷◁w B2 =

[(
w1+w2
w1

ρ
B1
ijs

+
w2

ρ
B2
ijs

, w1+w2
w1

τ
B1
ijs

+
w2

τ
B2
ijs

, w1+w2
w1

ω
B1
ijs

+
w2

ω
B2
ijs

)]
; ∀ i, j and s ; where w1, w2 > 0

areitheiweights.

Proposition 1 LetiB1iandiB2ii ∈ iPFHSMn×mithenitheifollowingilawsihold:

(i) B1 ∪B2 = B2 ∪B1

(ii) B1 ∩B2 = B2 ∩B1

(iii) (B1 ∪B2)
c = Bc

1 ∩Bc
2

(iv) (B1 ∩B2)
c = Bc

1 ∪Bc
2
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(v) (Bc
1 ∩Bc

2)
c = B1 ∪B2 (vi) (Bc

1 ∪Bc
2)
c = B1 ∩B2.

Proof : Let B1 = [(ρB1
ijs, τ

B1
ijs , ω

B1
ijs)], B2 = [(ρB2

ijs, τ
B2
ijs , ω

B2
ijs)] ∈ PFHSMn×m.

Then ∀ i, j and s we get,

(i)

B1 ∪B2 =
[(

max(ρB1
ijs, ρ

B2
ijs),min(τB1

ijs , τ
B2
ijs ),min(ωB1

ijs, ω
B2
ijs)
)]

=
[(

max(ρB2
ijs, ρ

B1
ijs),min(τB2

ijs , τ
B1
ijs ),min(ωB2

ijs, ω
B1
ijs)
)]

= B2 ∪B1.

(ii)

B1 ∪B2 =
[(

min(ρB1
ijs, ρ

B2
ijs),min(τB1

ijs , τ
B2
ijs ),max(ωB1

ijs, ω
B2
ijs)
)]

=
[(

min(ρB2
ijs, ρ

B1
ijs),min(τB2

ijs , τ
B1
ijs ),max(ωB2

ijs, ω
B1
ijs)
)]

= B2 ∪B1.

(iii)

(B1 ∪B2)
c =

((
[(ρB1

ijs, τ
B1
ijs , ω

B1
ijs)] ∪ [(ρB2

ijs, τ
B2
ijs , ω

B2
ijs)]

))c
= [max(ρB1

ijs, ρ
B2
ijs),min(τB1

ijs , τ
B2
ijs ),min(ωB1

ijs, ω
B2
ijs)]

c

=
[(

min(ωB1
ijs, ω

B2
ijs),min(τB1

ijs , τ
B2
ijs ),max(ρB1

ijs, ρ
B2
ijs)
)]

=
[(
[(ωB1

ijs, τ
B1
ijs , ρ

B1
ijs)] ∩ [(ωB2

ijs, τ
B2
ijs , ρ

B2
ijs)]

)]
= Bc

1 ∩Bc
2.

On similar lines, (iv), (v) and (vi) can be proved accordingly.

Proposition 2 LetiB1 = [(ρB1
ijs, τ

B1
ijs , ω

B1
ijs)] i ∈ iPFHSMn×m. Onitheibasisiof the

proposedidefinitions, theifollowingilawsihold:

(i) (Bc
1)
c = B1

(ii) (℘ρ)
c = ℘ω

(iii) (℘τ )
c = ℘τ

(iv) (℘ω)
c = ℘ρ

(v) B1 ∪B1 = B1

(vi) B1 ∪ ℘ρ = ℘ρ

(vii) B1 ∩ ℘ν = B1

(viii) B1 ∩B1 = B1

(ix) B1 ∩ ℘ρ = B1

(x) B1 ∩ ℘ω = ℘ω.

105



“

Proposition 3 Let B1 and B2 ∈ PFHSMn×m. In view of the weighted form, the

following laws hold:

(i) (Bc
1@wB

c
2)
c = B1@wB2

(ii) (Bc
1$wB

c
2)
c = B1$wB2

(iii) (Bc
1 ▷◁w B

c
2)
c = B1 ▷◁w B2

(iv) B1@wB2 = B2@wB1

(v) B1$wB2 = B2$wB1

(vi) B1 ▷◁w B2 = B2 ▷◁w B1.

” Proof : Let B1 = [(ρB1
ijs, τ

B1
ijs , ω

B1
ijs)], B2 = [(ρB2

ijs, τ
B2
ijs , ω

B2
ijs)] ∈ PFHSMn×m. Then

∀ i, j, s & w1, w2 > 0, we get,

(i)

(Bc
1@wB

c
2)
c =

([(
(ωB1

ijs, τ
B1
ijs , ρ

B1
ijs)@w(ω

B2
ij , τ

B2
ijs , ρ

B2
ijs)

)])c
=

([(
w1ω

B1
ijs + w2ω

B2
ijs

w1 + w2

,
w1τ

B1
ijs + w2τ

B2
ijs

w1 + w2

,
w1ρ

B1
ijs + w2ρ

B2
ijs

w1 + w2

)])c

=

[(
w1ρ

B1
ijs + w2ρ

B2
ijs

w1 + w2

,
w1τ

B1
ijs + w2τ

B2
ijs

w1 + w2

,
w1ω

B1
ijs + w2ω

B2
ijs

w1 + w2

)]
= B1@wB2.

(ii)

(Bc1$wB
c
2)
c =

([(
(ωB1
ijs, τ

B1
ijs , ρ

B1
ijs)$w(ω

B2
ijs, τ

B2
ijs , ρ

B2
ijs)

)])c
=

([(
((ωB1

ijs)
w1 · (ωB2

ijs)
w2)

1
w1+w2 , ((τB1

ijs )
w1 · (τB2

ijs )
w2)

1
w1+w2 , ((ρB1

ijs)
w1 · (ρB2

ijs)
w2)

1
w1+w2

)])c
=

[(
((ρB1

ijs)
w1 · (ρB2

ijs)
w2)

1
w1+w2 , ((τB1

ijs )
w1 · (τB2

ijs )
w2)

1
w1+w2 , ((ωB1

ijs)
w1 · (ωB2

ijs)
w2)

1
w1+w2

)]
= B1$wB2.

Similar proof for (iii).
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(iv)

B1@wB2 =

[(
w1ρ

B1
ijs + w2ρ

B2
ijs

w1 + w2

,
w1τ

B1
ijs + w2τ

B2
ijs

w1 + w2

,
w1ω

B1
ijs + w2ω

B2
ijs

w1 + w2

)]

=

[(
w2ρ

B2
ijs + w1ρ

B1
ijs

w2 + w1

,
w2τ

B2
ijs + w1τ

B1
ijs

w2 + w1

,
w2ω

B2
ijs + w1ω

B1
ijs

w2 + w1

)]
= B2@wB1.

(v)

B1$wB2 =

[(
((ρB1

ijs)
w1 · (ρB2

ijs)
w2)

1
w1+w2 , ((τB1

ijs )
w1 · (τB2

ijs )
w2)

1
w1+w2 , ((ωB1

ijs)
w1 · (ωB2

ijs)
w2)

1
w1+w2

)]
=

[(
((ρB2

ijs)
w2 · (ρB1

ijs)
w1)

1
w2+w1 , ((τB2

ijs )
w2 · (τB1

ijs )
w1)

1
w2+w1 , ((ωB2

ijs)
w2 · (ωB1

ijs)
w1)

1
w2+w1

)]
= B2$wB1.

On similar lines, (vi) can be verified accordingly. “

Proposition 4 For B1, B2 and B3 ∈ PFHSMn×m, the following associative laws

hold:

(i) (B1 ∪B2) ∪B3 = B1 ∪ (B2 ∪B3)

(ii) (B1 ∩B2) ∩B3 = B1 ∩ (B2 ∩B3)

(iii) (B1@B2)@B3 = B1@(B2@B3)

(iv) (B1$B2)$B3 = B1$(B2$B3)

(v) (B1 ▷◁ B2) ▷◁ B3 = B1 ▷◁ (B2 ▷◁

B3).

” Proof: For all i & j we write,

(i)

(B1 ∪B2) ∪B3 =

[(
[(max{ρB1

ijs, ρ
B2
ijs},min{τB1

ijs , τ
B2
ijs}),min{ωB1

ijs, ω
B2
ijs}] ∪ [(ρB3

ijs, τ
B3
ijs , ω

B3
ijs)]

)]
=

[(
max{(ρB1

ijs, ρ
B2
ijs), ρ

B3
ijs},min{(τB1

ijs , τ
B2
ijs ), τ

B3
ijs},min{(ωB1

ijs, ω
B2
ijs), ω

B3
ijs}
)]

=

[(
max{(ρB1

ijs, (ρ
B2
ijs, ρ

B3
ijs))},min{τB1

ijs , (τ
B2
ijs , τ

B3
ijs )},min{ωB1

ijs, (ω
B2
ijs, ω

B3
ijs)}

)]
= B1 ∪ (B2 ∪B3).
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(ii)

(B1 ∩B2) ∩B3 =

[(
(min{ρB1

ijs, ρ
B2
ijs}, (min{τB1

ijs , τ
B2
ijs},max{ωB1

ijs, ω
B2
ijs}) ∪ (ρB3

ijs, τ
B3
ijs , ω

B3
ijs)

)]
=

[(
min{(ρB1

ijs, ρ
B2
ijs), ρ

B3
ijs}, (min{(τB1

ijs , τ
B2
ijs ), τ

B3
ijs}, ,max{(ωB1

ijs, ω
B2
ijs), ω

B3
ijs})

)]
=

[(
min{(ρB1

ijs, (ρ
B2
ijs, ρ

B3
ijs))},

(
min{(τB1

ijs , (τ
B2
ijs , τ

B3
ijs ))},max{ωB1

ijs, (ω
B2
ijs, ω

B3
ijs)}

))]
= B1 ∩ (B2 ∩B3).

On similar lines, (iii), (iv) and (v) can be proved accordingly.

“

Proposition 5 For B1, B2 and B3 ∈ PFHSMn×m, the following distributive laws

hold:

(i) B1∩(B2∪B3) = (B1∩B2)∪(B1∩B3)

(ii) (B1∩B2)∪B3 = (B1∪B3)∩(B2∪B3)

(iii) B1∪(B2∩B3) = (B1∪B2)∩(B1∪B3)

(iv) (B1∪B2)∩B3 = (B1∩B3)∪(B2∩B3)

(v) (B1∩B2)@B3 = (B1@B3)∩(B2@B3)

(vi) (B1∩B2) ▷◁ B3 = (B1 ▷◁ B3)∩(B2 ▷◁

B3)

(vii) B1∪(B2@B3) = (B1∪B2)@(B1∪B3)

(viii) (B1∪B2) ▷◁ B3 = (B1 ▷◁ B3)∪(B2 ▷◁

B3)

(ix) B1@(B2∪B3) = (B1@B2)∪(B1@B3)

(x) B1@(B2∩B3) = (B1@B2)∩(B2@B3)

(xi) B1$(B2 ∪B3) = (B1$B2) ∪ (B1$B3)

(xii) (B1 ∪B2)$B3 = (B1$B3) ∪ (B2$B3)

(xiii) B1 ∪ (B2 ▷◁ B3) = (B1 ∪ B2) ▷◁

(B1 ∪B3)

(xiv) B1 ▷◁ (B2∪B3) = (B1 ▷◁ B2)∪(B1 ▷◁

B3)

(xv) B1$(B2 ∩B3) = (B1$B2) ∩ (B2$B3)

(xvi) (B1∩B2)$B3 = (B1$B3)∩ (B2$B3).

