ot
W

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. NumSPoboBL call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of librery books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

L

SP06086

A DETAILED STUDY AND IMPLEMENTATION
OF IMAGE PROCESSING TECHNIQUES USING
| PARTICLE SWARM OPTIMIZATION (PSO)

? AND CELLULAR NEURAL NETWORKS (CNN)

By

TUSHAR JAISWAL - 061304

MAY-2010

Submitted in partial fulﬁlllﬁent ‘(‘)f" the Degree of Bachelor of
Technology -

DEPARTMENT OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY-
WAKNAGHAT

CERTIFICATE

This is to certify that the work entitled, “A Detailed Study and
Implementation of Image Processing Techniques Using Particle Swarm
Optimization (PSO) and Cellular Neural Networks (CNN)” submitted by

Tushar Jaiswal — 061304 in partial fulfillment for the award of degree of
Bachelor of Technology in Computer Secience Engineering of Jaypee
University of Information Technology has been carried out under my
supervision. This work has not been submitted partially or wholly to any other

University or Institute for the award of this or any other degree or diploma.

/‘

/ A
el
Dr. RdjeskSiddavatam, PhD

Assistant Professor
Department of Computer Science and Information Technology

: Jaypee University of Information Technology
' Waknaghat

i
T
i
!
I
|

ACKNOWLEDGMENTS

I would like to acknowledge Dr. Rajesh Siddavatam for his gracious support
and guidance in this project. I appreciate his immense help and his feedbacks

which helped me in developing the project so successfully.

I would also like to thank Mr. Praveen Kumar Tripathi for providing me with
valuable help in learning Particle Swarm Optimization (PSO). I am grateful to
him for helping me in understanding PSO. It is because of his immense help

that I was able to use PSO in the project.

+ (0
@ \"VDS'W

Tushar Jaiswal

061304

PROBLEM STATEMENT

The project necessitated a thorough study and implementation of Image Processing
Techniques. As such the main focus of the project has been to deal with the problem of

Image Noise Cancellation.

Unwanted noise is introduced in images during the process of Image Acquisition and
Image Transmission. This can be because of faulty sensors or errors in the

communication channel.

Before we subject the acquired image to further image processing like Image
Segmentation, Edge Detection, Object Recognition, Pattern Recognition etc. it is
quintessential that the image be freed from noise so that further processing of the image

does not give erroneous results.

Various filters have been designed and are being designed for noise removal from
images. Median based filters and its variations have been used extensively for noise

cancellation.

Through this project I seek to develop new and better filters and algorithms for Image
Noise Cancellation. I also seek to study and improve upon some previous methods for

Image Noise Cancellation.

ii

OBJECTIVE AND SCOPE OF THE PROJECT

The main objective of the project is to devise new and better methods for Image

Processing tasks such as Image Noise Cancellation.

The project also aims at studying the existing algorithms in detail, implementing them

and to develop ways to improve the methods by removing their shortcomings.

This will be done with the help of two technologies Particle Swarm Optimization (PSO)
and Cellular Neural Networks (CNN).

PSO is an optimization technique which aims at improving the results of some process.

Through the use of PSO the project aims to improve the Noise Cancellation process.

CNN is a technique in which the system learns and evolves through the crossover and
mutation of data. It thus aims to get the best results by learning from templates designed

for the specific application.

The project will thus eventually develop new and better algorithms for the Image

Processing tasks such as Image Noise Cancellation which can be put to effective use.

The algorithms can be used by researchers and people from the Image Processing

Industry alike.

The Graphical User Interface (GUI) developed can be casily used to implement the

algorithms and to learn the methods for Image Processing.

i
|
|
i

METHODOLOGY

The project will be done through a three tiered approach:
e Study of existing algorithms and their implementation

e Developing new and better algorithm and comparing them to other algorithms by

implementing them

¢ Developing Graphical User Interface (GUI) for the developed algorithms and the
algorithms studied

The study of existing algorithms will be done do get a strong background of the problems
faced in image processing and to learn the approaches to solving them. In this way I can
broaden my knowledge base of Image Processing. By implementing the algorithms I will

hammer home the concepts that would have been learned.

After developing a sound base 1’1l devise new methods for Image Processing tasks. It will
be seen that the developed algorithms are in fact better than at least many current good

methods by implementing them and comparing them with the other existing methods.

Finally all the algorithms developed will be compiled and GUI will be developed for
using them. This will enable the end user to easily run and learn the developed
algorithms. Also GUI will be developed for some algorithms which have been studied so
that their effectiveness can be seen. It will also be then easier to understand those

algorithms and work further after learning.

v

e bt

RESOURCES AND LIMITATIONS

The main resources used in the project are:

e Research Material from IEEE Xplore, ACM, Sprigerlink, Science Direct etc.

e MATLAB

e MATLARB Documentation

* Digital Image Processing by Rafael C. Gonzalez

e Digital Image Processing Using Matlab by Rafael C. Gonzalez
o Wikipedia

e Tutorials and other study material from the internet

The limitation of the project is: -

e Nil

!

e R hfﬁmm}

m—

TABLE OF CONTENTS
by AT T (LT L OO e RO i
had g () (R 1 T e R T T T e T s pre Ty oL PSR ii
3. Objective and Scope of the Project......uuuuiiiieeeieiiieiiiiieirssereessssssssseeeeesseeeson, jii
4o IVICHOAOLOBY v v vvvvsvunummssnsnsssssssssisnassssiiasssssmmmenennesnanssssns s misessnssnsnsessssasssymil iv
9, Resources and MMAtonS.ouiumsssinssiisenianiissimismmnnsassnes sesessresssssssessssesessereras v
6. Table 0f COMEENts.......u.iiiiiiiiiiiiiiieiiiiiii et eee e e eeeeee s Vi-vii
i LINE OF HABUNCE o s i i siein s haes o s e s A N R RS SRR viii-ix
BEE LISE OF TaDIEs, (oo vt iiirinninmaimsssvasedraiesrinsissi ssns atosnsmsisiossvioris byt ®
9 LISt ol ADBIeVIIONS & o s s e e e xi
M ADSTRHOL Lo Tl e L e e T xii
11. Chapter 1 — Noise In Image Processing.......uieeuuuniieerrureereerneessssnseesennnsesesmnsin 1-5 .
b L NOIEE i it it vttt s sty esss b s P B e 2
L2 8at and Pepper INOTSE o menminmms iinmsisyhshnm nsacsmms s sommrenbissios s s s s v 3
| RO Mt et s T R e e e e 3
12. Chapter 2'— Lifting SCHSIMEG vouivevisrsassninviinsinisi sissarsnmneios sersetsrarerssss sossssses i 6-25
2.1 Secotid GEHETAHON WAVELETS, .. orv.svus vowsmvrsrssiss sy ss sesaism siasnss san s s s ess s e 6
22 LITUNG BOBOTIG, sitri1 s w0 Do 05505 01 s et st st s s s s ot e et 7
2 P LR e Nl e B i st B L S s L g ST 9
13. Chapter 3 — Diminshing Population Particle Swarm Optimization (DP-PSO) 26-44
2 PGS SWartn OPIMIERUOR e svorish s (i (et e e s e Pt e e 26
. 3.2 Diminshing Population Particle Swarm Optimization..................ocoovevveenni 32
NI o 13 e e SO AORSESe Ss 11 5o S SRS R VR S
14. Chapter 4 — Cellular Neural Netwroks (CNIN) v..uuueereeereerinseneeessrnsesessessso 45-49

A O e e e T e e
4. 2.4 SIDPIGHRANBIE. . - eermmerrrrrrr e rrr e A

Vi

e T “’FAW

k 15. Chapter 5 — Project SImulator.........covvviiiiiiiiiiiiinninininenieeensemonssssssssssssessn 35055
y 5.1 Building Graphical User Interfaces using GUIDE in Matlab..........ocoovoovoiii, 50
J D02 100 OO O 00 b e smsgernspao ool o R A e R g S S 52

16 CHADISE G PEOCERE DERBEPHON v avrrrnsvvemsarsspa vesibinir s ninciiain S 558
17. Chapter 7 — Graphical User Interface Testing............vvuuvvevereunseenrenssssnessnssnns 59-68

18. Chapter 8 — Results and ConcluSion.......occveuvuviiiiiiniiniiiininreernsnsieesssseenenn69-70

===y

19, Contribution of the Project. v avissvinmsimivsssvain snivwesimmiiisnisimsennn T

20, BIDROZraphy. siisisisisinsiaissisonicnssarnsarssnssresmsessessomnmesasnsnissessessasenensssssssssssissssssnsss 12218

vii

LIST OF FIGURES

glenre Figure Caption Page No.

