Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. NumS PO, o9 Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

_ Resource Centre-JUIT L

VIR

.SP06090

CLIENT SERVER APPLICATION FOR
MOBILE DEVICES USING J2ME

BY

AKUL GARG (061403)
GURDIP SINGH (061418)

ANKUR BROOTA (061447)

DEPARTMENT OF CS AND IT

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY -
WAKNAGHAT

MAY-2010

v

Waknaghat, Solan-173215, Himachal Pradesh

CERTIFICATE

This is to certify that the work entitled, “Client Server Application For Mobile Devices Using
J2ME” submitted by Akul Garg(061403), Gurdip Singh(061418), Ankur Broota(061447) in
partial fulfillment for the award of degree of Bachelor of Technology in Information Technology
of Jaypee University of Information Technology has been carried out under my supervision. This
work has not been submitted partially or wholly to any other University or Institute for the award

of this or any other degree or diploma.

ws”

Mr P.K'Gupta
(Project Supervisor)
Department of Computer Science and Engineering

Jaypee University of Information Technology

Waknaghat, Solan-173215

L

ACKNOWLEDGMENT

Apart from the efforts by us, the success of this project depends largely on encouragement and
guidelines of many others. We take this opportunity to express our gratitude to the people who
have been instrumental in the successful completion of this project. We would like to show our
greatest appreciation to our supervisor Mr.P.K Gupta. We feel motivated and encouraged every
time we get his encouragement. For his coherent guidance throughout the tenure of the project,
we feel fortunate to be taught by him, who gave us his unwavering support. Besides being our
mentor, he has taught us that there’s no substitute for hard work. Being a dynamic personality
himself, he has a practical approach towards a profession. Also, the guidance and support
received from all the team members including Akul Garg, Gurdip Singh,Ankur Broota who
contributed, which was vital for the success of the project. We feel grateful working together as
a group. We owe our heartiest thanks to Brig. (Retd.) S.P.Ghrera(H.0.D.-CSE/IT Department)
who’ve always inspired confidence in us to take initiative. He has always been motivating and
encouraging. Finally, thanks to all our family members who supported us in our every grim

phase.

Project Group No.-12

Akul Garg(061403) R G‘“WJ
Gurdip Singh(061418) Ch_bwbg,g g;,gdfq

Ankur Broota(061447) Mﬁmﬁ/ﬁ/&—eﬁ

B.TECH (Computer Science and Engineering)

Jaypee University of Information Technology

CONTENTS
I INEEOAUCTION. oo\ttt et e e v it b e e eeeanea s enannsenenses 1
L Definifion. oo 2
L2 PUIPOSE. ...ttt e e 3
1.3 Intended Audience. 3
2, Java2 Micro Edition (JZME}......iuveeiiiiniiieniieaneieenieireeseessnenarsenssnsensnson 4
2.1 J2ME Configuration.cociiiiiiiiiies e 4
2.1.1. Connection Limited Device Configuration (CLDC).................cccoovniii) 5
2.1.2, CLDC SECUIILY. ...vivtiiei et e e, 6
) 2.1.3. Connected Device Configuration...............coovveeiesiiiiie s 7
22 Profile. ... 8
221 K JaVA. o 8
222, MIDP. . e, 8
2.3 The MIDlet Life Cyclel0.......c..ooiiiiiiiiiciiee e 9
24 MIDIEt SUIE «.vtittiirii e e 10
2.5 Display Hierarchy..........cooooiiiiiiiiiiii e e 11
3. BIIELOOth..cuveiiiiiniiiiii e et e at e e e ee s e st ensernran 12
3.1 Piconet and SCAHEINEt. ... vvvveiit ettt 13
3.2 Bluetooth ATChItECIUE.ot 16
) 4. Client Server Application using BIUetooth........cccccevvviirniirnierseinnseseniesnnsennn 18

AU SEIVEL 19
4.2 Server INHaliZation. ..o 19
4.3 Connecting To the CHENt. ..o i e 21
4.4 DEVICE DISCOVEIY ... 0ttt 22
4.5 Service Search.........oooiiii 24
4.6 Applications Developed...... ..o 25
4.6.1 DICHONATY.....ouoitiitit e 25
4.6.2 PC CONIOL ...uiiiiii e e 25
4.6.3File Search... ... 25
4.7 Graphical Representation of Project............ocooviive i, 26
4.8 Data Flow Diagram (DFD).........cociitiiiiiiiiiiiie e 28
4.8.1 DFDLevel O....ooonintiiii e 28
482 DFDLevel L. oo e 28
483 DFDLevel 2. i 29
Testing Technologies To be Used...; .. 30
5.1 Black Box Testing......oc.iiviiii e e 30
DL Step Lo, 31
512 Step2eoiii. e 32
313 S P B e, 33
5.1 SEEP .o 33

s e At

f S LS P S 34
l S0 D O 34
5.2 Integration TeStNE. ... i e 35

5.3 UM TESHILE. ..ttt e e e e 36

Appendix Sample Code.........cooiiiiiiiiiic e e s b e 37

TS 0 PP 37

Remote DISCOVETY...ouiniir i e e 42

LOZEOIJAVA. Lttt e e e e e e 45

Service Search. ... 46

> SearchInfo.java. ..o 50

]

LIST OF FIGURES

% Fig 1.1 J2ME Architecture... i, 4

Fig 2.1 CLDCANd CDC .., 7
Fig 2.2 MID Architectiure.ooiiiiin e 9
Fig 2.3 Display Class Hierarchy...........ooooiiiiiiiiiini e 11
Fig 3.1 A Typical PIconet.cooiriiii e 13
Fig 3.2 Scatfernet.........ooiviiiiiii e 14
Fig 3.3 Piconet With 2 Nodes.............ovviiiiiniiiiii e 15
Fig 3.4 Scatternet With 3 Nodes.........coiiiiii e, 15

) Fig 3.5 Piconet With 3 Nodes.........cc.oooiiiiiiiiiiii e, 16
Fig 3.6 Bluetooth stack............ooiiiiiii e, 17
Fig 4.1 Client Server Model..o 18
Fig 4.2 Device Discovery State DIagram............o.ovviiiviniiieiiiiiiiiis e, 23
Fig 4.3 Service Search State Diagram.............coiiviiiiniriniiii e 24
Fig 4.4 Graphical Representation...........oooeeieiiiiiiiiiiiii e 26

)

v s st b

ABBREVIATIONS
1. J2ME lava To Micro Edition for building the application.
2. JABWT The Java APIs for Bluetooth Wireless Technology

3. UUID Is a unique Bluetooth ID

4. CLDC Connected Limited Device Configuration

5. CDC Connected Device Configuration

Abstract

We have developed some applications which can run on mobile phones due to its hardware or
processing constraints. It will send its input (taken on mobile, referred to as client) to laptop
connected via a Bluetooth (referred to as a work station) for processing, and will receive back the

output on same mobile through which input was sent.

We have developed 3 applications

o Dictionary

¢ PC control

e File Search

S e g e i 1)
— p—-\A.‘

1. INTRODUCTION

Wireless technologies are becoming more and more popular around the world. Consumers
appreciate the wireless lifestyle, relieving them of the well known “cable chaos™ that tends to
grow under their desk. Nowadays, the world would virtually stop if wireless communications
suddenly became unavailable. Both our way of life and the global economy are highly dependent
on the flow of information through wireless mediums like television and radio. Mobile phones

have become highly available during the last decade.