” Proof :
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(i)

B1 ∩ (B2 ∪B3) =

[([(
ρB1
ijs, τ

B1
ijs , ω

B1
ijs

)]
∩
[(

max{ρB2
ijs, ρ

B3
ijs},min{τB2

ijs , τ
B3
ijs},min{ωB2

ijs, ω
B3
ijs}
)])]

=

[(
min{ρB1

ijs,max{ρB2
ijs, ρ

B3
ijs}},min{τB1

ijs ,min{τB2
ijs , ρ

B3
ijs}},

max{ωB1
ijs,min{ωB2

ijs, ω
B3
ijs}}

)]
.

Now,

(B1 ∩B2) ∪ (B1 ∩B3) =
[(

min{ρB1
ijs, ρ

B2
ijs},min{τB1

ijs , τ
B2
ijs},max{ωB1

ijs, ω
B2
ijs}
)]

∪
[(

min{ρB1
ijs, ρ

B3
ijs},

min{τB1
ijs , τ

B3
ijs},max{ωB1

ijs, ω
B3
ijs}
)]

=
[(

max(min{ρB1
ijs, ρ

B2
ijs},min{ρB1

ijs, ρ
B3
ijs}),min(min{τB1

ijs , τ
B2
ijs},min{τB1

ijs , τ
B3
ijs}),

min(max{ωB1
ijs, ω

B2
ijs},max{ωB1

ijs, ω
B3
ijs})

)]
=
[(

max(ρB1
ijs,min{ρB2

ijs, ρ
B3
ijs}),min(τB1

ijs ,min{τB2
ijs , τ

B3
ijs}),

min(ωB1
ijs,max{ωB2

ijs, ω
B3
ijs})

)]
=
[(

min(ρB1
ijs,max{ρB2

ijs, ρ
B3
ijs}),min(ρB1

ijs,min{ρB2
ijs, ρ

B3
ijs}),max(ωB1

ijs,

min{ωB2
ijs, ω

B3
ijs})

)]
= B1 ∩ (B2 ∪B3).

Hence, B1 ∩ (B2 ∪B3) = (B1 ∩B2) ∪ (B1 ∩B3) holds.

(ii)

(B1 ∩B2) ∪B3 =
[(

min{ρB1
ijs, ρ

B2
ijs},min{τB1

ijs , τ
B2
ijs},max{ωB1

ijs, ω
B2
ijs}
)]

∪
[(
ρB3
ijs, τ

B3
ijs , ω

B3
ijs

)]
=
[(

max(min{ρB1
ijs, ρ

B2
ijs}, ρ

B3
ijs),min(min{τB1

ijs , τ
B2
ijs}, ρ

B3
ijs),

min(max{ωB1
ijs, ω

B2
ijs}, ω

B3
ijs)
)]
.

Now,

(B1 ∪B3) ∩ (B2 ∪B3) =
[(

max{ρB1
ijs, ρ

B3
ijs},min{τB1

ijs , τ
B3
ijs},min{ωB1

ijs, ω
B3
ijs}
)]

∩
[(

max{ρB2
ijs, ρ

B3
ijs},

min{τB2
ijs , τ

B3
ijs},min{ωB2

ijs, ω
B3
ijs}
)]

=
[(

min(max{ρB1
ijs, ρ

B3
ijs},max{ρB2

ijs, ρ
B3
ijs}),min(min{τB1

ijs , τ
B3
ijs},min{τB2

ijs , τ
B3
ijs}),

max(min{ωB1
ijs, ω

B3
ijs},min{ωB2

ijs, ω
B3
ijs})

)]
=
[(

min(max{ρB1
ijs, ρ

B2
ijs}, ρ

B3
ijs),min(min{τB1

ijs , τ
B2
ijs}, τ

B3
ijs ),

max(min{ωB1
ijs, ω

B2
ijs}, ω

B3
ijs)
)]

=
[(

max(min{ρB1
ijs, ρ

B2
ijs}, ρ

B3
ijs),min(min{τB1

ijs , τ
B2
ijs}, τ

B3
ijs ),

min(max{ωB1
ijs, ω

B2
ijs}, ω

B3
ijs)
)]

= (B1 ∩B2) ∪B3
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Hence, (B1 ∩B2) ∪B3 = (B1 ∪B3) ∩ (B2 ∪B3).

Oniaisimilaripattern, theirestiofitheilawsicanibeiprovediaccordingly.

5.2 ApplicationiofiPFHSM in Renewable Energy

Source Selection

Inithisisection, weiconsideriaibasiciframeworkiofitheirenewableienergy sourceiselection

problemiwhereitheiformulationiofitheiproblem hasibeeniconsidereditoibeiin the form

ofia pictureifuzzyihypersoftimatrixi&iproposedisomeirevised definitionsikeepingithe ne-

cessityiofitheiproblemiintoiaccount.

ProblemiStatementi(RenewableiEnergyiSourceiSelection):

Supposeiweihaveiaisetiof m renewable energy resources Xi = i{x1, ix2, i . . . , ixm}
whichiare toibeievaluatediagainstiniparametersi(criteria)iZi = i{z1, iz2, i . . . , izn} hav-
ingifurtheriaisetiof kisub-attribute’siparametersiQi = i{q1, iq2, i . . . , iqk}. Foritheisake
ofitheibestipossibleiselectioniof theiavailableirenewableienergyisources,isupposeithatia

committeeigetsiconstituted,isay,iwithitwoiexpertsi(decision-makers) havingiadequate

knowledgeiofitheifieldiofiengineering, economics, management, government services

andinationalienergyipolicies, etc. Theicomputationianditheiprocedureiofitheidecision-

making shouldiyielditheibestisuitableisourceiofirenewableienergy giveniallithe interre-

latediparametersiandisub-parameters. Inicaseiweitakeiupiaiveryiformaliselection pro-

cessistructureiwhereitheinatureiofiinformationiisiaccounted asiaipictureifuzzy hyper-

softimatrixitheniweineed toiproposeisomeinotionsiiniairevisediformatithat are essen-

tialiforisolvingisuchiMCDMiproblem. Iniviewiofithe widely utilized structure of a

decision-makingiproblemianditakingitheiproposedinotion of picture fuzzy hypersoft

matricesiintoiconsideration, weiexpressitheifollowingirevisedidefinitioniofichoiceimatrix

andiweightedichoiceimatrix:

Definition 36 IfiB1i = i[(ρB1
ijs, iτ

B1
ijs , iω

B1
ijs)]i ∈ PFHSMni×im,thenitheichoiceimatrix
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ofiPFHSM (PFHSCM)iB1,iinicaseitheiweightsiareisame, is definediasi

C(B1)i = i




n∑
js=1

(ρB1
ijs)

q

n
, i

n∑
js=1

(τB1
ijs )

q

n
, i

n∑
js=1

(ωB1
ijs)

q

n



ni×i1

; i∀ii.

Definition 37 IfiB1i = i[(ρB1
ijs, iτ

B1
ijs , iω

B1
ijs)]i ∈ PFHSMni×im, then the weighted

choiceimatrixiofiPFHSMi(PFHSWCM) B1, whereiwjs > 0iareiweights,iisidefined

by

Cw(B1)i = i




n∑
js=1

wjs(ρ
B1
ijs)

q∑
wjs

, i

n∑
js=1

wjs(τ
B1
ijs )

q∑
wjs

, i

n∑
js=1

wjs(ω
B1
ijs)

q∑
wjs



ni×i1

∀ii.

Byimakingiuseiofitheirevisedichoiceimatrix/weightedichoice matrix, weipresentia new

techniqueitoihandleitheiMCDMiproblemiwhichiis beingipresentediwithitheihelpiof Fig-

urei5.1.

Start

Step 1
Construction of picture 

fuzzy hypersoft matrices 
corresponding to PFHSS

Step 2 

Case 2: 
Unequal weights

Finish

Step 2 
Computation of Weighted 

Choice Matrix of Membership, 
Neutral membership and Non-
membership value of PFHSM.

Step 3
Choose the 
alternative 

with highest 
membership 

value.

Construction of picture 
matrices 

PFHSS.

Step 2

Case 1 :
Equal weights

Step 2
Computation of Choice Matrix of 

Membership, Neutral membership  
and Non-membership value of 

PFHSM.

Figure 5.1: MCDMiwithiChoice/WeightediChoiceiPictureiFuzzyiHypersoftiMatrix

Foritheisakeiofibetteriunderstandingiandireadability ofitheiproposedimethodology, the

essentialiproceduralistepsiare listediasifollows:
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Algorithm:iIi(MCDMiUsingiChoiceiand Weighted Choice Picture Fuzzy

HypersoftiMatrices)

Stepi1: Constructitheipictureifuzzyihypersoftimatrices correspondingitoitheipicture

fuzzyihypersoftisets.

Stepi2: Computeitheichoiceimatrixiofimembership, neutral membership and non-

membershipivalueiofitheipictureifuzzyihypersoftimatrix.

Stepi3: Computeitheiweightedichoiceimatrixiof membership, neutral membership

andinon-membershipivalueiofipictureifuzzy hypersoftimatrix.

Stepi4: Chooseitheialternativeiwithitheihighestimembershipivalue.

Remark: Inicaseiofianyitie, weiselectitheialternativeiwithithe highest membership

value anditheilowestinon-membershipivalue.

Further, iniadditionitoitheiaboveimethodologyiforiMCDM, weiproposeianialternative

techniqueiwhereitheinotioniof ValueimatrixiandiScoreimatrixiinithe form of picture

fuzzyihypersoftiinformationiisiutilizediwhichiisifound toibeimoreisuitableiandiconsistent.

Definition 38 LetiB = [Bij]ibeitheiPFHSMiofiorderini× im, where

Biji = i(ρBijs, iτ
B
ijs, iω

B
ijs)ithenithe valueimatrixiofiBi(PFHSVM)iisidenotediby δ(B)

andiisidefinedibyiδ(B)i = i[BB
ij ] of orderini× im,iwhere BB

ij i = iρBijsi− iτBijsi− iωBijs.

Definition 39 LetiBi = i[Bij]iandiCi = i[Cij]ibeitwo pictureifuzzyihypersoftimatrices

ofiorderini× im thenitheiscoreimatrixiofiBiandiCiis givenibyiΓ(B, iC)i = iδ(B)i+

iδ(C)iand Γ(B, iC)i = i[Γij]iwhereiΓiji = iδBij i+iδ
C
ij . Theitotaliscoreiofieveryimember

isigiven by |
∑n

j=1 Γij|.