No
1 Broad types of processing on data and images. |
2 Different types of noises with their probability distributions. o
‘ 3 Forward and Inverse Wavelet Transform 7
| 4 An illustration of the lifting scheme 8
r} 5 A general framework of lifting scheme-based image filters. 11

6* Comparative reconstructed images using Proposed Lifting filter and 8

Adaptive Filter

7 Noise cancellation results using lifting filter 17
| 8 Lena progressive image filtering using Lifting Filter 17
‘[5 Progressive image restoration using our proposed Median based Lifting 54

Filter.

f 5 Results generated by Image Restoration Algorithm for a 512*512 ”
i Peppers image.
l

i Comparative restored images using our proposed Median based Lifting

! 1 25
1 Filter and the ARSMF,

L 12 General Framework of DP-PSO 32
' 13 Flowchart of our DP-PSO Algorithm . 35

] i Comparative reconstructed images using Proposed Neighborhood =
average filter utilizing DP-PSO and PSO-CNN

viii

Noise cancellation results using Proposed Neighborhood average filter -
15
utilizing DP-PSO
16 | DP-PSO Algorithm Simulator 42
o Comparative reconstructed images using Proposed Neighborhood average T
filter utilizing DP-PSO and PSO-CNN
8 Noise cancellation results on Lena 128*128 image using Proposed "
Neighborhood average filter utilizing DP-PSO
% Noise cancellation results on Lena 512*512 image using Proposed e
Neighborhood average filter utilizing DP-PSO
20 | Two-dimensional CNNs organized in an eight-neighbor rectangular grid. 46
21 | Nonlinear Function. 47
22 | Functional Model of CNN Architecture 48
23 | A CNN Template 49

PROPOSED OPTIMIZED NEIGHBORHOOD AVERAGE FILTER

LIST OF TABLES
| Table No Table Caption Page No.
I COMPARATIVE EVALUATION OF OUR LIFTING FILTER 16
& COMPARATIVE EVALUATION OF OUR METHOD (MEDIAN BASED 55
LIFTING FILTER)
1 PERFORMANCE OF OUR METHOD (MEDIAN BASED LIFTING FILTER) 23
v THE INITIALIZED COEFFICIENTS OF THE DP-PSO 35
Comparative Evaluation of our Proposed Neighbourhood
\% Average Filter Optimized by DP-PSO for Image Corrupted by 36
Salt and Pepper Noise (10%)
\%1 SIMULATION RESULTS FOR DIFFERENT NOISE DENSITIES FOR OUR 36
PROPOSED OPTIMIZED NEIGHBORHOOD AVERAGE FILTER
VII The initialized coefficients of the DP-PSO (Improved) 39
it SIMULATION RESULTS FOR DIFFERENT NOISE DENSITIES FOR OUR a5

e

LIST OF ABBREVIATIONS
—A;)breviation Full Form
CNN Cellular Neural Network
DP-PSO Diminishing Population - Particle Swarm Optimization
gBest global Best
GUI Graphical User Interface
GUIDE Graphical User Interface Development Environment
IBest local Best
LFSGW Lifting Filter using Second Generation Wavelets
MSE Mean Square Error
PSNR Peak Signal to Noise Ratio
PSO Particle Swarm Optimization

xi

e R e TBTT e T TR e

ABSTRACT

The project seeks to develop novel and better methods than the existing ones for Image
Processing tasks such as Image Noise Cancellation. The study of existing algorithms,
their implementation and development of ways to improve the methods by removing their

shortcomings is quintessential to the project.
Towards this end we will make use of two techniques.

The first is the Particle Swarm Optimization (PSO) and the second is the Cellular Neural
Networks (CNN).

The main focus of the project is the development of techniques for Image Noise
Cancellation which overcome the shortcomings of the existing techniques. The

algorithms can be put to effective use by researchers and the industry.

Finally Graphical User Interface (GUI) will be developed to simulate all the developed

algorithms so that it is convenient for the end user to grasp the essence of the project.

Xii

CHAPTER 1
NOISE IN IMAGE PROCESSING

Vision is a complicated process that requires numerous components of the human eye and brain

to work together. The sense of vision has been one of the most vital senses for human survival

and evolution. Humans use the visual system to see or acquire visual information, perceive, i .e.

process and understand it and then deduce inferences from the perceived information.

Data Processing

‘n
\

\
Computer “*[(Tmuputor f
Visio " — Graphics |
it e [IMAGES Bl ol

i \

\

Image
Processing

|
! Fig. 1. Broad types of processing on data and images.

The field of image processing focuses on automating the process of gathering and processing
visual information. The process of receiving and analyzing visual information by digital
computer is called digital image processing.
An image may be described as a two-dimensional function /.
I=fxy)
where:

x and y are spatial coordinates.

amplitude of fat any pair of coordinates

(x; y) is called intensity 7 or gray value of the image,

When spatial coordinates and amplitude values are all finite, discrete quantities, the image is

called digital image.

Digital image processing may be classified into various sub branches based on methods whose:
« input and output are images and

» inputs may be images where as outputs are attributes extracted from those images.

Following is the list of different image processing functions based on the above two classes:
» Image Acquisition

+ Image Enhancement

* Image Restoration

* Color Image Processing

* Multi-resolution Processing

» Compression

* Morphological Processing

* Segmentation

* Representation and Description

* Object Recognition

For the first seven functions the inputs and outputs are images where as for the rest three the
outputs are attributes from the input images. With the exception of image acquisition and display
most image processing functions are implemented in software. Image processing is characterized
by specific solutions, hence the technique that works well in one area can be inadequate in
another. The actual solution of a specific problem still requires a significant research and

development.

1.1 Noise

Image noise is a random, usually unwanted, variation in brightness or color information in an
image. Image noise can originate in film grain, or in electronic noise in the input device (scanner
or digital camera) sensor and circuitry, or in the unavoidable shot noise of an ideal photon
detector. Image noise is most apparent in image regions with low signal level, such as shadow
regions or underexposed images. High levels of noise are almost always undesirable, but there

are cases when lower levels of noise may be useful, for example to prevent discretization

.'.I

artifacts (color banding or posterization). Noise purposely added for such purposes is called
} dither. Noise can creep in images during the process of Image Acquisition and Image
Transmission due to errors in sensors or in the communication channels. In the project work in

Image Noise Cancellation I have considered this common salt and pepper noise.
Noise cannot be removed without the loss of some information in the form of image detail.
Nevertheless, noise-reduction algorithms have been developed to reduce noise without degrading

image information too much.

1.2 Salt-and-pepper noise

Salt and pepper noise is a type of impulse noise and is seen in images. It represents itself as
randomly occurring white and black pixels. Salt and pepper noise either occurs as a very high
pixel value or a very low pixel value. Hence it is a type of impulse noise. In the case of a
grayscale image the high pixel value is 255 and the low pixel value is 0. A colored image is an
extrapolation of a grayscale image and salt and pepper noise when introduced in a color image
can be seen corrupting pixels by changing the individual R, G and B component of the pixels to |
pixel values 0 and 255. This type of noise can be caused by dead pixels, analog-to-digital
converter errors, bit errors in transmission, etc. An effective noise reduction method for this type
of noise involves the usage of a median filter. Salt and pepper noise creeps into images in

situations where quick transients, such as faulty switching takes place.

Fat-tail distributed or "impulsive" noise is sometimes called salt-and-pepper noise or
spike noise. An image containing salt-and-pepper noise will have dark pixels in bright

regions and bright pixels in dark regions.