Now virtually everyone owns a mobile phone, making people available almost wherever they
are. Many companies are highly dependent on their employees having mobile phones, whereas
some companies have even decided not to employ stationary phone systems but instead use
mobile phones exclusively throughout the organization. The Bluetooth wireless technology is

one of these technologies which are being implemented.

New wireless technologies are being introduced at an increasing rate in the organizations. During
the last few years the IEEE 802.11 [1] technologies have started to spread rapidly, enabling
consumers to set up ther own wireless networks. This constitutes an important change in how
wireless communications are made available to consumers. Wireless networks are no longer
provided by big corporations alone, they can just as well be implemented by individuals. Our
society is becoming more and more dependent on wireless communications as new areas of use

are introduced.

Java enabled mobile phones have already been on the market for some years. Due to the very
resource constrained mobile phones available a few years ago, Java applications were not very
sophisticated and did not hit the mass-market the way many had hoped. As seen in the rest of the
software and hardware industry, games play an important role in driving the development of both
hardware and software forward. It is therefore interesting to see that a large market has emerged

lately for Java games targeting mobile devices. Processing power, available memory, screen size,

and screen resolution are increasing as new Java enabled mobile devices enter the market. Newly

released Java applications are accordingly sophisticated, and will help to spread the Java

technology usage even further.

The Java APIs for Bluetooth Wirekss Technology (JABWT) ties the Java technology and the
Bluetooth technology together. One can easily imagine different scenarios where JABW T would
be usefui, e.g the functionality of existing Java games is extended to support multi-player games
using Bluetooth connectivity. Other interesting scenarios energe as well, such as a consumer
using a Java Bluetooth enabled mobile phone to pay for a soda by connecting to a Bluetooth

enabled soda vending-machine

J2ME applications have in the recent years gained considerable popularity in global scale, and
have attracted a significant part of the mobile user community. The above observations can be
explained by the fact that these applications make it possible for users to manage and share

various kinds of information among them,

By doing research on this topic we found out that the J2ME applications do not use databases
and prefer only limited internal database. So the main objective of taking up this project is to
develop an application which has synchronization between Mobile devices and external
databases. These applications permit only restricted users to access the databases within the

organization.

1.1 Definition

Sun Microsystems define J2ZME as "a highly optimized Java run-time environment targeting a

wide range of consumer products, including pagers, cellular phones, screen-phones, digital set-

top boxes and car navigation systems."

1.2 Purpose

J2ME application allows the user to perform various tasks on his mobile phones that were not earlier

possible like cross functionality in mobile phones,

ey e e

1.3 Intended Audience

This document is intended for different types of readers, such as developers, project managers,

management staff, users, testers, and documentation writers.

T T TR A e T

B St .

2. JAVA 2 MICRO EDITION (J2ME)

This gives an overview of the J2ME technology. The J2ZME architecture is described in general
before the components in the J2ME technology are introduced. J2ME applications are also
discussed in general, and it is explained how they are made available to end users. Finally,
JABWT is discussed, showing where it has its place in the J2ME architecture. J2ME is a highly
optimized Java runtime environment. J2ME is aimed at the consumer and embedded devices
market. This includes devices such as cellular telephones, Personal Digital Assistants (PDAs)

and other small devices.

Prolita Level

| Configuration Level

Java Virtual Machine

Y B
Java 2 Micro Edition (J2ME

Fig-1.1 J2ME architecture

2.1 2ME Configurations

The configuration defines the basic run-time environment as a set of core classes and a specific

JVM that run on specific types of devices. You also learned that the two types of configurations

4

for J2ZME are CLDC and CDC. Sun provides J2ME configurations that are suitable for different
market segments — CLDC for siall devices and CDC for larger devices. A J2ME environment
can be configured dynamically to provide the environment needed to run an application,
regardiess of whether or not all Java technology-based libraries necessary to run the application
are present on the device. The core platform receives both application code and libraries.
Configuration is performed by server software running on the network. In the next few panels,

you will learn more about CLDC and CDC and which profiles they are associated with.

2.1.1 Connected Limited Device Configuration (CLDC)

CLDC was created by the Java Community Process, which has standardized this "portable,
minimum- footprint Java building block for small, resource-constrained devices," as defined on
Sun Microsystems’ Web site. The J2ME CLDC configuration provides for a virtual machine and
setof core libraries to be used within an industry-defined profile. As mentioned, a profile defines
the applications for particular devices by supplying domain-specific classes on top of the base

J2ME configuration.

The K virtual machine (KVM), CLDC's reference implementation of a virtual machine, and its
KJava profile run on top of CLDC. CLDC outlines the most basic set of libraries and Java virtual
machine features required for each implementation of J2ZME on highly constrained devices.
CLDC targets devices with slow network connections, limited power (often battery operated),
128 KB or more of non-volatile memory, and 32 KB or more of volatile memory. Volatile
memory is non-persistent and has no write protection, meaning if the device is turned off, the

contents of volatile memory are lost.

With non-volatile memory, contents are persistent and write protected. CLDC devices use non-

volatile memory to store the run-time libraries and KVM, or another virtual machine created for

a particular device. Volatile memory is used for allocating run-time memory.

o 1 e

e

2.1.1.1 CLDC Security

The security model of the CLDC is defined at three different levels, low-level security,
application-level security and, end-to-end security [24]. Low-level security ensures that the
application follows the semantics of the Java programming language. It also ensures that an ill-
formed or maliciously encoded class file does not crash or in any other way harm the target
device. In a standard Java virtual machine implementation this is guaranteed by a class file
verifier, which ensures that the byte codes and other items stored in class files cannot contain
illegal instructions, cannot be executed in an illegal order, and cannot contain references to

invalid memory locations or memory areas outside the Java object memory.

However, the conventional J2SE class verifier takes a minimum of 50 kB binary code space and
typically at least 30-100 kB of dynamic Random Access Memory (RAM) at runtime. This is not
ideal for small, resource constrained devices. Because of this, a different approach is used for
class file verification in CLDC. Class files are pre-verified off device, usually on the workstation
used by the developer to compile the applications, The pre-verification process will add some
information to the classes, making runtime verification much easier. The result is that the
implementation of the class verifier in Sun's KVM requires about 10 kB of Intel x86 binary code

and less than 100 bytes of dynamic RAM at runtime for typical class files.

Application-level security means that the application will run in the CLDC sandbox model. The
application should only have access the resources and libraries permitted by the Java application
envitonment, This means that the applicaﬁon programmer must not be able to modify or bypass
the standard class loading mechanisms of the virtual machine. The CLDC sandbox model also
requires that a closed, predefined set of Java APIs is available to the application programmer,
defined by the CLDC, profiles (e.g MIDP) and manufacturer-specific classes. The application
programmer must not be able to override, modify, or add any classes to the protected java.*,

javax.microedition.®, profile-specific or manufacturer-specific packages.
p P p package

End-to-end security usually requires a number of advanced security solutions (e.g. encryption

and authenticatior)). The CLDC expert group decided not to mandate a singie end-to-end security

—

S
—

mechanism. Therefore, all end-to-end security solutions are assumed to be implementation

dependent and outside the scope of the CLDC specification.

