Dr. Ashwani Sharma

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- Feb 2018

B.Tech 8th Semester

COURSE CODE: 11B1WEC834

MAX. MARKS: 15

COURSE NAME: Optical Communication Systems

COURSE CREDITS: 03

MAX. TIME: 1Hr

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

- [3 marks] Compare briefly satellite and optical communication and list the advantages of optical communication.
- 2. [8 marks] Answer the following using Ray model propagation in optical fiber, assuming core and cladding refractive index, n_1 and n_2 , respectively. CO-1
 - a. Explain in short total internal reflection and write condition on n_1 and n_2 to achieve this in an optical fiber.
 - b. Define Numerical Aperture (NA) of an optical fiber and derive the formula to evaluate NA.
 - c. Explain Dispersion (pulse broadening) phenomenon of an optical fiber. Derive approximate formula for pulse broadening.
 - d. Discuss the choice of n_1 and n_2 with respect to NA formula derived in part b) and dispersion formula derived in part c). State the values of n_1 and n_2 for practical fibers.
- 3. [4 marks] Answer the following using wave model in optical fiber

CO-1

- a. Write Maxwell's equations for a source-free medium inside optical fiber.
- b. The field equations obtained in part a) are solved to obtain wave equations and the solution of wave equation in using separation of variables is given by $\psi = R(r)\Phi(\varphi)Z(z)T(t)$ in cylindrical coordinate system, where ψ represents electric or magnetic field intensities. Write the solutions of functions $\Phi(\varphi)$, Z(z), and T(t) to be chosen to simplify the results, and argument why to choose these solutions of the functions.