L 1.3 Evaluation Measures |

Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR) are used to gauge the

effectiveness of the algorithms designed to remove noise from images.

m=1 n=1

i L e N ey
MSE=—3 3 G, /)= R,) (1)

i=0 j=0

MAX?
PSNR =101log,,(MSE))

Where, MAX; is the maximum possible pixel value of the image. In the case of a grayscale
image MAX;=255. ‘I’ is the original image and ‘R’ is the reconstructed image using the noise

cancellation algorithm. Both the images are of resolution m*n.

MSE gives the amount of noise that is present in the image by finding the sum of the squared
differences between the pixel values of the original and reconstructed image. PSNR gives the
ratio between the maximum possible power of a signal and the power of corrupting noise that
affects the fidelity of its representation. The higher the PSNR the better is the noise removal

algorithm. As the signals have a wide dynamic range the PSNR is measured in logarithmic

decibel scale.

Thisis sparse noise: Only
12.5% of the pixels contain
olse, C) Y

o P

All values occur with

ualprobability, : S) |
e i e black prxels oceur
i § 07! m .
e | | ZB%ofthe
001] .
! i
0,005
0 E 100 150 200 34 % 60 100 180 00 2%

Each pixel's value has probability of occurrence given by the associated distribution,

Fig. 2. Different types of noises with their probability distributions. .

Impulse noise removal consists of detecting the noisy pixel taking into account the edges and
substituting the noisy pixel with the best approximation of the correct pixel value based on the

neighborhood or detecting the edges, preserve them for blurring and smoothing the locally

smooth and distinct areas. Designing the most complete and sound noise filter is the one of the

objectives of our work.

CHAPTER 2

LIFTING SCHEME

First generation wavelet has become invariable tool in computer graphics due to their ability to
compute compact representation of functions and data set. It has been most efficiently applied to
generate image accurately and in sampling the data set significantly. The tool that is used in the
developed algorithms to build wavelets transforms is known as the second-generation wavelets,
which relies on the lifting scheme. The main feature of the lifting scheme is that all functions are
derived in the spatial domain. This is in contrast to the initial approach, which relies heavily on
the frequency domain. Usage of spatial domain has major advantages that it does not require the
machinery of Fourier analysis as a prerequisite, which results in a more intuitively appealing

treatment.

Wavelets have found applications in various fields like geometric modeling, data

compression, data transmission, numerical computations etc. The complexity of the calculations
to represent data using wavelets is normally linear and the process is even fast. Digital data like
audio, video, pictures and graphics from a source contains a lot of redundancy and the data is
highly correlated. Wavelet uses this property of the digital data to represent it. It uses very few

parameters to represent the digital data precisely.

2.1 Second Generation Wavelets

The Second Generation Wavelets are easier to understand and implement than the First
Generation Wavelets. The first generation wavelets could be easily used for periodic and infinite
domain signals. But there was no clear cut way of using it for bounded domain signals. Thus the
Second Generation Wavelets came into picture. The Second Generation Wavelets have all the
useful properties like time-frequency localization and fast implémentation of the First Generation
Wavelets in addition to being able to represent the signals which are bounded. This has been
achieved by removing the translation and dilation of the mother wavelet, Instead we use a Lifting

Scheme. Hence we do not use any Fourier Analysis.

There are two advantages of second generation wavelets. The first advantage is that fast

computation and multiresolution capabilities of the first generation wavelets, are retained in the

second generation wavelets. The second advantage is that the forward and inverse wavelet

transform are invertible to each other as can be seen from the figure below.

aven
{9 > coarse
signal ———3 split predict update
—@’j > detail
odd
even
course \@_ .
update predict perge ————m> signal
detail é

odd

Fig. 3. Forward and Inverse Wavelet Transform

2.2 Lifting Scheme

Lifting scheme is better suited for image de-nosing as it can casily be generalized to complex

geometric situations of high non-uniformity. The lifting scheme is a tool for constructing

1
|
second-generation wavelets which are no longer, dilates and translates of one single function the !
mother wavelet. In contrast to first-generation wavelets, which used the Fourier transform for |

wavelet construction, a construction using lifting is performed exclusively in spatial domain and,

thus, wavelets can be custom designed for complex domains like irregular noise samples.

The lifting scheme can be viewed as a process of taking an existing wavelet and modifying it by
adding linear combinations of the scaling function at the same level of resolution.

The scheme consists of three steps: Split, Predict and Update.

In the lifting scheme we use the correlation property of the digital data. We split the

signal by sampling into even and odd samples. We have two operators, the Predict Operator and
the Update Operator. Both the operators are linear. We predict the odd samples from the even
samples using the Predict Operator (can use prediction as they are correlated because of the
correlation property). Because of the prediction some details are missed. These details are then
found using the prediction and the odd samples. Then the coarse signal can be generated by

using the Update Operator on the details and the even samples.

gvexn

even samples coarse

Fig. 4. An illustration of the lifting scheme

i) Split: Consider a data set to be partitioned into two groups: significant points (SP) ‘SP’ and
}nsigniﬁcant pixel (IP) ‘IP’. If the original point set can be partitioned in a hierarchical structure,
then the above process can be iteratively applied to different sets. A hierarchical structure has
the following form
SE CSp st SpP" (3)

where SP" denotes the finest representation of the geometry. SP” can be partitioned into SP™!
and /P"" § then SP™"' can be partitioned into $"* and 7P"? and so on. Note that the larger
number in superscripts represents finer resolution.

SPY IPY = SPM b 010, n—1 4)

I L|

Wavelets and approximations of the data can be constructed on the basis of this hierarchical
structure of partitioning. In this second-generation wavelet representation, the process does not
depend on a regular setting for the data; therefore, it can be used in both the regular and irregular
data sets for noise sampling. This is an important advantage of the lifting scheme.
ii) Predict: Using ‘P;’ to express position vector of i point, one can construct filter E to estimate
Pi based on Ps
‘ ~P =E(R) ' = (5]
The estimation function or filter E is a local estimate. Wavelet term Wi and estimation term A,
can be calculated as
Wi=5<F) (6)
4, =P +C(W,) (7
For different optimization requirements the correction function C can be customized.
The detail coefficients 4" are given by
d" =z} - B(z!) (8)
‘where the superscript n represent the level of resolution.

The gray scale value z! of significant pixel at n™ resolution is

\

\

Ty © |

2t =24 cd?) (10) Il

3. Update: The pixels with impulse noise are updated based on the value calculated by the :

estimation function or filter E. If the results are unsatisfactory then the pixels are included in the ;

significant set from the insignificant sét based on the detail coefficient and some threshold value |
specific to the application. The pixels which are added in the significant data set are
simultaneously removed from the insignificant data set. Then, we again update the pixels of

significant data set based on the values found by filter E. By iteratively using this process we

can get the desired results.

2.3 Application
1. Application 1: Image Noise Cancellation by Lifting Filter using Second Generation

Wavelets (LFSGW)

In this application, I have developed a novel Second Generation Wavelets based lifting filter

for image noise cancellation. The algorithm finds the most significant impulse noise points

.LI. . |

based on the values of their neighboring points, which are then used for noise cancellation.
The algorithm works well for grayscale images and it has been compared with the Adaptive
Filter with Weight Training Mechanism method. The efficacy of the proposed Lifting Filter

method has been shown and the results are gauged using PSNR measures.

Image noise cancellation is a prerequisite step for other image processing like object
recognition, edge detection etc. Without noise cancellation the results of such image
processing will most likely be flawed. Many algorithms have been developed for image noise
cancellation but they have not been put to effective use in the case of noise cancellation using
Wavelets. In our algorithm the Second Generation Wavelets based Lifting Scheme has been

used for noise cancellation in grayscale images.