2.1.2 Connected Device Configuration (CDC)

Connected Device Configuration (CDC) has been defined as a stripped-down version of Java 2
Standard Edition (J2SE} with the CLDC classes added to it. Therefore, CDC was built upon
CLDC, and as such, applications developed for CLDC devices also run on CDC devices. CDC,
also developed by the Java Community Process, provides a standardized, portable, full- featured
Java 2 virtual machine building block for consumer electronic and embedded devices, such as
smart phones, two-way pagers, PDAs, home appliances, point-of-sale terminals, and car
navigation systems. These devices run a 32-bit microprocessor and have more than 2 MB of
memory, which is needed to store the C virtual machine and libraries. While the K virtual

machine supports CLDC, the C virtual machine (CVM) supports CDC.

JISE ™ CDC £ @ J2SE M COLDC = O !

Fig-2,1 CLDC and CDC

2.2 J2ME Profile

As we mentioned earlier in the previous chapter, a profile defines the type of device supported.
The Mobile Information Device Profile (MIDP), for example, defines classes for cellular phones.
It adds domain-specific classes to the J2ME configuration to define uses for similar devices. Two
profiles have been defined for J2ME and are built upon CLDC: KJava and MIDP. Both KJava
and MIDP are associated with CLDC and smaller devices. Profiles are built on top of
configurations. Because profiles are specific to the size of the device (amount of memory) on
which an application runs, certain profiles are associated with certain configurations. A skeleton
profile upon which you can create your own profile, the Foundation Profile, is available for
CDC. However, for this tutorial and this section, we will focus only on the KJava and MIDP
profiles built on top of CLDC.

2.2.1 Profile 1: KJava

KJava is Sun's proprietary profile and contains the KJava APL. The KJava profile is built on top
of the CLDC configuration. The KJava virtual machine, KVM, accepts the same byte codes and
class file format as the classic J2SE virtual machine. KJava contains a Sun-specific API that runs
on the Palm OS. The KJava API has a great deal in common with the J2SE Abstract Windowing
Tookit (AWT). However, because it is not a standard J2ME package, its main package is

com.sun.kjava

2.2.2 Profile 2: MIDP

MIDP is geared toward mobile devices such as cellular phones and pagers. The MIDP, like
KJava, 5 built upon CLDC and provides a standard run-time environment that allows new
applications and services to be deployed dynamically on end-user devices. MIDP is a common,

industry-standard profile for mobile devices that is not dependent on a specific vendor. It is a

complete and supported foundation for mobile application development.

r ~ ™
MIDP CEM-Spacific MNative
Applications Applications Applications
OEM-Specific }{ R
Classes ; :

Mobile Information E
| Davica Profila {MIDP) ,L
— = — "' o ~
Connectad Limited Davice Configuration (CLDC)

Fig-2.2 Mobile information device architecture

™,

2.3 The MIDlet Life Cycle

MIDP applications are represented by instances of the javax.microedition.midlet. MIDlet class.
MIDlet has a specific life cycle, which is reflected in the methods and behaviour of the MIDlet
class. A piece of device-specific software, the application manager, controls the installation,
execution, and life cycle of MIDlets. MIDlets have no access to the application manager. A
MIDIet is installed by moving its class files to a device. The class files will be packaged in a Java
Archive (JAR), while an accompanying descriptor file (with a .jad extension) describes the
contents of the JAR.

A MIDlet goes through the following states:

1. When the MIDIet is about to be run, an instance is created. The MIDlet’s constructor is run,

and the MIDlet is in the Paused state.

2. Next, the MIDlet enters the Active state after the application manager calls startApp().

9

|
|
!
‘r
L
1 3
i
L

4
i

3. While the MIDlet is Active, the application manager can suspend its execution by calling
pause App(). This puts the MIDlet back in the Paused state. A MIDlet can place itself in the
paused state by calling notifyPaused().

4. While the MIDlet is in the Paused state, the application manager can call startApp() to put it

back into the Active state.

5. The application manager can terminate the execution of the MIDlet by calling destroyApp(), at
which point the MIDlet is destroyed and patiently awaits garbage collection. A MIDIet can
destroy itself by calling notifyDestroyed().

2.4 MIDlet suites

MIDlets are usually available through MIDlet suites. It consists of two files, a .jar and a .jad file.
The Java Archive (JAR) file contains compiled classes in a compressed and pre-verified format.
Several MIDlets may be included in one MIDIet suite. Hence, the JAR file will contain all these
MIDIlet classes. This enables multiple them to share resources, like common libraries included in
the MIDlet suite or data stored on the device. Because of security constraints, a MIDlet may only

access the resources associated with its own MIDlet suite.

This applies to all resources, such as libraries it may depend on or data stored on the MID, The
Java Application Descriptor (JAD) file is.a plain text file containing information about a MIDlet
suite. All MIDlets must be named in this file, the size of the JAR file must be included (and be
correct!) and the URL to the JAR file must be present. In addition, the MIDlet suite version
number is included here. This is essential information for a MID. The MID will always

download the JAD file first and inspect its contents.

If the MIDlet suite is already installed, it will know if a newer version is available. The size of

the JAR file is important information, the MID can determine if there is enough memory

10

7

available to install the MIDlet suite. If all is well the MID can go to the supplied URL and

download the JAR file. Other attributes may be included as well.

2.5 Display Hierarchy

One display object per MIDP Display

ilablei bcl .
command | ey Cas_s Displayable
of displayable
variable in Srrasy methods for Graphics
Ticker Canvas PR
{ screen class drawing on canvas
(\
[Text Box] [List } [Alert J [Form J
.
Choice Data [Imageitem }[Stringitem }
Field

group

TextField || Gauge

Fig-2.3 Displayable Class Hierarchy

11

_i
I —

3. Bluetooth

Bluetooth is a low cost, low power; short-range radio technology intended to replace cable
connections between nobile phones, PDAs and other portable devices, It can clean up your desk
considerably, making wires between your workstation, mouse, laptop computer etc. obsolete.
Ericsson Mobile Communications started developing the Bluetooth system in 1994, looking for a
replacement to the cables connecting mobile phones and their accessories. The Bluetooth system
is named after a tenth-century Danish Viking king, Harald Blitand, who united and controlled
Norway and Denmark. The first Bluetooth devices hit the market around 1999,

The Bluetooth radio is the lowest layer of Bluctooth communication. The Industrial Scientific
and Medical (ISM) band at 2.4 GHz is used for radio communication. Note that several other
technologies wse this band as well. WiFi technologies like IEEE 802.11b/g and kitchen

technologies like microwave ovens may cause interference in this band.

The Bluetooth radio utilizes a signalling technique called Frequency Hopping Spread Spectrum
(FHSS). The radio band is divided into 79 sub-channels. The Bluetooth radio uses one ofthese
frequency channels at a given time. The radio jumps fiom channel to channel spending 625
microseconds on each channel Hence, there are 1600 frequency hops per second. Frequency
hopping is used to reduce interference caused by nearby Bluetooth devices and other devices
using the same frequency band. Adaptive Frequency Hopping (AFH) is introduced in the
Bluetooth 1.2 specification and is useful if your device communicates through both Bluetooth

and Wi-Fi simultaneously (e.g. a laptop computer with both Bluetooth and Wi-Fiequipment).

Every Bluetooth device is assigned a unique Bluetooth address, being a 48-bit hardware address
equivalent to hardware addresses assigned to regular Network Interface Cards (NICs). The
Bluetooth address is used not only for identification, but also for synchronizing the frequency

hopping between devices and generation of keys in the Bluetooth security procedures.