Basedionitheiaboveidefinitionsiofivalueimatrixiand score matrix, we outline Algo-

rithmiIIiforisolvingitheiMCDMiproblem asigiveniin Figure 5.2:

Similarly, foriaibetteriunderstandingiandireadabilityiofithe proposedimethodology,

theiessentialiproceduralistepsiareilistediasifollows:

Algorithm:iIIi(MCDMiUsingiValuei&iScoreiPictureiFuzzy Hypersoft Ma-

trices)
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Start

Step 1
Construction  of Picture Fuzzy 

Hypersoft Matrices corresponding 
to the PFHSSs.

Step 2
Computation of the Value Matrices 

of the corresponding PFHSMs.

Step 3
Determine the Score Matrices of Determine the Score Matrices of 
the corresponding Value Matrices 

Step 5
Pick the 

Alternative with 
maximum Score 

Value

Step 4
Calculate the Total Score of the 
corresponding Score 

Construction  of Picture Fuzzy 
corresponding 

to the PFHSSs.

Value Matrices 
of the corresponding PFHSMs..

the Score Matrices of the Score Matrices of 
the corresponding Value Matrices 

Alternative with 
maximum Score 

Finish

Score of the 
corresponding Score Matrices

Figure 5.2: MCDMiwithiValue/ScoreiPictureiFuzzyiHypersoftiMatrix

Stepi1: Constructitheipictureifuzzyihypersoftimatrices correspondingitoitheipicture

fuzzyihypersoftisets.

Stepi2: ComputeitheivalueimatrixiobtainedifromiPFHSM. LetiBi = i[Bij]ibe the

PFHSMiofiorder ni× im,iwhereiBiji = i(ρBijs, iτ
B
ijs, iω

B
ijs) thenitheivalueimatrixiof

B isidenotediby δ(B)iandiisidefinedibyiδ(B)i = i[BB
ij ]iof orderini× im, whereiBB

ij i =

iρBijsi− iτBijsi− iωBijs.

Stepi3: Thenicomputeitheiscoreimatrixibyimakingiuseiof theivalueimatrixiobtained

fromistepi2. LetiBi = i[Bij]iandiCi = i[Cij]ibeitwo pictureifuzzyihypersoftimatrices

ofiorderini× im thenitheiscoreimatrixiofiBiandiCiis givenibyiΓ(B, iC)i = iδ(B)i+

iδ(C)iand Γ(B, iC)i = i[Γij]iwhereiΓiji = iδBij i+ iδCij .

Stepi4: Calculateitheitotaliscoreiofieveryimember obtainedifromithe score matrix.

Theitotaliscoreiofieveryimemberiisigiveniby |
∑n

j=1 Γij|.
Stepi5: Selectitheialternativeiwithitheimaximumiscore valueiobtainedifromitheitotal

scoreimatrixi(PFHSTSM).
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5.3 NumericaliIllustrationiofiRES Selection Prob-

lem

SupposeiXi = i{x1, ix2, ix3, ix4, ix5}ibe aisetiofirenewable energy sources, where

x1, x2, ix3, ix4, ix5irepresentsisolarienergy,iwind energy,igeothermalienergy, hydropower

andibiomassienergy,irespectively. Theseirenewableienergyisourcesiareitoibeiexamined

against theicriteriaigivenibyiZi = i{z1, iz2, iz3, z4, iz5, iz6}iandiz1, iz2, iz3, iz4, iz5, z6
representsicost,ienvironmentalifriendly,iyields,imaintenance,ireliability andiless num-

beriofipeoplesiareieffectedifromithis project. Aicommitteeiconsistsiofitwoiexperts hav-

ingiknowledge ofitheifieldiofiengineering,ieconomics,imanagement, government services

andipolicy-makingiforitheibestipossibleiselectioniof theiavailableiresource. To formu-

lateitheiproblemiintoipicture fuzzyihypersoftiinformationiletius consider the further

sub-attributesiofitheiaboveiattributesigiveniby

• Costi = iz1i = i{z11i = iaverage, iz12i = imoderate},

• EnvironmentaliFriendlyi = iz2,

• Yieldsi = iz3,

• Maintenancei = iz4i = i {z41i = ipredictive, z42i = ipreventive, } ,

• Reliabilityi = iz5i = i {z51i = iinternal, iz52i = iexternal, } ,

• Peopleieffectedifromiprojecti = iz6.

LetiZ
′
i = iz1i×iz2i×iz3i×z4i×iz5i×iz6ibeiaisetiof sub-attributesiwhichiisiexplicitly

giveniby “

=

{(
(z11, z2, z3, z41, z51, z6) , (z11, z2, z3, z41, z52, z6) , (z11, z2, z3, z42, z51, z6) , (z11, z2, z3, z42, z52, z6)

(z12, z2, z3, z41, z51, z6) , (z12, z2, z3, z41, z52, z6) , (z12, z2, z3, z42, z51, z6) , (z12, z2, z3, z42, z52, z6)

)}
” Foritheicalculationipurposeisetiofiallisub-attributes canibeirestatediasi

Z′
i = i

{
z
′

1, iz
′

2, iz
′

3, iz
′

4, iz
′

5, iz
′

6, iz
′

7, iz
′

8

}
Also, the study on various alternatives and criterions are also shown in Figure 5.3

Next, weiillustrateitheiimplementationiofithe proposed algorithms (AlgorithmiI

andiAlgorithmiII)ibyitakingiainumerical exampleiexistingiiniliteratureiwhichihasibeen
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Renewable Energy Sources Prioritization Model

Technological Features Environment Features Socio-Political Features Financial Features

Efficiency
Kaya & Kahraman (2011); Wang, 
JJ et al. (2009, Wu et al. (2018)

Energy Efficiency
Kaya & Kahraman (2011); 

Wang, JJ et al. (2009)

Reliability

Risk Analysis

Linguistic Valuation/Fuzzification of Effective Indicators Based on Decision Maker’s Opinion

E
F
F
E
C
T
I
V
E

Water Pollution
Cavallaro et al. (2018), 
Kahraman et al. (2009)

Pollutant Emission
Boaran (2018), Cavallaro et al. 
(2018), Mousavi et al. (2017)

Land Requirement
Kaya & Kahraman (2011), Pilavachi
et al. (2009), Tasri Susilawati (2014)

Social Acceptance & 
Recognition

Kaya & Kahraman (2011), Al 
Garni et al. (2016)

Job Creation
Kaya & Kahraman (2011), 

Kabak et al. (2014)

Misc- Political Acceptability, 
National Energy Policies, 

Labour Impact

Water Pollution
Cavallaro et al. (2018), 
Kahraman et al (2009)

Pollutant Emission
Boran (2018), Cavallaro et al. 

(2018)

Land Requirement
Kaya & Kahraman (2011), Al 

Garni et al. (2016), Kabak et al. 
(2014)

Linguistic Valuation/Fuzzification of Effective Indicators Based on Decision Maker’s Opinion

Applying the MCDM 
Technique

Scoring of Each 
Renewable Energy Source

Obtaining the Priority 
Table

Solar Power Wind Power Geothermal Power Hydropower Biomass Energy

I
N
D
I
C
A
T
O
R
S

~* This pictorial model has been originally compiled and designed by Authors Rakesh k Bajaj & Himanshu Dhumras.

Figure 5.3: RoleiofiEffectiveiIndicatorsiiniRESsiPrioritizationiModel

studiediby Feng et al. [114]iandiKhan et al. [115], [116].

AlgorithmiIi(MCDMiUsingiChoice and Weighted Choice Picture Fuzzy

HypersoftiMatrices)

Stepi1: Theisituationsiareiexaminedibyitheiexpertsiiniterms ofiPFHSMs.

Note: Initheipictureifuzzyihypersoftimatrixi(Table 6.7), theifirstielement (0.1, 0.1, 0.8)

Table 5.6: DecisioniMatrixigivenibyiFirst Panel of Experts
“x1′′ “x2′′ “x3′′ “x4′′ “x5′′

“z
′
1
′′ (“0.1,0.1,0.8”) (“0.2,0.1,0.6”) (“0.3,0.0,0.7”) (“0.1,0.1,0.8”) (“0.4,0.0,0.5”)

“z
′
2
′′ (“0.6,0.1,0.2”) (“0.7,0.0,0.2”) (“0.8,0.1,0.1”) (“0.9,0.0,0.1”) (“0.6,0.1,0.3”)

“z
′
3
′′ (“0.4,0.1,0.4”) (“0.4,0.1,0.5”) (“0.6,0.1,0.3”) (“0.6,0.1,0.2”) (“0.7,0.1,0.2”)

“z
′
4
′′ (“0.7,0.1,0.2) (“0.5,0.3,0.1) (“0.7,0.1,0.1) (“0.5,0.1,0.3”) (“0.2,0.1,0.6”)

“z
′
5
′′ (“0.6,0.2,0.1”) (“0.6,0.1,0.2”) (“0.2,0.2,0.5”) (“0.7,0.1,0.2”) (“0.7,0.1,0.1”)

“z
′
6
′′ (“0.7,0.0,0.3”) (“0.5,0.1,0.3”) (“0.7,0.1,0.1”) (“0.6,0.1,0.2”) (“0.3,0.2,0.5”)

“z
′
7
′′ (“0.3,0.2,0.4”) (“0.1,0.2,0.4”) (“0.4,0.2,0.3”) (“0.4,0.1,0.2”) (“0.5,0.1,0.3”)

“z
′
8
′′ (“0.1,0.2,0.3”) (“0.2,0.3,0.4”) (“0.1,0.5,0.3”) (“0.4,0.3,0.2”) (“0.3,0.2,0.1”)

definesitheidegreeitoiwhich theicriterioniz
′
1 is satisfied by the alternative x1 is 0.1

whereas theidegreeitoiwhichithe criterioniz
′
1iisinotisatisfiedibyitheialternative x1iisi0.8

andithe degreeiofineutralimembership isi0.1.
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Step 2: BasedionitheiaboveiPFHSM, we constructitheirespective Choiceimatrices

foritheiPFHSMigivenibyitheiexperts.

Casei1: (EqualiWeights) Here, weiassumeitheiequalipreferenceifor all the crite-

ria/subcriteria andiweicalculateitheipictureifuzzyihypersoftichoiceimatrix as follows:



(“0.2463, 0.02, 0.1538′′)

(“0.2, 0.0325, 0.1386′′)

(“0.2850, 0.0463, 0.1300′′)

(“0.3250, 0.12, 0.1175′′)

(“0.2462, 0.0163, 0.1375′′)


Casei2: (UnequalCaseiweights) Basedionitheidecision-makersiopinion, if differ-

entiweightsi0.1, i0.1, i0.1, i0.1, i0.2, i0.1, i0.15, 0.15 haveibeeniassignediforitheisetiofiall

sub-attributes

Z′
i = i

{
z
′

1, iz
′

2, iz
′

3, iz
′

4, iz
′

5, iz
′

6, iz
′

7, iz
′

8

}
respectively, thenitheipictureifuzzyihypersoftiweightedichoiceimatrix is beingiobtained

asifollows: 

(“0.238, 0.024, 0.1365′′)

(“0.1985, 0.0335, 0.131′′)

(“0.2405, 0.0555, 0.138′′)

(“0.325, 0.021, 0.102′′)

(“0.263, 0.0165, 0.116′′)


Stepi3: Analysis

Casei1: EqualiWeights AsiperiStepi2, ifitheiequalipreferencesiareigivenitoiallisub-

attributes thenifromitheichoiceimatrixiobtainedihavingitheihighest membership value

isi0.3250, whichiisiofirenewableienergyisourceix4, i.e., Hydropowerienergy. Hence,

theimostisuitableirenewableienergyisourceiwouldibeiHydropower energy.