I have developed a new lifting filter based on the concept of lifting scheme developed by
Siddavatam Rajesh et al. The lifting filter uses the lifting scheme of second generation
wavelets. The significant noise samples are lifted based on the values calculated by the lifting
filter. The lifting scheme is a tool for constructing second-generation wavelets, which are no
longer, translates and dilates of the single mother wavelet function. Median-based filters have
the property to retain edges and hence they have been used for impulse noise cancellation in.
Median-based filters modify all the pixels of the images leading to good pixels being
modified. To overcome this drawback switching scheme based filters were used by
researchers, which used impulse detection algorithm for finding impulse noise and then used
filters for canceling the noise. This too has a disadvantage that when a noise pixel is
surrounded by a number of other‘ noise pixels, the median filter could not give a correct
filtered value. Particle Swarm Optimization (PSO) has also been used for image noise

cancellation.

The lifting filter has been used for noise cancellation in grayscale images. In each iteration of
the algorithm noise is removed from the entire image. In our algorithm the size of the
window is increased if the current window size is giving neighboring pixels all of which are

having impulse noise. This solves the problem of removing noise blotches from images.

10

A. Lifting Filter

The lifting filter is used for finding the filtered value for all the pixels which might be noise.
.Here I have considered homogeneous salt and pepper noise. So if any of the 3 pixel values (r, g,
or b) of a pixel has a value of 0 or 255 then there is a possibility that this pixel might be having
an impulse noise. Thus the lifting filter is used to find the filtered averaged value of the pixel

under consideration based on the value of its neighbors.

Unsatisfactory
Image

Noisy Lifted

) Signi e
Image Pixels ignificant Noisc-less

Pixels Image

Lif split | o [Predict HUpda!e P_pea >

A

Insignificant
Pixels

Fig. 5. A general framework of lifting scheme-based image filters. !

The notation given below will be followed in this text:

W: Window Size

1and j: the size of the original image i*]

k=3

x and y: pixel coordinates of pixel (x, y)

z: the r, g or b value of the pixel under consideration

I;; or I?,: Original image of size i*j with noise

17'}': Image after iteration n+1

X+ . Array of size i*j*k having impulse z values of pixels after iteration n+1

QY. : Set of non impulse z values of pixels within a W*W window centered about pixel (x, y)

sig/'} : set of size i*j*k of significant z values of pixels after iteration n+1

insig/'7, : set of size i*j*k of insignificant z values of pixels after iteration n+1

T: Threshold
d}’', : Detail of z value of pixel (x, y) after iteration n+1

n+l

. axy,: * Filtered value found by the lifting filter of z value of pixel (x, y) after iteration n-+1

11

ne {0,1,2...}
> W=1{3,57 ..

In the noise cancellation algorithm using Second Generation Wavelets two image sequences are
generated as follows:

: 0 2 n n
1) The sequence of grayscale images AL | el

LY.22 Xyt vz

2) The sequence of images having impulse noise PRI O o I Ul U

X i Xy phz 2ttt

I denotes the input image with noise. 7(©

Xz

denotes the z value of pixel (x, y) in the input image.

101 denotes the z value of pixel (x, y) of image I after (n+1) iterations of the noise cancellation !

algorithm. x has all the impulse noise z values of pixels in the current iteration of the algorithm

whether significant or insignificant. x) denotes the impulse noise z value of pixel (x, y) in the

(n+1)™iteration of the algorithm. Since size of X is i*j*k and in almost all cases the image is not

entirely filled with noise there will be certain positions of ¥ which will be empty. These empty

positions have been given the value of -1 which indicates that the pixel is noise free.

In each iteration of the algorithm we use the lifting filter to find the value ¢ a, . which gives the

value which should be given to z (r, g or b) value of pixel (x, y) if the pixel’s current z value is

giving a detail coefficient which exceeds the threshold value. © alt.’ gives the value calculated

by the lifting filter for z value of pixel (x, y) from its neighboring non impulse pixels in a

window of size W*W in the iteration (n+1).

The non impulse pixels in window of size W*W are given by

Q) ==) |5 =¥ =1)/25 iS5+ W =1)/2, (11
Y=V =1)/2S jy Sy + (W =1)/2}.

A

With the help of these pixels we can use the lifting filter to find ay,.as under

ay,. =lif{l} | je QY 3. (12)

The value of «’,, is used in the predict operation of lifting scheme for finding the details

x, .z

coefficient) .

12

: |

B. Noise Cancellation Algorithm:

1. Significant Noise Sampling Algorithm

The following steps are used to obtain a nested subset of significant noise points.
Input: Noisy Image I
i. Let!"™=7:dataset (sig" Linsigh)
ii. Using lifting scheme find a set of new significant noise points (SP) to be filtered using the
lifting filter.
iii. Getsigh=sigh’ - sp
iv. Repeat the step 2 to 3 to get the desired image quality (sig").
v. Check the quality of image obtained from the data. The process is stopped if a good image is
generated. :

Output: Denoised Image 7"+,

1l. Image Noise Cancellation Algorithm

S —

The Noise Cancellation algorithm for grayscale images works by considering all the three r, g
and b values of each pixel of the image. In grayscale we know that r=g=b, but I’ve developed the
algorithm in a generic way so as to accommodate colored images. Because of the introduction of
homogeneous salt and pepper noise the r, g and b values of the pixels may be corrupted. The

lifting filter is used to find the filtered value o” . . for the 1, g or b value of the pixel under

Xz
consideration. Then this value is used for finding the detail coefficient. This detail coefficient is
then compared with the threshold value. If the detail coefficient exceeds the threshold value the z
value of the pixel under consideration is added to the set of significant pixels else it is added to
the set of insignificant pixels. Then in the update operation for all the z values in the significant

set the pixel value is updated witha, .. Then if the results are not satisfactory we again find a

set of significant noise point using the significant noise sampling algorithm and then we use the
grayscale image noise cancellation algorithm again. This process is repeated until a good image
is obtained. It has been experimentally found that it takes a small number of iterations (usually

single iteration) for obtaining a good image. The results of the experiments have been shown in
the Results section.

+*

13

B T——

Input: Noisy Image 7, ; or 77,

1. Lifting (Split): If 1}, .=0or 1" =255 then

oz .
Kiwa =Ly (13)
2. Predict:
2.1 The set x is divided in the sets of significant and insignificant pixels. If 7, .= 0 or
17,.= 255 (salt or pepper) then for the z(r, g or b) whose value is 0 or 255 calculate B A8
shown in (14) and (15).
Qe =U =G i) | x=(W =1)J2< j, Sx + (W =1)/2, (14)
y=(W-1125j2Sy+ (W ~1)/2}.
Grye =HMI] | je QF, .} (15)

Please note that W can be set to any odd number greater than or equal to 3. In this algorithm W is

set to some initial value. For generating the results in this paper we initially set W to 3. Then if

while finding ay, . the z values under consideration of all pixels in the window are themselves

X,),z
noise too (value 0 or 255 in the case of salt and pepper noise), we increase the window size (only
for the current pixel; for some other pixel W is the initially set value) to the next higher size (we

increased W to 5) and find ay . againi.e. step 2.1 is repeated again with new window size. This

leads to correct filtered value being used. Also as the window size is kept small until it is
essential to increase W, it saves execution time. Moreover impulse noise in groups i.e. noise
blotches are easily removed and also the noise is not propagated further in the image.
2.2 Find

250 A1l =08] (16)

x,y,z T
23

n+l
l.f(d.x,y‘z > T) (17)
Sig;?:vl,z = 1;',):,:

else

(18)

2o bl rn
insig,, . = Ix‘y.z

3. Update: For all the significant pixels update

n+l n+l n+l s n+l :
Loe =05l £ cslell, (19)

14

4. If the results are good stop the process. If the results are not good then find a new set of new
significant noise samples. Repeat the steps 2 to 3 and then check the results again.

Output: Denoised Image 77*'.
C. Results:

This application uses the noise cancellation algorithm for denoising images. Here we show the
experimental results of noise cancellation carried out using the lena image. We have corrupted
the lena image with different levels of noise ranging from 5% to 80%. The reconstructed image
in all these cases is visually good compared to the original lena image to which homogeneous
salt and pepper noise had been added. The execution time of the algorithm is also found to be

very less.