12

3.1 Piconet and Scatternet

A piconet is the usual form of a Bluetooth network and is made up of one master and one or
more slaves. The device initiating a Bluetooth connection automatically becomes the master. A
piconet can consist ofone master and up to seven active slaves. The master device is literally the
master of the piconet. Slaves may only transmit data when transmission-time is granted by the
master device, also slaves may not communicate directly with each other, and all communication
must be directed through the master. Slaves synchronize their frequency hopping with the master

using the master's clock and Bluetooth address.

Slave

Master

Slave

Fig-3.1 A typical piconet

Piconets take the form ofa star network, with the master as the centre node; shown in F igure 3.1
Two piconets may exist within radio range ofeach other. Frequency hopping is not synchronized

between piconets, hence different piconets will randomly collide on the same frequency. When

13

connecting two piconets the result will be a scatternet. Figure 3.2 shows an example, with one
intermediate node connecting the piconets.

The mtermediate node must time-share, meaning it must follow the frequency hopping in one
piconet at the time. This reduces the amount of time slots available for data transfer between the
intermediate node and a master; it will at least cut the transfer rate in half It is also important to
note that neither version 1.1 nor version 1.2 of the Bluetooth specifications define how packets
should be routed between piconets. Hence, communication between piconets cannot be expected

to be reliable,

Piconet | Piconet 2

/

Fig-3.2 Scatternet

14

Role-switching enables two devices to switchroles in a piconet. Consider the following example:
You have two devices A and B, Device A connects to device B, hence, device A becomes the

master of the piconet consisting ofdevices A and B as shown in Figure 3.3.

Master Slave

Fig-3.3 Piconet with 2 nodes

Then a device C wants to join the piconet. Device C connects to the master device, A, Since
device C initiated the connection it will automatically become the master of the connection
between device C and device A. We now have two masters; hence, we have two piconets.
Device A is the intermediate node between these piconets, being the master for device B and the

slave for device C, as seen in Figure 3.4

Slave/Master Slave

Master

Fig-3.4 scatternet with 3 nodes

Figure 3.5 shows that a role-switch between device A and device C will give us one piconet
where A is the master and both B and C are slaves. We see that when a new device wants to be

part ofa piconet we actually need a role-switch to make this happen, else we get a scatternet.

Master Slave

Slave ‘

Fig-3.5 Piconet with 3 nodes

3.2 Bluetooth Architecture

(___ JavaBlustooth Application

Java APl e for Bluetooth Witeless Technology :
ISR 82 (JABWT ;

s ¥ g
OBEX i
e . i
Blustooth Serial Emulation ¢ Service Discovery
Protocol 2 AP (RFCOLIND Protocol (SDF)
Stack Logical Link Control and
(softwar &) N Adaptationn Protocol (L2CAPN
] H ost Controll ex Intedfate (HCID
Blustooth Host C ontroller Chardw are)

y Fig-3.6 Bluetooth Stack

16

The Bluetooth stack is made up of many layers, as shown in Figure 3.6 The HCI is usually the
layer separating hardware from software and is implemented partially in software and
hardware/firmware. The layers below the HCI are usually implemented in hardware and the

layers above the HCI are usually implemented in software.

L2CAP segments data into packets for transmission, and re-assembles received packets into

larger messages.

RFCOMM provides functionality similar to a standard serial communications port, which is

utilized as a stream connection at the Java level I employ RFCOMM as the communications

layer in this chapter’s echoing client/server example.

OBEX (the Object Exchange protocol) provides a means for exchanging objects between objects
(such as images and files), and is built on top of RFCOMM

SDP allows a server to register its services with the device, and is also employed by clients

looking for devices and services. The Java Bluetooth API hides SDP behind a discovery API

supported by a Discovery Agent class and Discovery Listener interface.

r

17

4. Client/Server Application Using Bluetooth

Bluetooth is a4 wireless technology for communication over distances of up to 10m, offering
reasonably fast data transfer rates of around 1 Mb/s, principally between battery-powered
devices. Bluetooth's primary intent is to support the creation of personal area networks (PANs)

for small data transfers (or voice communication) between devices such as phones and PDAs.

shows how a server 'registers' itself as a Bluetooth server, and processes client connections and
messages. A client searches for Bluetooth devices and services, connects to a matching server,
and sends messages to it. Several clients can be connected to the server at once, with the server

using a dedicated thread for each one

UuliD

Client Objects

-

Stream
connection

Threaded
handler object

Fig 4.1 Client Server Model

As explained later, the echo server is identified by a Bluetooth UUID (a Universally Unique

Identifier) and a service name. The stream connection between a client and handler is created
using Bluetooth's RFCOMM protocol

18

4.1 Server
Server 15 a threaded RFCOMM-based service, identified by a UUID (a unique Bluetooth D)
and service name ("hacker service"). The waiting for client connections is done in a thread so

that it doesn't cause the top level MIDlet to block. Whena client does connect, a Threaded Echo

Handler thread is spawned to deal with it :

4.2 Service Initialization

private static final UUID MY_SERVICE_ID =

new UUID("BAEODOCOB0OAQ00955570605040302010", false);

} public void run() { |

try { £

try{
Class. forName("sun.jdbc.odbe. JdbeQdbeDriver");

con= DriverManager. getCoﬁnectio n("jdbc:odbe:BlueServer"),

catch(Exception ex) {

System.out.println(ex. getMessage());

}

// get local BT manager

19

mlocalBT = LocalDevice. getLocalDevice();

4 // set we are discoverable
mLocalBT.setDiscoverable(DiscoveryAgent. GIAC);
String url = "btspp://localhost:" + MY_SERVICE_ID.toString() +

"name=Hacker Service;authorize=false";

// create notifier now

mServerNotifier = (StreamConnectionNotifier) Connector.open(
url.toString());

/System.out.println(” g«ji;notiﬁer ")

} catch (Exceptione) {

System.err.printin("Can't initialize bluetooth: " + e);

mLocalBT=LocalDevice. getLocalDevice();

mLocalBT.setDiscoverable(DiscoveryAgent. GIAC);

20

The DiscoveryAgent. GIAC (General/Unlimited Inquiry Access Code) constant means that all

. . v . l
remote devices (i.e. all the clients) will be able to find the device. There's also a I
|

DiscoveryAgent. LIAC constant which limits the device's visibility.

The RFCOMM stream connection offered by the server requires a suitably formatted URL. The

basic format is:

btspp://<hostname>:<UUID>;<parameters>

I use localhost as the hostname, but any Bluetooth address can be employed.

The UUID field is a unique 128- l:q;,\t identifier representing the service; I utilize a 32 digit !

hexadecimal string (each hex digit uses 4 bits).

|
J. The URL's parameters are "<name>=<value>" pairs, separated by semicolons. Typical <name>

values are "name" for the service name (used here), and security parameters such as "authorize". |

The creation ofthe StreamConnectionNotifier instance, server, by the Connector.open () call also
generates an implicit service record. The record is a description of the Bluetooth service as a set

of (id, value) attributes. It can be accessed by calling LocalDevice.getRecord():

ServiceRecord record = local getRecord(server);

\ : ;
| The ServiceRecord class offers get/set methods for accessing and changing a record'sattributes.

4.3 Connecting to the Client o
aing Resourg
/e

n

DatalnputStream dis = null; (Ace. No " Q‘\
? PSR usay, ¥ }

% & p OG o C(b)

DataOutputStream dos=null; X ,.,;::;{;;)«T,, dp\\ &

21

try {

dis=conn.openDatalnputStream();
dos=conn.openDataOutputStream();

String read=dis.read UTF();

It's possible to map a Data Input Stream and Data Output Stream to the Stream Connection
instance, so that basic Java data types (e.g. integers, floats, doubles, and strings) can be read and
written. I've used Input Stream and Output Stream because their byte-based read() and write()

methods can be easily utilized as 'building blocks' for implementing different forms of message

processing

4.4 Devices Discovery

Device discovery is the first step required when browsing nearby Bluetooth devices. When we

have discovered nearby devices we can find out which services they offer.