Casei2: UnequaliWeights However, ifitheipreferencesiareinot equal, i.e., ifitheisub-

attributei z
′
5iisipreferredimoreithaniotherisub-attributesithen fromitheichoiceimatrix

obtained above, theihighestimembership valueiisi0.325iwhichiisiofirenewableienergy

source x4, i.e., Hydropowerienergy. Hence, againitheimostisuitedirenewableienergy

sourceiwouldibeiHydropowerienergy.

AlgorithmiIIi(UsingiValuei&iScoreiPictureiFuzzy HypersoftiMatrices)
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Stepi1: For using Algorithm II, we need at least two decision-matrices which are

given by (Table 6.7) and (Table 6.8).

Table 5.7: DecisioniMatrixigivenibyiSecondiPaneliofiExperts
“x1′′ “x2′′ “x3′′ “x4′′ “x5′′

“z
′
1
′′ (“0.8,0.1,0.1”) (“0.6,0.1,0.2”) (“0.3,0.0,0.7”) (“0.8,0.1,0.1”) (“0.4,0.1,0.5”)

“z
′
2
′′ (“0.6,0.2,0.2”) (“0.7,0.1,0.2”) (“0.1,0.0,0.8”) (“0.1,0.0,0.9”) (“0.6,0.0,0.3”)

“z
′
3
′′ (“0.4,0.2,0.4”) (“0.4,0.0,0.5”) (“0.6,0.1,0.3”) (“0.6,0.2,0.2”) (“0.7,0.1,0.2”)

“z
′
4
′′ (“0.7,0.0,0.2”) (“0.5,0.2,0.1”) (“0.7,0.2,0.1”) (“0.5,0.2,0.3”) (“0.6,0.2,0.2”)

“z
′
5
′′ (“0.6,0.1,0.1”) (“0.6,0.2,0.2”) (“0.5,0.3,0.2”) (“0.7,0.0,0.2”) (“0.7,0.1,0.1”)

“z
′
6
′′ (“0.7,0.0,0.3”) (“0.5,0.2,0.3”) (“0.1,0.0,0.7”) (“0.6,0.2,0.2”) (“0.3,0.1,0.5”)

“z
′
7
′′ (“0.4,0.2,0.3”) (“0.4,0.2,0.1”) (“0.3,0.2,0.4”) (“0.4,0.3,0.2”) (“0.3,0.1,0.5”)

“z
′
8
′′ (“0.3,0.2,0.1”) (“0.4,0.3,0.2”) (“0.3,0.5,0.1”) (“0.4,0.1.0.2”) (“0.1,0.2,0.3”)

Stepi2: Next, weiconstructitheivalueimatricesifromitheiprovided picture fuzzy hy-

persoftimatricesiobtainediiniStep 1.

δ(B)i = i



−0.8 0.3 −0.1 0.4 0.3 0.4 −0.3 −0.4

−0.5 0.5 −0.2 0.1 0.3 0.1 −0.5 −0.5

−0.4 0.6 0.2 0.5 −0.5 0.5 −0.1 −0.4

−0.8 0.8 0.3 0.1 0.4 0.3 0.1 −0.7

−0.1 0.2 0.4 −0.5 0.5 −0.4 0.1 0.0



δ(C)i = i



0.6 0.2 −0.2 0.5 0.4 0.4 −0.1 0.0

0.3 0.4 −0.1 0.2 0.2 0.0 0.1 −0.1

−0.4 −0.7 0.2 0.4 0.0 −0.6 −0.3 −0.3

0.6 −0.8 0.2 0.0 0.5 0.2 −0.1 0.1

−0.2 0.3 0.4 0.2 0.5 −0.3 −0.3 −0.4


Stepi3: Further, weicalculateitheiscoreimatricesibyitheiaboveitwo valueimatrices:

“

Γ(B,C) =



−0.2 0.5 −0.3 0.9 0.7 0.8 −0.4 −0.4

−0.2 0.9 −0.3 0.3 0.5 0.1 −0.4 −0.6

−0.8 −0.1 0.4 0.9 −0.5 −0.1 −0.4 −1.0

−0.2 0.0 0.5 0.1 0.9 0.5 0.0 0.0

−0.3 0.5 0.8 −0.3 1.0 −0.7 −0.2 −0.4


”

Step 4: Theitotaliscoreiofitheiaboveiscoreimatrixiis giveniby
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“ 

1.6

0.3

1.2

1.8

1.1


” Stepi5: Nowibasedionitheiaboveitotaliscore values, theimaximumivalueicomes out

toibei1.8 which correspondsitoitheialternativeix4, i.e., Hydropowerienergy. Hence,

theimost suitableirenewableienergyisourceibasedionitheitotaliscore valueiobtained by

theiproposedialgorithmiwillibeihydropower energy. Theicomparativeiscoreivalues and

theirirankingicanibe observediiniFigure 5.4.
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Ranking Based on Values in Total Score Matrix   

Figure 5.4: RankingiofiRenewableiEnergyiSourcesiBasedioniScore Matrix

5.4 ComparativeiAnalysisi&iAdvantages

Inithisisection, weidiscussitheifunctionality,ireceptiveness,iandiconformity of the pro-

posedinotioniandimethodologyiinicontrastiwithithe existing techniques. Iniaddition

toithis, someiadvantagesiandidiscussionsioveritheiobtainediresultsihave also been pre-

sentediforibetteriunderstandingiandireadability.

Iniviewiofitheinumericaliexampleiundericonsideration anditheiresultsiobtained through

theiexistingitechniquesiby variousiresearchers, weipresentitheirankingiof the alterna-

tives foritheidecision-makingiproblemiasishowniiniTable 5.8.
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“ ”

Table 5.8: ComparativeiAnalysis
Method Operators/MethodiUsed DevelopediRanking

“Feng et al.[114]” ExtendediIntersection,iIFWA x4 > x1 > x3 > x2 > x5

“Khan et al.[115]” “Soft Discernibility Matrix” x4 > x3 > x1 > x2 > x5

“Garg[117]” “PFEWA Operator” x4 > x3 > x1 > x2 > x5

“Yager[118] ” “PFWA Operator” x4 > x3 > x1 > x2 > x5

“Yager[118]” “PFWG Operator” x4 > x1 > x3 > x2 > x5

“Khan et al.[116]” “VIKOR I” x4 > x2 > x3 > x1 > x5

“Khan et al.[116]” “VIKOR II” x4 , x2 > x3 > x1 > x5

“Khan et al.[116]” “VIKOR III” x4 > x1 > x3 > x2 > x5

“Khan et al.[116]” “VIKOR IV” x4 > x2 > x3 > x5 > x1

“Proposed” “PFHSCM” x4 > x3 > x1 > x5 > x2

“Proposed” “PFHSWCM” x4 > x5 > x3 > x1 > x2

“Proposed PFHSVM & PFHSTSM x4 > x1 > x3 > x5 > x2

ImportantiRemarksiandiAdvantages:

• Finally, weicanistateithatitheiproposedinotioniof pictureifuzzyihypersoft matrix

PFHSM)iisiainoveliconcept andiaivalidiextensioniofifuzzyiset/hypersoftiset the-

ories. TheiPFHSMihasitheiaddediadvantageiofidealing withitheiwiderisense of

applicabilityiiniuncertain situationsiwithitheiincorporationiof the degree of re-

fusaliandiabstain.

• Theiexisting types of hypersoft sets - intuitionistic fuzzy hypersoft set [14],

Pythagoreanifuzzyihypersoftiset [113],iNeutrosophicihypersoftiseti[14]ihaveitheir

limitationsibecauseiofitheiexclusioniofirefusaliand abstainicomponent.

• Itimayibeinotedithatitheicategoricallyidesigned informationihavingithe picture

fuzzyirelationiwouldinot beipossibleitoiaddressiwithitheihelpiofiexisting hyper-

softisetitheoryiiniorderitoiensureiaikind ofiparametrizationiinitheirelation.

• Foritheisakeiofianioverallicriticaliaspect, weiobserveithatieventuallyiwith the pic-

tureifuzzy information, itiwon’tibeipossibleitoisuitablyiaddress those member-

ship valuesi(givenibyitheidecision-makers/experts)iwhoseisumiexceeds one. Such

restrictionsiwithirespectitoitheidecision-maker’siopinion canibeieradicated with

theinotioniofiT -sphericalifuzzy information.
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5.5 Conclusions

The inherited diversity found in the information and various criteria for choosing

the most suitable energy source alternative prove to be an important task for the

decision-making process. The proposed decision-making algorithms involve the choice

matrix, weighted choice matrix, followed by value and score matrix which span the

variability of the problem more mathematically. The main purpose of the chapter

lies in proposing new fuzzy decision-making methods for evaluating and ranking the

available renewable nergy sources based on different criteria. Consequently, we suc-

cessfully illustrated and implemented th formal procedure for solving the problem of

renewable energy source selection by utilizing PFHSCM, PFHSWCM, PFHSVM and

PFHSTSM. Since the real world is full of uncertainty with various parameters and

sub-parameters, the proposed methodologies exhibit the capability to simultaneously

span a wider coverage of information in terms of multi-sub-attribute features and

comprehensiveness of the expert’s opinion. The comparative analysis clearly shows

the advantageous features in contrast with the recent existing techniques.
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Chapter 6

q-RungiPictureiFuzzyiAHP &

WASPASiDecision-MakingiModel

This chapter discusses how to handle uncertainty in the green supply chain man-

agement system processes by using an integrated approach that converts informa-

tion into quantitatively measurable fuzzy sets and then uses those sets to inform

decision-making techniques such as the Weighted Aggregated Sum Product Assess-

ment (WASPAS) and Analytic Hierarchy Process (AHP). The suggested model, which

outlines potential strategies for green supply chain management in the energy sector,

has been applied step-by-step. The ideal detailed analysis has been provided at each

stage of the investigation in an integrated way to address the fundamental issues with

ideal decision-making. For improved comprehension, consistency, and dependability,

a quick sensitivity analysis and comparative analysis of the prospective strategy plans

with regard to the deterministic parameters have been carried out. The results of the

proposals show that, in terms of future strategic plans, prioritising the use of customer

relationship management to meet customer needs is more important than looking at

the process for creating new services and products.
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6.1 Proposed AHP/WASPAS with q-RPFSs and

GSCM Problem Formulation

The algorithmic details of the strategies used in the proposed study are described in

this section.