We have used MSE and PSNR to quantitatively evaluate the proposed algorithm for noise
cancellation in grayscale images. All images with salt and pepper noise of noise densities less
than 10% show excellent PSNR values greater than 44 dB. For images with salt and pepper noise
of noise densities between 10% and 20% the PSNR is between 44 dB and 37.56 dB. Even lena
image with 50% noise density after noise cancellation gives a PSNR value of 31.8 with a single
iteration of the algorithm. The comparative evaluation of our algorithm has been shown in Table
I. Noise cancellation for images with noise densitics less than 80% has been done with a single
iteration of the algorithm. For images having noise densities greater than 80%, two iterations of
the proposed algorithm were sufficient to generate a good reconstructed image. Thus even with a

small number of runs we are able to generate good images. This saves valuable execution time.

1%

TABLE 1
COMPARATIVE EVALUATION OF OUR LIFTING FILTER

Test Algorithm | Noise PSNR
Image Used Density | (in dB)
10% 44,1228
Lifting 20% | 37.5694
Filter 50% 31.8077
Lena 80% 27.2215
512x512 10% 40.5690
Adaptive 20% 32.6834
Filter 50% 26.0444
80% 20.8967

(c) Lifting Filter (d) Adaptive Filter [2]

Fig. 6. Comparative reconstructed images using Proposed Lifting filter and Adaptive Filter

16

an

(a) Lena with 20% noise (b) Reconstructed image

(c) Lena with 50% noise (d) Reconstructed image

Fig. 7. Noise cancellation results using lifting filter

(c) Lifting Scheme — runl (d) Lifting Scheme — run2

Fig. 8. Lena progressive image filtering using Lifting Filter

17

IS,

2. Application 2: Fast Image Restoration by Median Based Lifting Filter using Second

Generation Wavelets

In this application we have developed a novel median based Lifting Filter for restoring images
which have been corrupted by homogeneous salt and pepper noise. The median based lifting
filter restores the input image by calculating the median of the neighboring significant pixels.
The algorithm for image restoration uses the lifting scheme of the second generation wavelets in
conjunction with the median based Lifting filter. The experimental results demonstrate the
efficiency of the proposed method. The algorithm works exceedingly well for all levels of nofse,
as is illustrated by the Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR)

measures.

In the process of image acquisition and transmission the digital images are often corrupted with
impulse noise. This is mainly because of the errors in the sensors or in the communication

channel. It is highly imperative that this noise be removed and the digital image restored prior to

its subjection to further processing, such as edge detection, image segmentation, object
recognition and pattern recognition. Various methods have been developed for impulse noise
removal from corrupted images. Median filters have been used extensively for the removal of
impulse noise. They are simple yet very effective in the removal of salt and pepper type impulse
' noise. Median filters often tend to modify good pixels too. Therefore impulse detection

algorithms play a crucial role in noise removal.

The Progressive Switching Median (PSM) filter has been developed for removing impulse noise
from highly corrupted images. It works by using an impulse detection algorithm and then

iteratively detecting and filtering impulse noise and hence it performs heavy computation.

An Adaptive Rank-ordered Switching Median Filter has been used by researchers for noise
removal from images corrupted by salt and pepper noise. It detects corrupted pixels even in case !
of images which are highly corrupted. Our empirical results have been compared with the |

ARSMF to show the superiority of our proposed algorithm utilizing median based lifting filter.

The general scheme followed for noise removal using first generation wavelets is described as

under. Consider an original image denoted as f and noisy image denoted as Z. Here we assume

18

that the original image f is corrupted by homogeneous salt and pepper noise resulting in the i
’ image Z. Hence we get a model of the type
Z(iaj)=f(i9j)+€i,j (20)

where € is homogeneous salt and pepper noise. ‘

In our application we have developed a novel median based Lifting Filter which uses the second
generation wavelets. We use the lifting scheme ﬁrstiy for separating the significant pixels from
the insignificant pixels and then for filtering the corrupted image using the median based lifting
filter. The lifting filter was used in Application 1 by us for noise removal. Upon improving the

lifting filter in Application 1 by calculating the median value of the neighboring pixels of the

corrupted pixel in its window we were able to improve the results previously generated. The

proposed algorithm gives excellent results for all levels of noise.

Second generation wavelets developed by Swelden have been efficiently used for many

applications of image processing. Generating set of most significant samples for de-noising and

then using them to generate an image is a highly non-linear and computationally expensive task.
A set of significant de-noising samples is obtained after estimating the detail coefficients.

Highly sparse noise removed significant samples are used to approximate an image.

A. Median Based Lifting Filter:

The median based lifting filter is used for finding the correct filtered value by which a corrupted
noisy pixel should be replaced. Fpr finding the filtered value for a noisy pixel under
consideration the median based lifting filter considers a window around the noisy pixel and finds
the filtered median value of the non impulse noise pixels (noise free pixels) which are neighbors
of the corrupted pixel and are present in that window. In case there is no non impulse neighbor of !
the corrupted pixel in the current window the filter increases the window size to the next possible |
higher value and calculates the filtered median value. The initial separation of impulse noise '
pixels from the other image pixels is done in the Lifting Step of the Image Restoration Algorithm. |
This separation is done to enable the median based lifting filter to calculate the filtered value in

the Predict step. After the calculation of the filtered value the final separation of impulse noise

pixels and image pixels is done and the significant and insignificant sets are created. The Lift

and Predict steps are explained in Section IV. The median based lifting filter always uses a

19

window size of 3*3 initially to determine the filtered value for a corrupted pixel. As mentioned
above if there is no non impulse neighbor of the corrupted pixel in this window of size 3*3, the
window size is then increased to the next higher odd integer and the window size becomes 5*5.
In this way the filter dynamically increases the window size as and when needed. After this

when the filter considers some other noisy pixel the initial window size is again 3*3.

The non impulse neighbors of the corrupted pixel in a window of size W*W are given by

QFy =l =Gni) X =W =112 i Sx+ (W -1)/2, 1)
y=(W=1)/2<j,<y+ (W -1)/2).

Where (x, y) are the coordinates of the corrupted pixel. Here W can be any odd integer greater
than or equal to 3. But while calculating the filtered value for a new corrupted pixel its value is 3

and can be increased later as explained above.

After finding the non impulse neighbors above the median based lifting filter can then calculate

the filtered median value med; , as given below

med , =med _lifi{I] | je QY }. (22)

Where n is the current number of iteration of the image restoration algorithm.

B. Image Restoration Algorithm:

The Image Restoration Algorithm works by following the three steps of the lifting scheme Split,
Predict and Update. In the first step we lift (split) all the pixels of the corrupted input image that
are suspected to be noisy pixels. In the case of salt and pepper noise this is done by separating
those pixels whose grayscale image value (z) is either 0 or 255 because these are the grayscale
values which correspond to pepper and salt. Images corrupted by salt and pepper noise are
contaminated with pixels which have either a very high value (255 in grayscale image) or a very
low value (0 in a grayscale image). For the current iteration n of the algorithm these pixels are

stored in an array X"*' . Now some of the pixels in the array x"*! can also be image data. To

xy,z* X, v,z
separate those pixels we perform the Predict step of our algorithm. In this step we firstly find

med) , using the median based lifting filter. Then we calculate the detail using (15), We then

compare the detail of the pixel (x, y) under consideration with threshold T to determine whether

this pixel (x, y) is corrupted or not. As the data of images is smooth varying the neighboring

20 |

—

pixels of any pixel will not have values which are significantly different from its value. Hence

the filtered value found by the median based lifting filter will also be close to the value of the

pixel (x, y) if it is image data and is not a noisy pixel. This is the reason why upon comparing
the detail with a suitably narrow threshold we can successfully separate image data from noisy

data. In our work we put the noisy pixels and image pixels in iteration n in sig” , and insig}l

where (X, y) are the coordinates of the pixel. Lastly, in the update step we correct all the pixels

n+l

in sig/';' with their filtered median value, where (n+/) is the current number of iteration for

which the algorithm has been executed. After executing the three steps above if the result is
unsatisfactory, we execute the algorithm again on the output of the previous run.
Input: Noisy Image /,, or 1},

Lifting (Split): If 1 ,= 0 or I} =255 then

yL=n | (23)