The state diagram lists three methods that play important roles in the device search:
DiscoveryAgent.startInquiry(),

DiscoveryListener.deviceDiscovered(),

DiscoveryListener. inquiryCompleted()

The vector is used during the search to hold devices information in the form of RemoteDevice
objects. DiscoveryAgent.startinquiry() is non-blocking, so the system communicates its progress

by calling DiscoveryListener.deviceDiscovered(), and DiscoveryListener.inquiryCompleted().

ServiceFinder implements the DiscoveryListener interface, and a reference to it (this) is passed

22

to startInquiry() as its sccond argument. This means that ServiceFinder's deviceDiscovered{) and

inquiryCompleted() methods will be called during the search.

system calls
deviceDiscovered()

devices
gaatch

ended

system calls
inquit vC ompleted()

Fig-4.2 Device Discovery State Diagram

23

4.5 Service Seatch

search for
services in
gach device

all devices
examined

brogram calls
seatrch Setvices))

SEIVACES
found in
device

system calls pass setvices
setvicesDiscovered)) info, to MIDlet

mote

services 10 t1Ote SErvices

ServiCEs system calls
search ended | gorviceSearch
Completed()
£X aming
next device

Fig-4.3 Services Search State Diagram

The state diagram consists of two loops: the outer loop cycles through each device found during

the devices search, while the inner loop checks each service offered by a particular device. The

figure mentions three methods that play important roles in services search:

24

DiscoveryAgent.searchServices()
DiscoveryListener.servicesDiscovered(), and

DiscoveryListener.serviceSearchComp leted ().

4.6 Applications Developed
4,6.1 Dictionary

User will type the word (of which meaning is required), on the GUI of the application installed
on mobile phone. Database is searched, after Bluetooth connection is established, for the
meaning of that particular word. If found the meaning will be sent back to mobile screen and if

not, a sorry message will flash on the screen.

4.6.2 PC Control

User will choose from the set of certain applications or processes 1o be invoked at workstation

end. We have implemented notepad, shut down , restart.

4.6.3 File Search

User will type the name of the file (be it jpeg, mp3, wave file anything and everything that can
run on mobile end), on the GUI of application installed on mobile phone and that file will be
searched on the workstation, It exits, it will be sent back to the mobile and if not sorry message

will flash on mobile phone

Inall the three applications the basic step of establishing a connection will remain the same.

25

4.7 Flowchart of the project

Input taken on mobile

Process Input for sending on work
station. (As per requirement of
application)

|

r Generate input instruction set (lIS) on
client for workstation (back end

process)

|

Send IIS to workstation connected via
‘Bluetooth

.

g g o

Receive IIS on workstation

26

Process IIS through application instalied on
work station to generate output instruction
set (OIS)

|

Send OIS to client from workstation

|

Receive OIS on client from workstation

Process OIS to generate required output on
application installed on client

Fig-4.4 Graphical Representation

27

4.8 Data Flow Diagram

4.8.1 DFD level 0

———
e

4.8.2 DFED level 1

— —

28

4.8.3 DFD level 2

29

5. Testing technologies to be used

5.1 Black Box Testing

Black box testing assumes the code to be a black box that responds to input stimuli. The testing
focuses on the output to various types of stimuli in the targeted deployment environments. It
focuses on validation tests, boundary conditions, destructive testing, reproducibility tests,

performance tests, globalization, and security-related testing.

Risk analysis should be done to estimate the amount and the level of testing that needs to be
done. Risk analysis gives the necessary criteria about when to stop the testing process. Risk
analysis prioritizes the test cases. It takes into account the impact of the errors and the probability

of occurrence of the errors. By concentrating on the test cases that can lead to high impact and

high probability errors, the testing effort can be reduced and the application block can be ensured

to be good enough to be used by various app lications.

Preferably, black box testing should be conducted in a test environment close to the target

(environment, There can be one or more deployment scenarios for the application block that is

being tested. The requirements and the behavior of the application block can vary with the
deployment scenario; therefore, testing the application block in a simulated environment that

closely resembles the deployment environment ensures that it is tested to satisfy all requirements

‘r
{
!
!

of the targeted real-life conditions. There will be no surprises in the production environment. The
test cases being executed ensure robustness of the application block for the targeted deployment

scenarios.

For example, the CMAB can be deployed on the desktop with Windows Forms applications or in
a Web farm when integrated with Web applications. The CMAB requirements, such as
performance objectives, vary from the desktop environment to the Web environment. The test
cases and the test environment have to vary according to the target environments. Other
application blocks may have more restricted and specialized target environments. Anexample of
an application block that requires a specialized test environment is an application block that is

deployed on mobile devices and is used for synchronizing data with a central server.

30

I — =

Black Box Testing Steps

Black box testing involves testing external interfaces to ensure that the code meets functional and

nonfunctional requirements. The various steps involved in black box testing are the following:
1. Create test plans: Create prioritized test plans for black box testing.

2. Test the external interfaces: Test the external interfaces for various type of inputs using

automated test suites, such as NUnit suites and custom prototype applications.

3. Perform load testing: Load test the application block to analyze the behavior at various load

levels. This ensures that it meets all performance objectives that are stated as requirements.

4. Perform stress testing: Stress tests the application block to analyze various bottlenecks and
to identify any issues visible only under extreme load conditions, such as race conditions and

contentions.

5. Perform security testing: Test for possible threats in deployment scenarios. Deploy the
application block in a simulated target environment and try to hack the application by exploiting

any possible weakness of the application block.

6. Perform globalization testing: Execute test cases to ensure that the application block can be
integrated with applications targeted toward locales other than the default locale used for

development. The next sections describe each of these steps.

5.1.1 Step 1: Create Test Plans

The first step in the process of black box testing is to create prioritized test plans. You can
prepare the test cases for black box testing even before you implement the application block. The
test cases are based on the requirements and the functional specification documents. The
requirements and functional spéciﬁcation documents help you extract various usage scenarios

and the expected output in each scenario.

31

M

The detailed test plan document includes test cases for the following:
o Testing the external interfaces with various types of input
e Load testing and stress testing
e Security testing

e Globalization testing

5.1.2 Step 2: Test the External Interfaces

You need to test the external interfaces of the application block using the following strategies: F."‘
I
Ensure that the application block exposes interfaces that address all functional specifications and |m
) requirements. To perform this validation testing, do the following: \'1’

1. Prepare a checklist of all requirements and features that are expected from the application

block. .

2. Create test harnesses, such as NUnit, and small "hello world™ applications to use all exposed

APIs of the test application block. !

3. Run the test harnesses. Testing for various types of inputs. Afler ensuring that the application
block exposes the interfaces that address all of the functional specifications, you need to test the

robustness of these interfaces. You need to test for the following input types:
e Randomly generated input within a specified range
o Boundary cases for the specified range of input
e The number zero testing if the input is numeric

L e The null input

o Invalid input or input that is out of the expected range

32

sopili s s R

5,1.3 Step 3: Perform Load Testing

Use load testing to analyze the application block behavior under normal and peak load
conditions. Load testing allows you to verify that the application block can meet the desired
performance objectives and does not overshoot the allocated budget for resource utilization such
as memory, processor, and network 1/0. The requirements document usually lists the resource
utilization. You can measure metrics related to response times, throughput rates, and so on, for
the load test. In addition, you can measure other metrics that help you identify any potential

bottlenecks.