The weights iforieach criterionian alternative are found using pairwise compar-

isons in this manner. There are, nevertheless, several variations to this approach, and

fuzzy information-based AHP is the trick to prioritising more precisely.

6.1.1 ModifiediAnalytic Hierarchy Process (AHP) with q-

RPFS

In the domain of decision-making, Saaty [60] invented the AHP division of structure

techniques, which divide a complex problem into several hierarchical levels. The

weights iforieach criterionian alternative are found using pairwise comparisons in

this manner. There are, nevertheless, several variations to this approach, and fuzzy

information-based AHP is the trick to prioritising more precisely.

ConsideriAi = i{A1, iA2, i . . . , iAm}ibeithe setiofialternativesiwhichiare available

andiE = {E1, iE2, i . . . , iEn}ibeitheisetioficriteria toibeievaluatediagainstitheiset of

alternatives. Iniorderitoihaveidifferentijudgmentsionitheiavailable alternatives in ref-

erenceitoieachicriterion,iletiD = {D1, iD2, i . . . , iDl}ibe the set of decision-makersiwho

provideiassessmentiforitheidifferentialternatives againstivariousicriteria and pass on

theirijudgmentsiin theiformiofilinguisticiparameters. Theivariousistepsiinvolved in the

firstistageiAHPimethodiareigiveniin Figure6.1.

Construction of Pair-Wise 

Comparison Matrices
Consistency Analysis

Aggregated Pair-Wise 

Comparison Matrix

Evaluation of Local 

Weights

Evaluation of 

Global Weights

Evaluation of Final 

Weights
Defuzzification

Using Crisp Values of 

Weights for computation 

in WASPAS

Figure 6.1: ProceduralistepsiofimodifiediAHPiwithiq-RPFS
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• Stepi1: ConstructioniofiPair-wiseiComparisoniMatrix

Initheifirstistep, constructitheipair-wiseicomparisonimatrix Ri = i(rij)ni×iniby

convertingithe linguisticiparametersiintoitheicorrespondingiq-rungipictureifuzzy

numbersi(q-RPFNs)iandiSaaty’siscaleibasedioniTable 6.3.

• Stepi2: ConsistencyiAnalysis

Next, weidoiconsistencyianalysisiforieachiofithe pairwise comparison matrices

givenibyitheiformula CRi = iCI
RI

,iwhereiCIi = iwmax

n−1
.

Here,iCRi=iConsistencyiRatio,iCIi=iConsistencyiIndex, RIi=iRandom Index

andiwmaxi=imaximumieigenvalue ofitheipairwiseicomparisonimatrix.

IfiCRi > i0.1,ithenimoveitoitheinextistep elseireturnitoiStep 1.

• Stepi3: ComputingiAggregatediPair-wiseiComparisoniMatrix

Afteridoingiconsistencyianalysis, weiaggregateiallitheipairwise comparison ma-

tricesibyithe decision-makersiintoiaisingleimatrixibyitakingiaverageivalues ofiall

theiuncertaintyicomponentsirespectively.

• Stepi4: EvaluationiofiLocaliWeights

Inithisistep,itheilocaliweightsiofieachicriterion areicomputediwithitheihelpiof the

followingiequation

λj
locali = i


n∏
j=1

(ρqij)
1/n, i q

√√√√1i− i
n∏
j=1

(1i− iτ qij)
1/n, i q

√√√√1−
n∏
j=1

(1i− iωqij)
1/n


(6.1.1)

• Stepi5: EvaluationiofiGlobaliWeights

Inithisistep,itheiglobaliweightsiofieachicriterion areicomputediwith the help of

theifollowingiequation

λj
globali = i


l∏

j=1

(ρqij)
1/l, i q

√√√√1i− i
l∏

j=1

(1i− iτ qij)
1/l, i q

√√√√1i− i
l∏

j=1

(1− ωqij)
1/l


(6.1.2)

• Stepi6: EvaluationiofiFinaliWeights

Next, theifinaliq-rungipictureifuzzyiweightsiareicomputed forieachicriterion by

makingiuseiofitheifollowing equation

λj
finali = iλj

locali⊗ iλj
global (6.1.3)
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• Stepi7: iDefuzzificationi

Initheifinalistep,itheiq-rungipictureifuzzyiweights areidefuzzifiediinto crisp val-

uesibyiusingitheifollowing identity

λji = i
ρiji+ iτiji+ iωij

3
(6.1.4)

6.1.2 Modified Weighted Aggregated Sum Product Assess-

ment (WASPAS) with q-RPFS

TheiWASPASimethodiwasiintroducedibyiZavadskas et al.[70] whichifusesitheiweighted

sumiandiweightediproductimodelsi(WSM andiWPM). Thisimethodiisimodifiediwithiq-

rungipictureifuzzyiinformation toigiveimoreiaccurateiandibetteriresultsiofiprioritizing

theiavailableialternatives. Theivariousistepsiinvolvediinithe secondistaged modified

WASPASimethodiareigiveniin Figure6.2.

• Stepi1: ConstructioniofiExpertiMatrix

Initheifirstistep,itheiconstructioniofianiinitial expertimatrixifrom the linguistic

variablesiobtainedifromithe expertsihasibeenidone. Then,itheilinguisticivariables

are convertediintoitheiq-rungifuzzyinumbersi(q-RPFNs).

• Stepi2: ComputingiAggregatediExpertiMatrix

Theisecondistepiisitoiaggregateiallitheiq-rung pictureifuzzyiexpertimatrices into

aisingleiaggregatedimatrix asifollows:

“

D =



E1 E2 · · · En

A1 d11 d12 · · · d1n

A2 d21 d22 · · · d2n
...

...
...

. . .
...

Am dm1 dm2 · · · dmn

 (6.1.5)

” whereidiji = i1
l

[∑n
k=1 d

k
ij

]
; liisitheinumberiofidecision-makers.

• Stepi3: UtilizingiWeightediSumiModeli(WSM)
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Figure 6.2: Proceduralistepsiofi2ndistagedimodifiediWASPASiwith q-RPFS
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Computeitheiq-rungipictureifuzzyiweightedisumiofievery alternativeiasifollows:

AWSM
i i = ii⊕ iλjdij)i = i q

√√√√1i− i

n∏
j=1

(ρqij)
λj , i

n∏
j=1

(τ qij)
λj , i

n∏
j=1

(ωqij)
λj . (6.1.6)

• Stepi4: UtilizingiWeightediProductiModeli(WPM)

Computeitheiq-rungipictureifuzzyiweightediproductiofievery alternativeiasifollows:

AWPM
i i = i⊗(d

λj
ij )i = i

n∏
j=1

(ρqij)
λj , i q

√√√√1i− i

n∏
j=1

(1i− iτ qij)
λj , q

√√√√1i− i

n∏
j=1

(1i− iωqij)
λj .

(6.1.7)

• Stepi5: ComputeitheiCombinediCriterion

Evaluateitheiq-rungipictureifuzzyicombinedigeneralizedicriterion of every alter-

nativeiasifollows:

Aii = iyAWSM
i i⊕ i(1i− iy)AWPM

i . (6.1.8)

where,iyiisiaitrade-offiparameteribetweenitheitwo respectiveimodelsiandiy ∈ [0, 1].

• Stepi6: iDefuzzificationi

Initheifinalistep,itheiq-rungipictureifuzzyivalues areidefuzzifiediintoicrispivalues

byiusingitheifollowing identity

Sii = iρAi
i+ i

τAi

2
i+ i

1i− i(ρAi
+ iτAi

i+ iωAi
)

2
(1i+ iρAi

i− iωAi
). (6.1.9)

• Stepi7: RankingiofiAlternatives

Theifinalirankingiofitheialternativesiisitoibe performedibasedionitheicrisp values

ofitheicombined generalizedicriterion. Theialternativeiwithitheimaximum value

willibeipreferred.

6.1.3 ProposediModel

Inithisisection,iweipresentiainewihybridifuzzy multi-criteriaidecision-makingimodel by

makingiuseiofivarious criteriaiforiprioritizingitheipotentialistrategiciplansiof green sup-

plyichainimanagementiinitheienergyisector. The proposedimodelihasibeenidiscussed

withitheihelpiof theifollowingistage-wiseiprocedureishowniiniFigure 6.3.
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Stage  1: Customer Demands  versus Technical Needs

Stage  2: Technical Needs versus Advancement Procedures

Stage  3: Advancement Procedures versus Potential Capabilities

Stage  4: Potential Capabilities versus Potential Strategic Plans

Figure 6.3: Stage-wiseipotentialistrategiesiforiGSCM

Theifirstistageiinvolvesitheidemandsiofitheicustomers and their respective technical

needsiinitheienergyisector forigreenisupplyichainimanagement. Firstly,ithe weighting

of expectationsiofitheicustomersiisidoneibyiutilizingithe q-RPFiAHP. Inithe second

stage, theitechnicalineedsialong withitheiexpectationsiofitheicustomersiare computed

by utilizingiq-RPFiWASPAS. Theiobtainediresultsiareibeingiutilized for the weights

ofitheitechnicalineedsianditheievaluationiofithe advancementiproceduresiwithithe in-

corporationiofiq-RPFiWASPAS. Theithirdistageigivesitheiresultsiofiinnovating capa-

bilities foritheiadvancementiproceduresibyimakingiuseiofiq-RPF WASPAS. In the fi-

nalistage, theiprioritizationiofipotentialistrategiciplansihasibeenidone onitheibasis of

innovatingicapabilitiesiutilizingiq-RPFWASPAS. Therefore, theiproposedimethod ap-

propriatelyitakesiintoiaccountithe successiveicomputationsithatifollowioneianother.

First, a variety of elements are taken into consideration when defining all the

requirements and options for GSCM in the energy sector. These methodologies takes

into account both the technical requirements of the various energy businesses and

the desires of the customers [119]. Therefore, more feasible and agreeable possible

strategy plans may be developed for these energy sectors [120]. Additionally, the

computation of weights and the computation of prioritising results with different

decision-making procedures are typically done using a hybrid MCDM technique [121].

This contribution opens the door to more objective contributions. Additionally, in

the area of GSCM in the energy industry, q-RPF AHP and q-RPF WASPAS are

considered.
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6.2 Stage-wiseiImplementationiof AHP/WASPAS

in GSCM

Inithisisection,ivariousiresultsiareidescribediinithe followingistages.

Stagei1. Customeridemandsiversusitechnicalineeds:

The energy industries must now make the transition to customer-oriented man-

agement methods due to the rapidly changing markets and intense competition. The

significance of a green supply chain’s quality has also been considered in this regard.

To substantially surpass their competitors in the market, energy sectors must be able

to offer high-quality products to their customers at lower costs [122]. It must be

necessary to dispense the items to be sold from the suppliers in the most ideal and

appropriate circumstances, without delay in time, in order to make and dispatch to

its clients on time, in order to achieve this goal. Thus, the importance of the supplier-

customer connection has been recognised as having productive and effective GSCM.