2. Predict: If 1}, =0or.1},=255

Q= (=G | x= (7 =1)/28 j sx+ (W -1)/2, (24)
y=W=D/2Sj,Sy+ (¥ -1)/2}.
medy, =med _lif{l]|je Q“,} (25)
Find Detail
‘ dyy <10, —med],|. (26)

Build Signiticant and Insignificant sets

I dn+l T
if(dy, >T) 27
stg;,'jf =
else
n+l n (28) e
insige, =1
3. Update: For all the significant pixels update
17 = medl Jif TT & slgt (29)

4. Repeat steps 1 to 3 on the output of the previous run until satisfactory results are obtained.

Output: Restored Image 7',

i C{‘-m

fb\“ Y
((0 g
‘Pob og 5

'/ﬂ ?ﬂrihft ..)O\a(

L

C. Results:

) We have tested our proposed algorithm for different levels of noise ranging from as low as 5% to
as high as 95%. We have introduced homogeneous salt and peppers noise in the images.
The experimental results have been gauged using the Mean Square Error (MSE) and Peak Signal

to Noise Ratio (PSNR) measures which have been given below.

m-1 n—-|
MSE =i DD UG)R,) (&
mr 320 j=o

where [and R are the original and the restored images having a resolution of m*n.

2
PSNR=1010g,0[n;;;EJ (€2))

where max is the maximum possible pixel value of the image and its value is 255 in the case of a

grayscale image. J

Our algorithm utilizing median based lifting filter generates results that are superior to the
existing methods for noise removal. In this text we compare our results with the Adaptive Rank- }
ordered Switching Median Filter, The comparative evaluation of our proposed method with

ARSMEF has been done in Table II below.

Our algorithm gives excellent PSNR values greater than 43 dB for noise ratios less than or equal
to 10%. For noise ratios between 10% and 20% the PSNR varies between 43.0821 dB and
39.0591 dB. Even for a noise ratio of 50% we get a PSNR of 33.2258 dB with 2 iterations of the
algorithm. All the results generated for noise ratios less than 50% have been generated by a
single iteration of the algorithm. For noise ratios of 80% and 95% we get PSNR values of
28.4037 dB and 23.8363 dB respectively. It took 3 iterations of the algorithm to get the results

in the case of 80% noise and 4 iterations of the algorithm in the case of 95% noise.

The proposed algorithm has a complexity of O (n?). For implementing our algorithm we have
used MATLAB on a 1.73GHz Pentium M Processor with 256 MB of RAM. The algorithm has
been found to be pretty fast. It takes 10.0469 seconds for restoring a 512*512 Lena image
corrupted with 5% noise. This is done in a single iteration of our algorithm. For restoring
512*512 Lena image corrupted with 95% noise we needed 4 iterations of our algorithm and the i

execution took 96.3907 seconds. The execution time of our algorithm together with PSNR for

22

different levels of noise has been shown in Table III. Hence the algorithm can be seen to be 1‘
efficient both in‘ terms of its dexterity to restore a corrupted image exceedingly well and to be |

less computation intensive.

TABLE 11

COMPARATIVE EVALUATION OF OUR METHOD

Test Algorithm | Noise PSNR
Image Used Density | (in dB)
10% 43.0821

Our 20% 39.0591
Method 50% 33.2258

Lena 80% 28.4037
512%512 10% 40.8934
20% | 37.1464 i
50% 33.4131
80% 26.5735

ARSMF

TABLE III

PERFORMANCE OF OUR METHOD

Execution

Test

Image

Algorithm
Used

Moise

Density

PSNR
(in dB)

Time

(in sec)

Lena
512*%512

Our
Method

5%

46.1531

10.0469

10%

43.0821

12.9375

20%

39.0591

16.5469

50%

33.2258

34.5469

80%

28.4037

55.1875

95%

23.8363

96.3907

(a) Lena with 80% noise (b) Algorithm: Run | (c) Algorithm: Run 2 (d) Algorithm: Run 3
Fig. 9. Progressive image restoration using our proposed Median based Lifting Filter.

(a) Peppers with 20% noise (b) PSNR=36.7249 dB (c) Peppers with 50% noise (d) PSNR=30.8814 dB
Fig. 10. Results generated by Image Restoration Algorithm for a 512*512 Peppers image.

24

(c) Proposed Median Based Lifting Filter (d) ARSMF [1]
Fig. 11. Comparative restored images using our proposed Median based Lifting Filter
and the ARSMF.

CHAPTER 3
DIMINISHING POPULATION PARTICLE SWARM OPTIMIZATION

3.1 Particle Swarm Optimization

The particle swarm optimization, first proposed by Kennedy and Eberhart, is a population-based
optimization method and can be easily implemented to sove a wide array of different
optimization problems.Some example applications include neural network training and function

minimization.

The origins of PSO are sociologically inspired since the original algorithm was based on the
observed sociological behavior associated with bird flocking. To understand the behavior let us
suppose the following scenario: a group of birds are randomly searching for food in an area and
only one piece of food is present in the area being searched. All the birds do not know where the

food is. But they know how far the food is in each iteration. So what could be the best strategy to

find the food? One effective strategy is to follow the bird that is nearest to the food. In PSO, each
single solution is synonymous to a "bird" in the search space and is referred to as a "particle". All
of particles have their own fitness values which are then evaluated by a fitness function which in
turn is to be optimized, and all particles also have velocities which direct the flying of the
particles. The particles move through the problem space by following the current optimum

particles.

The algorithm maintains a population of particles, where each particle i represents a potential
solution to an optimization problem and can be represented as an object with several
characteristics. Let ‘s’ be the size of the swarm. The characteristics are assigned the following
symbolic representation:

ki : The current position of the particle

vi: The current velocity of the particle

yi :The personal best position of the particle

The personal best position associated with particle i is the best position that the particle has

visited so far (a previous value of x;), giving the highest fitness value for that particle. If our

26

objective is a minimization task then a position yielding a smaller function value will have a
higher fitness value. The symbol ‘f” is used to denote the objective function being minimized.
The update equation for the personal best position is presented in the following equation, with

the dependence on the time t clearly expressed.

(1O FAED) 2 A . (32)

(it])= . . g . S
! U a(e+1) iF Fla(e= 1) « £ (D)
Major steps in PSO:
1) Initialize a group of random particles (solutions)

2) Search for optima by updating generations.

With every iteration, each particle is updated by following two "best" values. The first value is
the one mentioned above i.e. the best solution (fitness) it has achieved so far called pbest.
Another "best" value tracked by the particle swarm optimizer is the best value obtained so far by
any particle in the population which serves as a global best and is called gbest. If a particle takes
only a part of the population as its topological neighbors then the best value becomes a local best

and is called lbest.

After determining the two best values, the particle updates its velocity with following equation
33k

Vit D) = vig(t) + o1 * ri(t) * [yig(t) — xi4(0)] + c2 * ra(t) * [gbest(t) — xi4(t)] (33)
The position of each particle is updated using the newly computed velocity vector for that
particle, : SO that
Xi(t+1) =xi(t) + vi(t+1) (34)

The algorithm makes use of two independent random sequences, r; ~ U (0,1) and r; ~ U (0,1)

which are used to affect the stochastic nature of the algorithm as shown in equation (33). The

values of r; and r; are scaled by constants 0<c;, c; &2, called the acceleration coefficients and

their objective is to influence the maximum size of the step taken by a particle in a single

iteration. The velocity update step has been specified separately for each dimension j =1...n, s0

that v;; denotes the j™ dimension of the velocity vector associated with the i particle.

27

From the velocity update equation it can be observed that ¢, regulates the maximum step size in
the direction of the global best particle, and ¢ regulates the step size in the direction of the
personal best position of that particle. The value of v;;is clamped to the range [-Vmax 5 Vmax] t0
reduce the probability that the particle might leave the search space.
If the search space is defined by the bounds [-Xmax, Xmax], then the value of vy is typically set so

that Vimax =K * Xmax, Where 0.1 =k =1.0.