To load test an application block, you need to develop a sample application that is an accurate

prototype of applications that will be used in the target environment. In the case of the CMAB,

and because one of the deployment scenarios is the Web environment, a simple Web application F,”
can be developed that uses the application block for reading and writing configuration ;'
) information. Preferably, this application block should be tested in clustered and non-clustered \]

environments because deploying ina Web farm is one of the deployment scenarios. On budget

for the application block and the workload it should be able to support.

5.1.4 Step 4: Perform Stress Testing

Use stress testing to evaluate the application block's behavior when it is pushed beyond the
normal or peak load conditions. The expectation from the system beyond load conditions is to
either return expected output or return meaningful error messages to the user without corrupting
the integrity of any data. The goal of stress testing is to discover bugs that surface only under

high load conditions, such as synchronization issues, race conditions, and memory leaks.

The data that is collected in stress testing is based on the input from load testing and the code
review. The code review identifies the potential areas in code that may lead to the preceding
issues. The metrics collected in load testing also provides input for identifying the scenarios that

k need to be stress tested. For example, if during load testing, you observe that the application

33

starts to show increased response times for increased load conditions when writing to SQL

Server, youshould check for any potential issues because of concurrency.

5.1.5 Step 5: Perform Security Testing

Black box security testing the application block identifies security vulnerabilities within the
application block by treating it as an independent unit. The testing is done at run time. The
purpose is to forcefully break the interfaces of the application block, intercept sensitive data
within the block, and so on. Sample test harnesses can be used to create a deployment scenario

for the application block.

Depending on the functionality the application block provides, test cases can be identified.

Examples of test cases and tests can be the following:

If the application block accepts data from a user, make sure it validates the input data by creating
test cases to pass different types of data, including unsafe data, through the application block's
interfaces and confirming that the application block is able to stop it and handle it by providing
appropriate error messages. If the application block accesses any secure resources, such as the
registry or file system, identify test cases that can test for threats resulting from elevated
privileges. If the application block handles secure data and uses cryptography, scenarios can be
developed for simulating various types of attacks to access the data. This tests and ensures that

the appropriate algorithms and methods are used to secure data.

5.1.6 Step 6: Perform Globalization Testing

The goal of globalization testing is to detect potential problems in the application block that
could inhibit its successful integration with an application that uses culture resources different
than the default culture resourcés used for development. Globalization testing involves passing
culture-specific input to a sample application integrating the application block. It makes sure that
the code can handle all international support and supports any culture or locale settings without

breaking functionality that would cause data loss.

34

To perform globalization testing, you must install multiple language groups and set the culture or
locale to different cultures or locales, such as Japanese or German, from the local culture or

Software Testing Phase of Current Project

Software testing is the process used to assess the quality of computer so ftware. Software testing
is an empirical technical investigation conducted to provide stakeholders with information about
the quality of the product or service under test , with respect to the context in which it is intended
to operate. This includes, but is not limited to, the process of executing a program or application

with the intent of finding software bugs. Quality is not an absolute; it is value to some person.

With that in mind, testing can never completely establish the correctness of arbitrary computer
software; testing furnishes a criticism or comparison that compares the state and behaviour of the
product against a specification. An important point is that software testing should be
distinguished from the separate discipline of Software Quality Assurance (S.Q.A.), which
encompasses all business process areas, not just testing. Over its existence, computer software
has continued to grow in complexity and size. Every software product has a target audience. For

example, a video game software has its audience comp letely different from banking software.

Therefore, when an organization develops or otherwise invests in a software product, it must
assess whether the software product will be acceptable to its end users, its target audience, its
purchasers, and other stakeholders. Software testing is the process of attempting to make this

assessment.

5.2 Integration testing

Integration testing (sometimes called Integration and 'resting, abbreviated 1&T) is the phase of
software testing in which individual software modules are combined and tested as a group. It
follows unit testing and precedes system testing, Integration testing takes as its input modules
that have been unit tested, groups them in larger aggregates, applies tests defined in an

integration test plan to those aggregates, and delivers as its output the integrated system ready for

35

E 3

ol

system testing The purpose of integration testing is to verify functional, performance and

reliability requirements placed on major design items.

These "design items", ie. assemblages (or groups of units), are exercised through their inter faces
using black box testing, success and error cases being simulated via appropriate parameter and
data inputs. Simulated usage of shared data and inter-process communication is tested and
individual subsystems are exercised through it input interface. Test cases are constructed to test
that all components within assemblages interact correctly, for example across procedure calls or
process activations, and this is done after testing individual modules, i.e. unit testing. The overall
idea is a "building block" approach, in verified assemblages are added to a verified base which is
then used to support the ration testing of further assemblages. Some different types of integration

testing are big , top-down, and bottom-up

5.3 Unit-testing

Computer programming, unit testing is a procedure used to validate that individual units of :e
code are working properly. A unit is the smallest testable part of an application. In Aura]
programming a unit may be an individual program, function, procedure, etc., while in :t-oriented
programming, the smallest unit is a method, which may belong to a base/super , abstract class or
derived/child class. Ideally, each test case is independent from the others) objects like stubs,
mock or fake objects as well as test harnesses can be used to assist in a module in isolation. Unit
testing is typically done by software developers to ensure that they have written meets software

requirements and behaves as the developer intended.

36

Appendix

Sample codes:

I. Server

package bluetoothserver;
import java.io.™*;
import javax.bluetocoth.*;
import javax.microedition.io.*;
import java.sgl.*; M
import java.utiliStringTokenizer; ik
import java.util.List; ;“
public class Server implements Runnable {
private Thread mServer = null;
java.sqgl.Connection con;
private LocalDevice mLocalBT;
private boolean mEndNow;
public String messageToBeSent="";
private StreamConnectionNotifier mServerNotifier;

private static final UUID MY_SERVICE_ID =

new UUID ("BAEODOCOBOAQ00955570605040302010", false);

37

b b oo il ke

public void run() {

try |

tryf

Class.forName("Sun.jdbc.odbc.JdchdbcDriver");

con =

DriverManager.getConnection("jdbc:odbc:BlueServer");
catch (Exception ex){

System.out.printlin{ex.getMessage ())’

// get local BT manager

mLocalBT = LocalDevice.getLocalDevice():

// set we are discoverable
mLocalBT.setDiscoverable (DiscoveryhAgent .GIAC);

String url = "bispp://lecalhost:” +

MYy SERVICE ID.toString() +

", name=Hacker Service;authorize=false";

// create notifier now

38

E 2 f M

mServerNotifier = (StreamConnectionNotifier)

Connector .open (
url.toString());
//System.out.println(" got notifier ");
} catch (Excepticn e) {

System.err.println("Can't initialize bluetooth: " +

StreamConnection conn = null;

while (!mEndNow) { Ll

conn = null; m

‘ i
try { !

conn = mServerNotifier.acceptAndOpen ();

} catch (IOException e) {

continue;

if (conn != null)

processRequest (conn);

39

T i

public void startServer ()} {
if (mServer != null)

return;

// start receive thread
mServer = new Thread (this);

mServer.start () ;

private void processRequest (StreamConnection conn) { i
o

DataInputStream dis = null; aﬂ
) DataOutputStream dos=null; il
try {

dis=conn.openDataInputStream();

dos=conn. openDataOutputStream() ;

String read=dis.readUTF();

if (read.toUpperCase () .startsWith ("STUDENT")) {
read=read.substring(read. indexOQf(":")+1) ;
Statement st=con.createStatement();

ResultSet rs=st.executeQuery("select * from

|111|) =
r

students where admno='" + read +

if (rs.next ()) {

String info="";

40

info="Name: " + rs.getString("sname") +
W Class: Wi rs.getString("Class") + R Roll: " +

rs.get3tring ("Roll") ;

dos.writeUTF(info);

|
; |
|
else(!
|
dos.writeUTF("Sorry, no result found!");
1
} .
dos.flush{() ; W
dos.close () ; w

dis.close();

//conn.close();

catch (Exception e) {

System.out.println (e.getMessage());

M

II. Remotediscovery.java

package bluetoothserver;
import java.io.IOException;
import Jjava.util.Vector;

import javax.bluetooth.?*;

/**

* Minimal Device Discovery example.