It will be easier for the energy sectors to have a strong level of competitiveness if this

process is executed successfully. Furthermore, this situation will significantly enhance

the energy sectors’ performance. On the other hand, customer-focused supply chain

management aids in lowering the procedure’s customer-related hazards. For exam-

ple, a company that understands that a customer needs a product on time may try

to collaborate with its supplier to ensure that the required supplies arrive on time

[123]. Using this strategy, one of the biggest supply chain risks—not being able to

make timely goods purchases—might be mitigated. Furthermore, a company that

pays close attention to customer expectations is aware of the demand for environ-

mentally friendly products. By doing this, it will guarantee that the items must be

environmentally sustainable and take this into account when selecting suppliers [124].

Consequently, supply chain management can mitigate environmental risk. Table 6.1

displays the aspects of consumer expectations as per the literature review. Table 6.1

lists customer requests towards green supply chain management. There have been

significant differences in consumers’ expectations for products, especially in the last

several years. In the past, meeting consumer demand could be achieved simply by

producing the goods, but more and more, new demands have emerged. Consumers

prioritise these products’ uniqueness in order to ensure that they completely meet
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Table 6.1: CustomeridemandsiforitheiGSCM

iCriteriai iLitearturei

Multifariousnessiofigreenidistribution

routesi(CD1)

[153, 154]

Expensesiforitheisourcesiofienergyi(CD2) [155, 156]

Productiwasteirecyclingi(CD3) [157, 158]

Minimizationiofipollutioniand transmis-

sioni(CD4)

[160, 162]

Effectivenessiofienergyisourcesiwith tech-

nologicaliadvancementsi(CD5)

[163, 164]

their needs [125]. Items ought to be extensive and reasonably priced to ensure client

pleasure. Furthermore, the environmental friendliness of the items must be consid-

ered in the needs of the customers [126]. Environmentally friendly products are what

the energy sectors strive to produce in order to simplify the GSCM. Concerns like

reducing waste and carbon emissions will be given more attention in order to assist

this [127]. Additionally, this will improve the company’s reputation in the industry

[128]. Firstly, the diversity of green distribution channels to expedite client delivery

[129]. Another crucial requirement of the clients is that the energy sources be afford-

able. But for environmentally conscious consumers, proper waste recycling is also

crucial [130]. Furthermore, if the energy industries release less carbon emissions and

are less polluting, consumers will perceive them favourably [131]. Furthermore, in-

creasing energy efficiency also requires advancements in the technology infrastructure

[132]. With the advancement of technology, it will be possible to provide a good that

meets the needs of more people. Additionally, Table 6.2 describes the technological

requirements needed to meet these client’s needs.

The five distinct technological demands that have been determined to satisfy cus-

tomer requirements are covered in Table 6.2. First and foremost, money ought to

be allocated for the GSCM sector’s route expansion [133]. Based on this, the clients

will be able to use a variety of distribution channels to provide speedier and better

service. Furthermore, constructing the necessary infrastructure would improve the

efficacy of cost management. In this case, the right people should be employed, and

the required technical investments should be made. Furthermore, it’s critical to thor-
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Table 6.2: TechnicaliNeedsiforitheiGSCM

iCriteriai iLitearturei

Maximizationiofirouteivolumesi(TN1) [165, 166]

Minimizationionimanagementicostsi(TN2) [167, 168]

Planningiofirecyclingiprocess (TN3) [158, 159]

Steadyiexpensesionitheiminimization

ofipollutioni& transmissioni(TN4)

[169, 160]

Devisingiresearchi&idevelopmentischemes

forienergyieffectiveness (TN5)

[161, 170]

Table 6.3: Qualitativeivariablesiwithirespectitoialternatives

LinguisticiTerms iq-RPFNsi Scale

“Absolutely High (AH)” (“0.95, 0.2, 0.2”) “ 1
7
′′

“Very High (VH)” (“0.9, 0.1, 0.1”) “ 1
5
′′

“High (H)” (“0.75, 0.2, 0.1”) “ 1
3
′′

“Medium High (MH)” (“0.6, 0.4, 0.3”) 1“”

“Medium (M)” (“0.5, 0.3, 0.4”) “3”

“Medium Low (ML)” (“0.3, 0.3, 0.6”) “5”

“Low (L)” (“0.25, 0.2, 0.6”) “7”

“Very Low (VL)” (“0.1, 0.1, 0.85”) “9”

oughly prepare for the recycling process’ reuse phase. This will enable the recycling

procedure to be implemented properly and save expenses [134]. Customers’ pleasure

will also increase as a result, and the efforts made to reduce carbon emissions are

equally important. In this case, spending money on carbon capture and technological

storage can reduce air pollution. As a result, increasing research and development

spending will make achieving energy efficiency much simpler [135]. In addition, three

highly experienced professionals with knowledge of the energy sector are assigned to

obtain the computations. Table 6.3 provides the linguistic scale for this in terms

of q-RPFNs and Saaty numbers. Accordingitoithis,itheidecisionsimadeibyiallithree

expertsionicustomeridemandsianditheiexpertimatrixiof technicalineedsiiniassociation

withitheicustomeridemandsiare giveniiniTable 6.4 and Table 6.5. The following

stage involves converting linguistic calculations into q-RPFNs for every aspect, and

the q-RPF AHP is used to weight GSCM’s customer needs in the energy industry.

Now, using the consistency ratio formula, each pairwise comparison matrix’s consis-
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Table 6.4: Linguisticicomputationiforicustomeridemands
“CD1

′′ “CD2
′′ “CD3

′′ “CD4
′′ “CD5

′′

“CD1
′′ (“M,M,M ′′) (“H,MH,ML′′) (“MH,H, V H′′) (“AH,AH,H′′) (“M,V H,H′′)

“CD2
′′ (“MH,M, V L′′) (“M,M,M ′′) (“V H,MH,MH′′) (“V H, V H, V H′′) (“V H,M,MH′′)

“CD3
′′ (“V L,L,ML′′) (“ML,L,ML′′) (“M,M,M ′′) (“V H, V L,ML′′) (“V L, V L,L′′)

“CD4
′′ (“L,M,M ′′) (“V L,ML,ML′′) (“MH,V L,ML′′) (“M,M,M ′′) (“ML,V L, V L′′)

“CD5
′′ (“V L, V L, V L‘′′) (“ML,L,L′′) (“V H,M,ML) (“V H,AH,AH′′) (M,M,M ′′′′)

Table 6.5: Linguisticicomputationiforitheitechnicalineeds
“TN1

′′ “TN2
′′ “TN3

′′ “TN4
′′ “TN5

′′

“CD1
′′ (“ML,MH,H′′) (“H,L, V H′′) (“V L, V L,ML′′) (“MH,MH,AH′′) (“MH,MH,H′′)

“CD2
′′ (“L,ML,L′′) (“ML,ML, V L′′) (“M,AH,MH′′) (“AH,MH,AH′′) (“AH,AH, V H′′)

“CD3
′′ (“H,V L,ML′′) (“M,MH,ML′′) (“AH,V H, V H′′) (“V L, V L,MH′′) (“M,V L, V L′′)

“CD4
′′ (“L,L,M ′′) (“ML,M,M ′′) (“L,M,L′′) (“V L, V L,ML′′) (“M,L,L′′)

“CD5
′′ (“M,M,M ′′) (“V H,H,H′′) (“MH,M,M ′′) (“H,MH,V H′′) (“H,H, V H′′)

tency ratio is calculated. The results show that each pairwise comparison matrix’s

consistency is less than ten percent, indicating that each pairwise comparison matrix

is consistent. Next, Table 6.6 provides the combined pairwise comparison matrix of

all the experts. “ ” Now, byiusingitheiaggregatedipairwiseicomparison matrix and

Table 6.6: Aggregated pairwise comparison matrix
CD1 CD2 CD3 CD4 CD5

CD1 (0.5, 0.3, 0.4) (0.55, 0.3, 0.3) (0.75, 0.23, 0.17) (0.88, 0.2, 0.17) (0.72, 0.2, 0.23)

CD2 (0.4, 0.27, 0.52) (0.5, 0.3, 0.4) (0.7, 0.3, 0.23) (0.9, 0.1, 0.1) (0.67, 0.27, 0.27)

CD3 (0.09, 0.2, 0.68) (0.28, 0.27, 0.6) (0.5, 0.3, 0.4) (0.43, 0.17, 0.52) (0.15, 0.13, 0.77)

CD4 (0.42, 0.27, 0.47) (0.23, 0.23, 0.68) (0.3, 0.27, 0.58) (0.5, 0.3, 0.4) (0.17, 0.17, 0.77)

CD5 (0.1, 0.1, 0.85) (0.27, 0.23, 0.6) (0.57, 0.23, 0.37) (0.43, 0.17, 0.17) (0.5, 0.3, 0.4)

the above-mentioned steps of q-RPF AHP, the weights of the customer demands are

given by Table 6.7. From the results, q-RPF AHP, recycling of product waste (CD3)

is the most important criterion for the demands of the customers, and multifarious-

ness of green distribution routes (CD1) is the least important in the set of criteria.

The profits of the energy sectors are affected by the costs to pay for the effectiveness

of the energy and the sustainability of the environment [136]. Generally, customers

prefer products that are environmentally friendly and do not harm the surroundings.

This factor is useful for short-term benefit and the sectors can maximize their margin

of profit by concentrating more on the customer demands [137]. However, energy ef-

ficiency and environmental sustainability are not that easy to adopt because of some

technological inadequacies. To overcome such shortcomings, the energy sectors must
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Table 6.7: Weights for customer demands

Criterions Weights(q=2)

CD1 0.18657

CD2 0.19303

CD3 0.20707

CD4 0.20684

CD5 0.20649

give relative importance to the studies of research and development [138].

Additionally, for the effectiveness of the energy and the sustainability of the environ-

ment, it is required to give more attention towards the awareness of environmental

issues in all the phases starting from the earliest inputs to the last delivery of the last

product [139]. For this context, the alternatives of renewable sources of energy must

be taken into account, which results in a decrease in carbon emissions significantly.

Further, the energy sectors must give importance to recycling and waste manage-

ment. By this, energy efficiency can be increased and with the incorporation of all

these aspects the risks in the green supply chain can be minimized and which results

in enhanced performance.

Furthermore, the ideas of effectiveness of the energy and the sustainability of the

environment have a favorable effect on various types of performances. Within this

framework, costs of the energy sectors can be minimized over time by taking into

account the aspect of energy efficiency [140]. This circumstance has a great contri-

bution to the economic evaluations of the sectors. In addition to this, when nations

concentrate on environmental sustainability, the customers are more dedicated to the

respective energy sectors and these sectors are majorly preferred. This also has a

greater impact on the effectiveness of the institutions, because of the representatives

who are influenced by the effectiveness of the energy and the sustainability of the en-

vironment will gradually grow their job performance [141]. Further, the relationship

between the customers and the suppliers is also very crucial for a clear understanding

of the demands of the customers and also very careful about meeting the required

necessities of the customers. Otherwise, it becomes very difficult to survive in com-

petitive surroundings. Clearly, the energy sectors are required to modify their green
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supply chains in accordance with the demands of the customers [142] and should

be enough flexible to reshape their chains over time with respect to the customer

demands.