The pseudo code for the algorithm is as follows:
For each particle
Initialize particle population and PSO parameters
End
Do
For each particle
Calculate fitness value
If the fitness value is better than the best fitness value (pBest) in history
~ set current value as the new pBest
End
Choose the particle with the best fitness value of all the particles as the gBest
For each particle
Calculate particle velocity according equation (33)
Update particle position according equation (34)
End |

While maximum iterations or minimum error criteria is not attained

A brief description of how the algorithm works is as follows: Initially, based on its fitness value
some particle is identified as the best particle in a neighborhood of particles. All the other
particles are then accelerated in the direction of this particle, and also in the direction of their
own best solutions that they might have discovered previously. At times the particles might
overshoot their targets i.e. start exploring the search space beyond the current best particles.
Additionally all particles have the opportunity to discover better particles en route, in which case
the other particles will change direction and head towards the newly discovered ‘best 'particle.

Since most functions have some continuity, chances are that a good solution will be surrounded

28

F |

by equally good, or better, solutions. By approaching the current best solution from different
directions in search space, chances are good that these neighboring solutions will be discovered

by some of the particles.

Equation (33) shows that the velocity term v; of a particle is influenced by three parts, the
“momentum”, the “cognitive”, and the “social” part. The “momentum” term v;j(t) represents the
previous velocity term which is used to carry the particle in the direction it has travelled so far;
the “cognitive” part, ¢; * ri(t) * [yi;(t) —xi;j(t)], represents the tendency of the particle to return to
the best position it has visited so far; the “social” part, ¢, * ry(t) * [gbest(t) — x;j(t)], represents
the tendency of the particle to be attracted towards the position of the best position found by the

entire swarm.

Position gbest(t) in the “social” part is the best position found by particles in the neighborhood of
the ith particle. Different neighborhood topologies can be used to control information
propagation between particles. Examples of neighborhood topologies include ring, star, and von
Neumann. Constricted information propagation as a result of using small neighborhood
topologies such as von Neumann has been shown to perform better on complex problems,
whereas larger neighborhoods generally perform better on simpler problems. Generally speaking,
a PSO implementation that chooses gbest(t) from within a restricted local neighborhood is
referred to as /best PSO, whereas choosing gbest(t) without any restriction (hence from the entire

swarm) results in a gbest PSO.

Inertia Weight
Observe that the positions yi;(t) and gbest(t) in Eq. (33) can be collapsed into a single term p

without losing any information:
vij(t+1) = vigt) + ¢ * r(t) * [p — xi4(V)] (35)
el rL(E) » y6j(&) + ¢2 = r2(t) « ghust(t)

cl-»9d(d) + o2 wr2(t)

where p =
and-c*r()=-—cr*r(t)+cy*rat):

Note that p represents the weighted average of the y;j(t) and ghest(t). It can be seen that the

previous velocity term in Eq. (35) tends to keep the particle moving in the current direction. A

29

coefficient inertia weight, w, can be used to control this influence on the new velocity. The

velocity update (33) can be now revised as:

vi(t+1) = w*vi(t) + o * ry(t) * [yij(t) —xij(t)] + c2 * ra(t) * [gbest(t) - xi(t)] (36)

The inertia-weighted PSO can converge under certain conditions even without tising Vmax. For
w > 1, velocities increase over time, causing particles to diverge eventuvally beyond the
boundaries of the search space. For w < 0, velocities decrease over time, eventually reaching 0,

resulting in convergence behavior.

PSO parameter control

One of the advantages of PSO includes the fact that PSO takes real numbers as particlles. For
example, if we try to compute the solution for f(x) = x1°2 + x2"2+x3"2, the particles can be set
as (x1, x2, x3), and fitness function can be taken as f(x). Then standard procedure can be used to
find the optimum value. Search is a repeat process, and the stopping condition can be reaching

the maximum iteration number or satisfaction of the minimum error condition.

There are not many parameter that need to be tuned in PSO. Here is a list of the parameters and
their typical values.

The number of particles: the typical range is 20 - 40. Actually for most of the problems 10
particles is large enough to get good results. For some difficult or special problems, one can try
100 or 200 particles as well.

Dimension of particles: Determined by . the problem to be optimized,
Range of particles: Deter;nined by the problem to be optimized.
Vmax: it determines the maximum change one particle can acquire during one iteration. Usually
the range of the particle is set as the Vmax for example, the particle (x1, x2, x3) X1 belongs
[-10, 10], then Vmax = 20.

Learning factors: c1 and c2 usually equal to 2. Generally ¢l equals to ¢2 and ranges from [0, 4].
The stop condition: the maximum number of iterations the PSO must execute or the minimum
error requirement is satisfied. This stop condition depends on the problem to be optimized.

Global version vs. local version: Two versions of PSO exist- Global and Local version.

30

r

Ghest Model
e Offers a faster rate of convergence at the cost of robustness.
e Maintains only a single “best solution” called the global best particle, across all the
particles in the swarm which acts as an attractor, pulling all the particles towards it.
e Eventually éll particles converge to this position. The drawback is that if it is not updated
regularly it might lead to premature convergence of swarm.

e The update equation for gbest = ¥ and v; are presented below.

#(8) € O (e). 30 (), 3 LOMFFW)) = min{ (o () FO O, o FO5E00)
vt + 1) = v (6) + eqgn (0 [y (8) — 2y ;O] + £273 (O [5,08) — 2 (0]

(37)
Note that ¥ is called the global best position, and belongs to the particle referred to as the global

best particle.

Lbest model

e Tries to prevent premature convergence by maintaining multiple attractors.
e A subset of particles is defined for each particle from which the local best particle, ¥, is
then selected.

e The symbol 3;is referred to as the local best position, or the neighborhood best.

e Assuming that the particle indices wrap around at s, the lbest update equations for a

neighborhood of size | are follows:

Nr‘ = {yi—.' (t)s yf»-.ul (t)r'": yl—l (t)!yi (t)! yf+| (t),...., yi—l (t)ﬂyl'-h' (t)}

P t+De N | (P (t+1)) =min{/f(a)},Vae N,

vy [t +1) = v (8 + epn (O Dy (8) - x4 (0] + 2arp (O [F,(8) — x;(0)] (38)

It can be observed that the particles selected to be in the subset N have no relationship with each
other in the search space domain i.e. selection is based purely on the particle’s index number.
This is done for two main reasons: it is computationally cheap, since no clustering has to be

performed, and it helps promote the spread of information regarding good solutions to all

31

e R

particles, regardless of their current location in search space. This model converges somewhat
more slowly than the gbest version, but it is less likely to become trapped in an inferior local
minimum. One can use global version to get quick result and use local version to refine the

search.

3.2 Diminishing Population PSO

Define Initialize Evaluate Ibest

Search Swarm and pbest for

Space Population each particle
Update

« Velocity and

Repeat until Convergence Pasition Egs.

Drop Particles
as per
Threshold
criteria

Fig. 12. General Framework of DP-PSO

Particle Swarm Optimization (PSO) is a novel heuristic search methodology for the systematic
exploration of solution spaces existing in complex optimization problems. Unfortunately this
‘ technique suffers from relatively long execution times as thousands times of iterations require
the many repetitions of the update step in order to converge the swarm on the global optimum.
Hence other possibilities for dynaniic population size improvements for classical PSO were
explored by us with the aim of reducing execution time. We came across two techniques to speed
up PSO execution. First was the Expanding Population PSO (EP-PSO) which begins with a
small number of particles and iteratively increases the swarm size. The other one was
Diminishing Population PSO (DP-PSO) which starts with a large number of particles and
iteratively reduces the swarm size. Research simulations demonstrate that both improvements
bring about almost 60% reduction in the execution time as compared to the classical PSO.
However, the results also establish that EP-PSO fares quite badly where the ability to converge
to the global optimum is concerned. On the other hand DP-PSO performs reasonably compared

to the classical PSO but at much faster convergence and execution speeds. Clearly, DP-PSO

32

exhibited a lot of promise as an enhancement tool for the classical PSO. In this technique we had
to start with a large number of particles and use a pruning process to kill off particles wandering
in regions of the space with less promising results.
A large population size is favored in the beginning of DP-PSO concept to allow exploration of
the widest possible region of the solution space in order that the region containing the global
optimum can be recognized. Once that region is identified, the process simply fine tunes the
particle positions to converge on the global optimum. Many particles are required in the early
initial phases to ensure that the region containing the true global optimum is recognized by the
algorithm. During the later fine tuning stages not as many particles are necessary since the search
space now becomes much narrower. The number of particles is gradually reduced by dropping
lower performing particles and keeping the better. The number of calculations and updates in the

early stages remains high and gradually reduces as the number of particles is reduced.