! :

public class RemoteDeviceDiscovery { |
public static final Vector/*<RemoteDevice>*/
devicesDiscovered = new Vector():;
public static void main(String[] args) throws IOException,

InterruptedException {

final Object inquiryCompletedEvent = new Object ()};

devicesDiscovered.clear () ;

DiscoveryListener listener = new DiscoveryListener () {

42

_,' .

T

public void deviceDiscovered (RemoteDevice btDevice,

DeviceClass cod) {

System.out.println("Device " +

btDevice.getBluetoothAddress () + " found");
devicesDiscovered.addElement (btDevice);
try {

System.out.println (" name " +

btDevice.getFriendlyName(false));

} catch (IOException cantGetDeviceName) {

public void inquiryCompleted (int discType) {
System.out.println("Device Inquiry completed!");
synchronized (inquiryCompletedEvent) {

inquiryCompletedEvent.notifyAll () ;

}

public wvoid serviceSearchCompleted (int transID, int

respCode) {

public void servicesDiscovered (int transID,

ServiceRecord[] servRecord) {

43

lp.

ui

i

synchronized (inquiryCompletedEvent) ({

boolean started

™

LocalDevice.getLocalDevice() .getDiscoveryRAgent() .startInquiry (Di

scoveryAgent .GIAC, listener);

complete. ..

device (s)

if (started) {

System.out.println("wait for device inquiry

ingquiryCompletedEvent.wait ();

System.out.println(devicesDiscovered.size() +

found") ;

to

IIT. Logger.java
package bluetcothserver;
public class Logger
static void debug(String message) {
System.out.println(message);}
static void debug(String message, Object o) |

System.cut.println (message + " " + 0):

static void debug (String message, Throwable e) {
System.out.println{message + " " + e.getMessage()};

e.printStackTrace();

static veoid debug (Throwable e) |{
System.out.println(e.getMessage());

e.printStackTrace () :

static void error (String message} |
System.out.println{message}; }
static void error (String message, Throwable e} {

System.cut.println{message + " "

e.getMessage(});

e.printStackTrace () }

45

IV. Servicesearch. java

package bluetoothserver;
import java.io.IOException;
import java.util.Enumeration;
import java.util.Vector;

import javax.bluetooth.?*;

public class ServicesSearch {

static final UUID OBEX FILE TRANSFER = new UUID (0x1106);

public static final Vector/*<String>*/ serviceFound = new

Vector();

public static wvoid main(String[] args) throws IOException,

InterruptedException {

// First run RemoteDeviceDiscovery and use discoved

device

RemoteDeviceDiscovery.main(null) ;

46

serviceFound.clear():

String deviceName="";

UUTID serviceUUID = OBEX FILE_TRANSFER;

if ((args != null) && (args.length > 0)) {

//serviceUUID = new UUID(args[0], false);

deviceName=args{0];

final Object serviceSearchCompletedEvent = new Object (};

DiscoveryListener listener = new DiscoveryListener{} { ,M

public void deviceDiscovered (RemoteDevice DbtDevice,

DeviceClass cod} {

}

public void inquiryCompleted (int discType) {

public void servicesDiscovered (int transID,

gerviceRecord{] servRecord) {
//for (int i = 0; i < servRecord.length; i++)

for (int i = 0; i < 1; i++) |

Stringurl:servRecord[i].getConnectionURL(ServiceRecord.NOAUTHENT

ICATE NOENCRYPT, false);

47

if (url == null) {

continue;

serviceFound.add(url);

DataElement serviceName

servRecord([i].getAttributeValue (0x0100);

if (serviceName != null) {

System.out.println ("service

serviceName.getValue () + " found " + wmrly) ;
} else {

System.out.println("service

wrd)i

public wvoid serviceSearchCompleted (int

respCode) {

found L

transI1D,

int

System.out.println("service search completed!");

synchronized(serviceSearchCompletedEvent){

serviceSearchCompletedEvent.notifyAll();

48

UuID[] searchUuidSet = new UUID[] { serviceUUID };
int[] attrIDs = new int[] {
0x0100 // Service name
}i

for (Enumeration en =

RemoteDeviceDiscovery.devicesDiscovered.elements();

en.hasMoreElements () ; Y |

RemoteDevice btDevice =

(RemoteDevice)en.nextElement();

synchronized(serviceSearchCompletedEvent) {

if(thevice.getFriendlyName(false).equals(deviceName)){ |

System.out.println("search services on " +t
thevice.getBluetoothAddress() + " " +

thevice.getFriendlyName(false));

LocalDevice.getLocalDevice().getDiscoveryAgent().searchServices(

attrIDs, searchUuidSet, bthevice, listener);

serviceSearchCompletedEvent.wait()}}}}}

49

private
private
private
private
private

private

import java.

V. SearchInfo.java

10 &

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.bluetooth.*;

import javax.microedition.io.*;

public class SearchInfo extends MIDlet

CommandListener {

boolean midletPaused = false;

Thread mClientThread null;

boolean mEndNow = false;
DiscoveryAgent mDiscoveryAgent = null;
String mConnect = null;

miu

String lastMessage=""/

StreamConnection conn = null;

DataInputStream dis=null;

DataOutputSsStream dos=null;

J private static final UUID MY SERVICE_ID =

50

implements

| new UUID("BAEODOCOBOAOOO955570605040302010", false);

_

//<editor-fold defaultstate="collapsed"” desc=" Generated

Fields ">
private Form form;
private TextField txtSearch;
private StringItem lblResult;
private Command okCommand;
private Command exitCommand;

//</editor-fold>
thq\

A
0

* / 1

/*'k

* The SearchInfo ccnstructor.

public SearchInfo() {
while {(mDiscoveryAgent==null) {
try {

mDiscoveryAgent =

LocalDevice.getLocalDevice () .getDiscoveryAgent();
1 catch (Exception ex) |

System.out .println (ex.getMessage());

51

//<editor-fold defaultstate="collapsed" desc=" Generated

Methods ">

//</editor-fold>

//<editor-fold defaultstate="collapsed" desc=" Generated

Method: initialize ">

/*‘k

* Initilizes the application.