Now,, the needs of the customers along with the demands of the customers are com-

puted by utilizing q-RPF WASPAS. In this step, customer demands and technical

needs are calculated in a matrix. Within this framework, the fuzzy technique will

be one of the most prominent for evaluating customer demands under vagueness and

technical needs [143, 119]. The results for the needs of the customers are given in

Table 6.8. “ ” In context with this, the weights of the needs of the customers are

Table 6.8: Expert matrix of technical needs
TN1 TN2 TN3 TN4 TN5

CE1 (0.55, 0.3, 0.33) (0.63, 0.17, 0.27) (0.17, 0.17, 0.77) (0.72, 0.33, 0.27) (0.65, 0.33, 0.23)

CE2 (0.27, 0.24, 0.6) (0.23, 0.23, 0.68) (0.68, 0.3, 0.3) (0.83, 0.27, 0.23) (0.93, 0.17, 0.17)

CE3 (0.38, 0.2, 0.52) (0.55, 0.3, 0.33) (0.92, 0.13, 0.13) (0.27, 0.2, 0.67) (0.23, 0.17, 0.7)

CE4 (0.33, 0.23, 0.53) (0.43, 0.3, 0.47) (0.33, 0.23, 0.53) (0.17, 0.17, 0.77) (0.33, 0.23, 0.53)

CE5 (0.5, 0.3, 0.4) (0.8, 0.17, 0.1) (0.53, 0.33, 0.37) (0.75, 0.23, 0.17) (0.8, 0.17, 0.1)

evaluated by the above-mentioned steps of q-RPF WASPAS and given in Table 6.9.

Table 6.9: Weights for technical requirements

Criterions Weights(q=2)

TN1 0.20026

TN2 0.21892

TN3 0.19788

TN4 0.15531

TN5 0.22763

From Table 6.9 devising research and development activities (TN5) has the

supreme order in the need of the customer’s criteria while steady expenses on the

minimization of pollution & transmission (TN4) is the last in the technical require-

ments. These weights are further used for evaluating the weighted values for the

advancement procedures for the new products.

Stage 2. Technical needs versus new product advancement procedure:
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Table 6.10: Advancement procedures for the GSCM

Criteria Existing Litearture

Scheming (AP1) [171, 172]

Observance (AP2) [173, 174]

Computing (AP3) [175, 176]

Devising (AP4) [177, 178]

Examining (AP5) [179, 180]

In this stage, new product advancement procedures are computed based on their

performance. New product advancement procedures for GSCM are demonstrated in

Table 6.10. From Table 6.10, there are five distinct phases of new product advance-

ment for the GSCM. First, there is scheming of new products based on the different

ideas gathered from various sectors so that the best-suited product should be devised.

The next phase is about the observation of the kind of product to be devised and

the kind of members who will work proactively in the sector. In the third phase, all

steps leading up to the product’s finalization are managed. In the fourth phase, the

product is finalized. In the final phase, before being made available to customers,

the product undergoes one more round of testing. The method q-RPF WASPAS is

utilized for evaluating the advancement procedures on the technical needs. The lin-

guistic computations are illustrated in Table 6.11. “ ” In the next step, the expert

Table 6.11: Linguistic computation for the advancement procedures
AP1 AP2 AP3 AP4 AP5

TN1 (M,L,M) (V L,H,M) (ML,MH,V H) (M,H, V H) (MH,V H,H)

TN2 (V H,L,M) (H,ML,H) (M,MH,H) (V H,MH,A) (A,H, V H)

TN3 (MH,V H,H) (M,V L,H) (M,MH,V H) (M,L, V L) (L, V L,H)

TN4 (L,L,M) (ML,M,M) (M,M,L) (ML,V H,L) (M,M,M)

TN5 (H,M,ML) (MH,H,MH) (MH,V L,ML) (M,ML,L) (V H,L,M)

matrix is utilized along with q-RPF WASPAS and the computation percentages are

illustrated in Table 6.12 and the evaluation results of q-RPF WASPAS for the second

stage are given in Table 6.13. “ ” The obtained results of the second stage show that

the advancement procedure (AP2) i.e. observance is the best choice and devising

(AP4) is the least-suited advancement procedure.

Stage 3. New product advancement procedure versus potential capabili-

ties:
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Table 6.12: Expert matrix of advancement procedure
AP1 AP2 AP3 AP4 AP5

TN1 (0.42, 0.27, 0.47) (0.45, 0.27, 0.45) (0.63, 0.27, 0.33) (0.72, 0.2, 0.2) (0.75, 0.23, 0.17)

TN2 (0.55, 0.2, 0.37) (0.6, 0.23, 0.27) (0.62, 0.3, 0.27) (0.82, 0.23, 0.2) (0.87, 0.17, 0.13)

TN3 (0.75, 0.23, 0.17) (0.45, 0.2, 0.45) (0.75, 0.23, 0.17) (0.37, 0.17, 0.52) (0.37, 0.17, 0.52)

TN4 (0.33, 0.23, 0.53) (0.43, 0.3, 0.47) (0.42, 0.27, 0.47) (0.48, 0.2, 0.43) (0.5, 0.3, 0.4)

TN5 (0.52, 0.27, 0.37) (0.65, 0.33, 0.23) (0.33, 0.27, 0.58) (0.43, 0.23, 0.43) (0.55, 0.2, 0.37)

Table 6.13: Weights for advancement procedures

Criterions Weights(q=2)

AP1 0.20777

AP2 0.22716

AP3 0.19933

AP4 0.17607

AP5 0.18966

In the third stage, similar computations (q-RPF WASPAS) can be done for

weighting the potential capabilities. The set of criteria for potential capabilities

is given in Table 6.14. According to Table 6.14, five distinct factors can affect the

potential capabilities of the GSCM. Firstly, the sectors must have a good institu-

tional setup. For this, the sectors must have proper departments and intellectual

staff members who can cope with the level of competition in the market. In context

with this, the sector’s effective observance of the market and prompt execution of

important steps over time will help its growth in this procedure. In addition to this,

the maximum profit margin in the energy sector’s investment should be taken into

account for its growth in GSCM. Also, the potential capabilities of the customers

are another major aspect of this process. The sectors that are more interested in

Table 6.14: Potential capabilities for the GSCM

Criteria Existing Litearture

Institution (PC1) [159, 181]

Competitiveness (PC2) [182, 183]

Accomplishment (PC3) [184, 185]

Procreation (PC4) [186, 187]

Client (PC5) [185, 166]
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responding to the demands of the customers are considerably more successful in the

GSCM. The linguistic evaluations are defined in Table 6.15. “ ” Next, the expert

Table 6.15: Linguistic computation for the potential capabilities
PC1 PC2 PC3 PC4 PC5

AP1 (M,V H,M) (H,V H,H) (ML,V H, V H) (MH,H,H) (V H, V L,AH)

AP2 (MH,V H,AH) (V H,AH,AH) (A, V H,L) (A, V H,H) (AH,V H,MH)

AP3 (L,ML,L) (M,H, V H) (V H,L,L) (M,L,M) (M,V H,M)

AP4 (H,L,ML) (V H,M,ML) (AH,V H, V H) (V L,L, V L) (L,L, L)

AP5 (H,V H,ML) (ML,M,ML) (L,ML, V H) (ML,H, V H) (H,L,M)

matrix of potential capabilities is computed and demonstrated in Table 6.16. After

that, the weights of potential capabilities are evaluated by utilizing q-RPF WASPAS

and given in Table 6.17. “ ” From Table 6.17, competitiveness (PC2) is the best

Table 6.16: Expert matrix of potential capabilities
PC1 PC2 PC3 PC4 PC5

AP1 (0.63, 0.23, 0.3) (0.8, 0.17, 0.1) (0.7, 0.17, 0.27) (0.7, 0.27, 0.17) (0.65, 0.13, 0.38)

AP2 (0.82, 0.23, 0.2) (0.93, 0.17, 0.17) (0.7, 0.17, 0.3) (0.87, 0.17, 0.13) (0.82, 0.23, 0.2)

AP3 (0.27, 0.23, 0.6) (0.72, 0.2, 0.2) (0.47, 0.17, 0.43) (0.42, 0.27, 0.47) (0.63, 0.23, 0.3)

AP4 (0.43, 0.23, 0.43) (0.57, 0.23, 0.37) (0.92, 0.13, 0.13) (0.15, 0.13, 0.77) (0.25, 0.2, 0.6)

AP5 (0.65, 0.2, 0.27) (0.37, 0.3, 0.53) (0.48, 0.2, 0.43) (0.65, 0.2, 0.27) (0.5, 0.23, 0.37)

Table 6.17: Weights for potential capabilities

Criterions Weights(q=2)

PC1 0.21761

PC2 0.22327

PC3 0.18494

PC4 0.18623

PC5 0.18796

factor for potential capabilities while accomplishment (PC3) is the least important

among the set of criteria.

Stage 4. Potential capabilities versus potential strategic plans:

The final stage is to compute the potential strategic plans against the poten-

tial capabilities. Within this framework, the criteria for potential strategic plans

are defined in Table 6.18. After doing a thorough review of the literature, five dis-
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Table 6.18: Potential strategic plans for the GSCM

Criteria Existing Litearture

Collaborating with the sectors on the technical needs (PSP1) [188]

Standardizing the atmosphere of a competitive market (PSP2) [189]

Concentrating on investment ventures with high anticipated returns (PSP3) [190, 191]

Examining the procedure for developing new services and products (PSP4) [192]

Utilizing the customer relationship management to meet the needs of the customers (PSP5) [193]

tinct potential strategic plans have been identified for the energy sectors. Firstly, the

necessity of the relationship between the demands of the customers and the manage-

ment of the energy sectors is very useful for gaining an advantage in the competitive

environment of the market. The reason behind this is that satisfied customers will

prefer these sectors more than others. Another strategic plan that the energy sectors

can implement is to make investments in technical development. Through this, the

sectors will be able to manufacture items that meet the demands of the customers.

Examining new products and services according to the demands of the customers

is another potential strategic plan that can be implemented by the energy sectors,

which will help them gain a good position in the market. Also, the comparisons of

the energy sectors among themselves are also very crucial for gaining significant im-

portance in the market and it will also help to become familiar with new applications

in the energy sectors. The financial viability of the proposed initiatives can also be

used as a potential strategic plan and for which the energy sectors conduct a modi-

fied analysis involving the cost-benefit parameters for the launching of new projects.