* Tt is called only once when the MIDlet is started. The Uhiy
method is called before the <code>startMIDlet</code> method. M

' */ "
private void initialize () {

// write pre-initialize user code here

// write post-initialize user code here

//</editor-fold>

//<editor-fold defaultstate="collapsed" desc=" Generated

Method: startMIDlet ">

/**

52

S

* Performs an acticon assigned to the Mobile Device - MIDlet

Started point.
*/
public veid startMIDlet () |
// write pre-action user code here
switchDisplayable {null, getForm());

// write post-action user code here

//</editor~fold>

//<editor-fold defaultstate="collapsed" desc=" Generated

Method: resumeMIDlet ">

/**

* Performs an action assigned to the Mobile Device - MIDlet

Resumed point.
*/
public void resumeMIDlet () {

// write pre-action user code here

// write post—action user code here

//</editor-fold>

53

//<editor-fold defaultstate="collapsed" desc=" Generated

Method: switchDisplayable ">
/**

* Switches a current displayable in a display. The
<code>display</code> instance is taken from
<code>getDisplay</code> method. This method 1is wused by all

actions in the design for switching displayable.

* @param alert the Alert which is temporarily set to the
display; if <code>null</code>, then <code>nextDisplayable</code>

is set immediately
* @param nextDisplayable the Displavyable to be set
*/

public void switchDisplayable(Alert alert, Displayable
nextDisplayable) {

// write pre-switch user code here
Display display = getDisplay();
if (alert == null) {

display.setCurrent (nextDisplayable) ;

el se

display.setCurrent (alert, nextDisplayable};

54

// write post-switch user code here

//</editor-fold>

//<editor-fold defaultstate="collapsed” degc=" Generated

Method: commandAction for Displayables ">

/**

* Called by a system to indicated that a command has been

invoked on a particular displayakle.
* @param command the Command that was invoked

* @param displayable the Displayable where the command was

invoked
*/

public void commandActicn {(Command command, Displayable

displayable) {
// write pre-action user code here
if (displayable == form) {
if {command == exitCommand) {

// write pre-action user code here

// write post-action user code here
this.exitMIDlet ()

} else if (command == okCommand) {

55

// write pre-action user code here

// write post-action user code here

searchDict () ;

// write post—-action user code here

//</editor-fold>

{ //<editor-fold defaultstate="collapsed" desc=" Generated

Getter: form ">
/**
* Returns an initiliazed instance of form component.
* @return the initialized component instance
*/
public Form getForm() {
if (form == null) {
// write pre-init user code here

form = new Form("Search Student Info.", new IlLem([]

getTxtSearch(), getLblResult (} })

{ form.addCommand (getOkCommand ()) ;

56

form. addCommand (getExitCommand ()} ;
form. setCommandListener (this);

// write post-init user code here

return form;

//</editor-fold>

//<editor-fold defaultstate="collapsed" desc=" Generated
|
Getter: LxtSearch "> ﬁ
. L
/** “
’ {,}!

* Returns an initiliazed instance of txtSearch component.
* @return the initialized ceomponent instance
*/
public TextField getTxtSearch() |
if (txtSearch == null) {
// write pre-init user code here

txtSearch = new TextField("Admsn No:"™, null, 32,

TextField.ANY) ;

// write post-init user code here

return txtSearch;

57

//</editer-fold>

//<editcr-fold defaultstate="collapsed” desc=" Generated

Getter: okCommand ">
/-k*
* Returns an initiliazed instance of okCommand component.
* @return the initialized component instance
*/
public Command getOkCcmmand() {
if (okCommand == null) |{

// write pre-init user code here

- e——

okCommand = new Command ("Ok", Command,QK, 0);

// write post—-init user code here
return okCommand;

//</editor-fold>

//<editor-fold defaultstate="collapsed” desc=" Generated
Getter: 1blResult ">

/*-k
* Returns an initiliazed instance of l1lblResult component.

: * @return the initialized component instance

58

oy
public StringItem getLblResult () {
if (1lblResult == null) {
// write pre-init user code here
1blResult = new StringItem("Result:", "");

// write post-init user code here

return lblResult;

//</editor-fold>

q //<editor-fold defaultstate="collapsed" desc=" Generated

Getter: exitCommand ">
/*'k
* Returns an initiliazed instance of exitCommand component.
* @return the initialized component instance
)
public Command getExitCommand () {
i1f (exitCommand == null) {
// write pre-init user code here
exitCommand = new Command ("Exit", Command.EXIT, 0);

// write post-init user code here

59

return exitCommand;

//</editcr-fold>

/%
* Returns a display instance.
* @return the display instance.
*/

public Display getDisplay () {

return Display.getDisplay{this);

class ShowMessage implements Runnable {
Display disp = null;
String message = null;
public ShowMessage (String mess) |
tryf

message = mess;

catch (Exception ex){

//ignore

60

public void run() {
if (message!=null)

IblResult.setText (message) ;

void searchDict () {
try |

mConnect =

mDiscoveryAgent.selectService(MY_SERVICE_ID,

ServiceRecord.NOAUTHENTICATE_NOENCRYPT, false};

String readMessage="";
if (mConnect != null) {
conn = (StreamConnection)

Connector.open {(mConnect) ;
dis=conn.cpenDatalnputStream();
dos=conn.openDataQutputStream() ;

dos .writeUTF ("STUDENT: " +
txtSearch.getString());

dos.close();
readMessage=dis.readUTF () ;

dis.close({();

61

else(

IblResulit.setText ("Unable to connect!");

conn.claose();
lastMessage=readMessage;

getDisplay(}.callSerially{new

ShowMessage (lastMessage)) ;
} catch (Exception ex) |{

System.err.println{ex.getMessage());

/**
* Exits MIDlet.
*/

public void exitMIDlet(} {

switchDisplayable {(null, null);

destroyApp (true};

nolifyDestroyed();

/'k*

62

* Called when MIDlet i3 started.

* (Checks whether the MIDlet have been already started and

initialize/starts or resumss the MIDlet.
*/
public void startapp() {
if (midletPaused) {
resumeMIDlet () ;
} else (|
initialize () ;

startMIDlet ();

midletPaused = false;

/‘k*
* Called when MIDlet is paused.
*/

public vecid pauselApp() {

midletPaused = true;

/-ki-

* Called to signal the MIDlet to terminate.

63

* @param unconditional if true, then the MIDlet has to be

unconditionally terminated and all resources has to be released.

*/

public void destroyApp(boclean unconditional) (]

OPERATING ENVIRONMENT

N
| Software Interface
+ Technologies to be used:
« J2ME for designing the application
* Database
-MS sql
Hardware Interface
Processor:P I at 233 MHz
RAM: 128 MB
/A
Disk Space: 512MB
PC/Laptop: bluetooth enabled
Mobile Device- 540 series bluetooth enabled
“

65

p BIBLIOGRAPHY
y W Andrew Davison, Java Programming Techniques for Games 2005.
B Robert Virkus, I2ZME Polish 2005
W Sing Liand Jonathan Knudsen, Beginning J2ME from novice to professional, 3rd
Edition, Apress, 2005
W John W. Muchow , Core J2ME Technology & MIDP, Sun microsystems, 2001
B David Kammer, Gordon McNutt, Brian Senese ,Bluetooth Application Developer’s
Guide, Syngress, 2002
B (Qusay Mahmoud, Learning Wireless Java, O’Reilly, 2001
B Tremblett,Paul, Instant Wireless Java With J2ME, First Edition, Osborne, 2002
B foroum. java.sun.com
\
M wireless. jJava.suncom
B http.//www.java2s.com/Code/Java/Class/CatalogClass.htm
B http://www.roseindia.net/
B htip://netbeans.org’kb/trails/mobility. html
Py

66