The linguistic evaluations are given in Table 6.19. “ ” Also, the expert matrix of

Table 6.19: Linguistic computation for the potential strategic plans
PSP1 PSP2 PSP3 PSP4 PSP5

PC1 (MH,V H,H) (H,AH, V L) (MH,L, V L) (M,AH, V L) (MH,L,H)

PC2 (V L,L,M) (V L,L, L) (L,M,H) (MH,V H, V L) (AH,L,MH)

PC3 (H,H,H) (L,M,MH) (MH,V H,H) (V H, V L,L) (M,H, V L)

PC4 (L, V L,H) (H,A, V L) (V H,MH,L) (AH,L,H) (H,V H,H)

PC5 (M,V H,H) (V L,H,H) (V H,MH,L) (V L,AH,H) (H,A,H)

the potential strategic plans is illustrated by Table 6.20. Within this framework, the

obtained results for potential strategic plans are demonstrated in Table 6.21. From

Table 6.21, it is clear that the prioritization for potential strategic plans is given as
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concentrating on investment ventures with high anticipated returns (PSP5), stan-

dardizing the atmosphere of a competitive market (PSP4), examining the procedure

for developing new services and products (PSP3), utilizing the customer relationship

management to meet the needs of the customers (PSP1) and collaborating with the

sectors on the technical needs (PSP2) is least preferred. “ ”

Table 6.20: Expert matrix of potential strategic plans
PSP1 PSP2 PSP3 PSP4 PSP5

PC1 (0.75, 0.23, 0.17) (0.6, 0.17, 0.38) (0.32, 0.23, 0.58) (0.55, 0.23, 0.45) (0.53, 0.27, 0.33)

PC2 (0.28, 0.2, 0.62) (0.2, 0.17, 0.68) (0.5, 0.23, 0.37) (0.53, 0.2, 0.42) (0.6, 0.27, 0.37)

PC3 (0.75, 0.2, 0.1) (0.45, 0.3, 0.43) (0.75, 0.23, 0.17) (0.42, 0.13, 0.52) (0.45, 0.2, 0.45)

PC4 (0.37, 0.17, 0.52) (0.6, 0.17, 0.38) (0.58, 0.23, 0.33) (0.65, 0.2, 0.3) (0.8, 0.17, 0.1)

PC5 (0.72, 0.2, 0.2) (0.53, 0.17, 0.35) (0.58, 0.23, 0.33) (0.6, 0.17, 0.38) (0.82, 0.2, 0.13)

Table 6.21: Ranking for potential strategic plans

Alternatives Rank

PSP1 0.19912

PSP2 0.17206

PSP3 0.20289

PSP4 0.20853

PSP5 0.2174

6.3 Comprartive Analysis and Discussion

In this section, we briefly present the overall concluding analysis along with a dis-

cussion of the advantages and limitations of the proposed methodology. In recent

years, customers have looked forward to demonstration strategies in terms of the de-

signing process of the products [144] which should also fulfill the budget issue of the

customer and certain products of their needs. However, it is quite apparent in the

findings that the customers are more specific about the environment and keen to go

ahead with the companies that are more eco-friendly while developing the products

[145]. It is certainly quite obvious that the concept of GSCM plays a vital role in

any kind of strategic planning for the companies to meet the customer’s expectations.
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The detailed analysis has already been presented stage-wise in the previous section

for better understanding and readability.

Sensitivity Analysis:

0
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Figure 6.4: Effect of the parameter y on PSP’s

On the basis of computations, we have presented some special findings in the

form of the sensitivity diagram given in Figure 6.4. It is observed that the role of the

parameter y is very important in understanding the variability and reliability of the

obtained result. Suppose we consider the value of y to be 0.5 for our MCDM problem,

but the decision makers can choose the appropriate value of y (ranging from 0 to 1)

according to their convenience. The computational analysis shows that if we keep on

changing the values of y in the proposed methodology, the obtained ranking reflects

a kind of consistency in the selection of potential strategic plans. This enables us to

make sure that the uncertainty in the decision is reduced. This gives the proposed

methodology a kind of robustness in the calculation and validates the result and the

process.

Also, the essential factors of a decision-making technique (i.e. criterion and de-

cision maker’s weights) and the evaluation of the alternatives under these criteria.

These are very essential characteristics of an MCDM technique. Further, we compare

our methodologies based on these terms with some existing methodologies tabulated

in Table 6.22.

139



Table 6.22: Consistency with the MCDM Methods
IVIF-

DEMATEL

&

MOORA

[146]

Spherical

Fuzzy

TOPSIS

[198]

Fuzzy

DE-

MA-

TEL

[147]

Fuzzy

COPRAS

[148]

Proposed

AHP &

WASPAS

PSP1 5 5 5 5 5

PSP2 4 4 4 4 4

PSP3 3 3 3 3 3

PSP4 1 1 1 1 1

PSP5 2 2 2 2 2

Table 6.23: Characteristic Comparison based on MCDM Methods

Literature Decision-

Makers’s

Weightage

Criterion’s

Weights

of the

Criterions

Linguistic

Computa-

tion

No. of

Uncer-

tainty

Compo-

nents

Restriction

on the Un-

certainty

Components

Assessment In-

formation of

Alternatives

[194] Taken into ac-

count

Totally Un-

known

✓ 1 Yes Fuzzy Set

[195] Taken into ac-

count

Totally Un-

known

✓ 3 Yes Pythagorean Fuzzy

Set

[196] Taken into ac-

count

Totally Un-

known

✓ 1 Yes Fuzzy Set

[197] Taken into ac-

count

Known × 4 Yes Picture Fuzzy Set

[198] Taken into ac-

count

Totally Un-

known

✓ 4 Yes Spherical Linear

Diophantine Fuzzy

Set

Proposed

Methods

Calculated Totally Un-

known

✓ 4 No q-Rung Picture

Fuzzy Set

Final rankings of the innovative/potential strategic plans for the GSCM by the

variety of researchers (linguistic comparison) are aligned and tabulated in Table 6.23,

which illustrates the consistency and reliability of the proposed technique. Although

the outcomes are comparable statistically, this means that the suggested methodolo-

gies are different from others in the literature.

As a limitation, a different study can be carried out for the different industries

focusing on the energy companies. In such cases, the utilization of quality function

deployment (QFD) based indicators can be considered for measuring the different

strategies for the energy-based sectors. Also, the technique of VIKOR/TOPSIS mod-
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els for taking the different potential strategies can be implemented so that some

quantitative/numerical-based analysis could be possible to comprehend whether the

obtained results are compatible or non-compatible.

6.4 Conclusions

The significant contributions of the proposed work can be summarized as follows:

• The proposed model involving the q-rung picture fuzzy set in the AHP/WASPAS

decision technique has been successfully presented and analyzed. The analysis

comprises four types of interlinked different stages which have been presented in

detail with observations. On the basis of the findings, it is clear that the prior-

itization for potential strategic plans is given as utilizing customer relationship

management to meet the needs of the customers (PSP5) the most.

• Further, examining the procedure for developing new services and products

(PSP4) and concentrating on investment ventures with high anticipated re-

turns (PSP3) are the next level of priority. Collaborating with the sectors on

the technical needs (PSP1) and standardizing the atmosphere of a competitive

market (PSP2) is the least preferred in the order.

• It may be noted that the AHP is capable of considering the relative priorities

of factors/alternatives and provides a wide range of usage for the systematics

planning, effectiveness, benefit and risk analysis by choosing any kind of decision

among alternatives. The work done in this chapter can further be applied to

various other applications like social mediating technologies, green information

technology for sustainability [199], [200].

• Also, the work can be expanded for handling various other types of real-world

problems under different types of uncertain environments and various other

sectors ([149], [150], [151], [152]).
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Chapter 7

Conclusion

In the current thesis, we have explored and presented some new decision-making

techniques in the picture fuzzy framework. The results of the research conducted in

each of the chapters are mentioned along with a scope of future work:

• A bi-parametric (R, S)-norm picture fuzzy discriminant/cross-entropy measure

has been effectively proposed along with its mathematical validation. Then,

the proposed measure has been utilized for devising the modified VIKOR &

TOPSIS decision-making methodologies.

• The proposed decision-making methodology has been successfully implemented

for the assessment of hydrogen fuel cell technology problems along with suitable

comparative and sensitivity analysis. These modified techniques give policy-

makers useful information to help them for the selection of the best possible

hydrogen fuel cell technology.

• Next, a new kind of picture fuzzy Dombi aggregation operators has been satis-

factorily proposed along with some important properties and operational laws.

With the help of picture fuzzy Dombi aggregation operators, we developed the

modified EDAS decision-making techniques which include the parametrization

feature of the attributes.

• The problem of sustainable agrifarming has been solved with the incorporation

of picture fuzzy soft Dombi-based EDAS decision-making methodology. Also,
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the validation of the proposed methodology is done by doing the comparative

and consistency study.

• The novel notion of picture fuzzy hypersoft set (PFHSS) has been introduced

with various essential properties and operational laws. Further, the aggregat-

ing operators of the form(PFHSWA/PFHSOWA/PFHSWG/PFHSOWG) have

been detailed as well. The proposed decision-making methodology has been

well illustrated by a numerical example under consideration.

• In continuation, by utilizing a picture fuzzy hypersoft set a new concept of

picture fuzzy hypersoft matrix (PFHSM) has been effectively introduced along

with different types, operations and properties.

• The variability of uncertain information has been spanned by the notions of

choice matrix, weighted choice matrix, followed by value and score matrix. The

proposed methodology has been applied in the assessment of renewable energy

source selection problems. Then, a comparative study depicts the advantages

over the contemporary techniques in the literature.

• Further, the q-rung picture fuzzy oriented AHP/WASPAS decision-making tech-

niques have been presented which includes the stage-wise procedures for imple-

mentation.

• The problem of finding the best potential strategic plan for the energy sector

has been remodeled with the AHP/WASPAS decision-making methodologies

under q-rung picture fuzzy framework. Lastly, the viability and robustness of

the presented techniques have been examined. Also, the overall organization of

the proposed work is also shown in Figure 7.1.

7.1 Scope of Future Work

While the methodologies developed in this thesis have shown promising results, there

are several avenues for future research that can extend and refine these techniques:

• Integration of Machine Learning Techniques: Future work could explore the

integration of machine learning algorithms with picture fuzzy decision-making
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Figure 7.1: Organization of the Complete Proposed Work

methodologies to enhance the prediction and classification accuracy in dynamic

environments, such as in renewable energy forecasting or agrifarming yield pre-

diction.

• Multi-Criteria Decision-Making under Dynamic Conditions: Expanding the

proposed frameworks to handle dynamic and time-varying data, which could

be useful in applications like real-time energy management and adaptive agri-

farming solutions.

• Hybrid Models for Complex Systems: Developing hybrid models that combine

picture fuzzy decision-making with other soft-computing techniques (such as

neural networks or genetic algorithms) to tackle highly complex decision-making

problems with multiple layers of uncertainty.

• Extension to Group Decision-Making: Extending the picture fuzzy methodolo-

gies to multi-expert or group decision-making scenarios, where conflicting opin-

ions and preferences can be effectively managed using the proposed aggregation

operators.
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• Applications in Other Domains: Applying the developed methods to other crit-

ical fields such as healthcare, transportation, and urban planning, where multi-

criteria decision-making plays an essential role in strategic decision support

systems.

• Software Implementation and Validation: Developing user-friendly software

tools that implement the proposed decision-making methodologies, enabling

practitioners and policymakers to easily apply these techniques in real-world

scenarios.

These directions would further enhance the practical utility of the proposed method-

ologies and extend their applicability across diverse sectors.
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