3.3 Application

1. Application 1: An Evolutionary Approach to Image Noise Cancellation Utilizing

Diminishing Population Particle Swarm Optimization (DP-PSQ)

In this application we have devised a novel method which is an effective implementation of
Diminishing Population Particle Swarm Optimization aiming at optimizing the noise removal
process in the case of grayscale images contaminated with salt and pepper noise. A new
neighborhood average filter has been used in conjunction with DP-PSO for noise removal.
Simulations reveal that the proposeci scheme which has been designed specifically for noise
removal works well in suppressing noise impulses in images corrupted with different levels of
noise. The results of the algorithm are compared with those obtained by PSO-CNN method for

gray-scale image noise cancellation.

Since the last decade optimization techniques inspired by swarm intelligence and characterized
by a decentralized way of working that mimics the behavior of swarms of social insects, flocks
of birds, or schools of fish have become increasingly popular. During the past several years, PSO
algorithms and its variants have been successfully applied to optimization problems ranging from

classical problems such as the travelling salesman problem to highly specialized applications

33

such as biomedical image registration, parametric object recognition, optimization of templates
of cellular neural network used to diminish the noise interference in binary images.

We have focused on a noise removal methodology characterized by the detection of noisy pixels
and their subsequent removal using a novel neighborhood average filter which has been

optimized by utilizing DP-PSO.

Each DP-PSO iteration accelerates the current pixel value towards the neighborhood average
value. Here the distance measure from the neighborhood average value serves as the objectivé
function to be optimized for better performance by our proposed DP-PSO algorithm for image

noise cancellation.

Algorithm for Image Noise Cancellation Using DP-PSO

The neighborhood average filter finds the average value of all the suspected non impulse pixels
(pixels with values 0 or 255) in a neighborhood of m*m (where m is an integer greater than 2).
For generating the results shown we have set m to 3 which yields PSNR values which are better

than the PSNR values generated by setting m to any other higher value.

Each noisy pixel is considered as a particle constituting the swarm population and is given an
initial velocity and position. These velocity and position attributes are then updated according to
the DP-PSO algorithm and hence each noisy pixel accelerates to converge towards the average

pixel value of the neighborhood in each iteration.

The distance measure from the neighborhood average value serves as the objective function.
When the pixel particle attains the /Best value of the neighborhood it is subsequently removed
from the swarm. The neighborhodd average filter has been used iteratively through the
implementation of DP-PSO for removing the noise from the corrupted image. Hence the
neighborhood average filter has been optimized by DP-PSO. We first initialize the coefficients of
the DP-PSO approach. The Table below gives the initialized coefficients of DP-PSO.

34

Load Noisy Image.
2

Initialize Population with standard
DP-PSO Parameters: w, ¢1, c2, r1, r2, no. of iterations.

A 4
l SAMPLE: 3*3 Neighborhood |

| Detect Noisy Pixels: SWARM PARTICLES]

| Use Neighborhood Average Filter: Ibest value]

| Determine Position of swarm particles I

r-
3
©
o
=
S 5
5 | Determine Velocity of swarm particles] _g
@
<} &
- ; - 3
o I Identify pbest of each Swarm Particle | =
S 0
7 T i o
8 Update particle Velocity and Position equations :3:
Q (1]
% ¥ :‘.';
Remove Rectified Swarm Particles from 3
population 2

| Update SAMPLE l

Fig. 13. Flowchart of our DP-PSO Algorithm

TABLE IV

THE INITIALIZED COEFFICIENTS OF THE DP-PSO

Coefficients Value
w 04

Number of iterations | 2
cl |
c2 1

Results

Our neighborhood average filter algorithm has been significantly optimized thorugh the use of
DP-PSO. In this section the simulation results carried out for the Lena image are shown. Here the
Lena images are corrupted with salt and pepper noise of different levels ranging from 5% to

20%. The reconstructed images show significant improvement over their noisy counterparts as

35

can be seen from Fig. 1 and Fig. 2. The major advantage of our algorithm can be gauged from

the rapid convergence exhibited by the swarm particles towards the neighborhood average value.
We have used PSNR measures to demonstrate the quantitative evaluation of our algorithm for
image noise cancellation in grayscale images. For image corrupted with 10% noise density our
algorithm shows a significant improvement over the PSO-CNN methodology. Also images
corrupted with 5% and 20% show a marked melioration after reconstruction. Hence performance
analysis shows that our algorithm gives efficient results in terms of evaluation time, complexity

and noise cancellation.

TABLE V

COMPARATIVE EVALUATION OF OUR PROPOSED NEIGHBOURHOOD AVERAGE FILTER OPTIMIZED
BY DP-PSO FOR IMAGE CORRUPTED BY SALT AND PEPPER NOISE (10%)

Lena.tif
PSNR(dB)

PSO-CNN [1] 21.4748
Proposed Optimized Neighborhood

. 31.9214
average Filter

L]
TABLE VI

SIMULATION RESULTS FOR DIFFERENT NOISE DENSITIES FOR OUR PROPOSED OPTIMIZED
NEIGHBORHOOD AVERAGE FILTER

Test Noise PSNR (in
Image Density dB)
5% 35.2005
10% 31.9214
Lena
128x128 20% 29.2432
50% 275.8293

36

i A2
(c) Proposed algorithm (d) PSO-CNN algorithm (c) Lena with 20% Noise(

diReconstructed image
Fig. 14. Comparative reconstructed Fig. 15. Noise cancellation-results
images using Proposed Neighborhood using Proposed Neighborhood average
average filter utilizing DP-PSO and filter utilizing DP-PSO
PSO-CNN

2. Application 2: Improved Evolutionary Approach to Image Noise Cancellation

Utilizing Diminishing Population Particle Swarm Optimization (DP-PS0)

The code of “An Evolutionary Approach to Image Noise Cancellation Utilizing
Diminishing Population Particle Swarm Optimization (DP-PSO)” has been optimized by
avoding the unnecessary computations in the cases where the neighboring pixels of the
pixel under consideration in a window are all corrupted, which gives us nothing to work

upon to remove the noise.

The corruption of images by salt and pepper noise in image acquisition and transmission
is unavoidable and has attracted the attention of many researchers over the past decade.
This type of noise is introduced by analog-to-digital converter errors, dead pixels or bit
errors in transmission. Hence noise removal becomes an important task to perform before
doing any subsequent image processing. Previous median-based filters were typically
implemented invarianﬂy across an image. Hence they exhibited the tendency to modify

both the noisy pixels as well as the undisturbed good pixels.

37

A. Improved DP-PSO Algorithm

This algorithm has been developed for removing noise from images corrupted with
homogeneous salt and pepper noise. Salt and pepper noise corrupts a pixel by modifying
its pixel value with either a very high pixel value or with a very low pixel value. In the
case of salt and pepper noise, either a value of 0 (low pixel value) is introduced in the
pixels or a value of 255 (high pixel value) is introduced in the pixels. The 255 and 0 pixel
values correspond to salt noise and pepper noise respectively. The neighborhood average
filter finds the average pixel value of all the non impulse pixels i.e. the noise free pixels,

in a neighborhood window of m*m (where m is an integer greater than 2).

For generating the results shown we have set m to 3 which yields PSNR values which are
better than the PSNR values generated by setting m to any other higher value. This value
of the neighborhood window size has been found by running a numbesr of simulations of
our algorithm on different test images. Also setting m to 3 implies that we are always
working with a small number of particles at a time. This gives us a small neighborhood in
which we can find the optimum solution. In a digital image the data is smooth varying,
meaning that the pixel values of nearby pixels will not change suddenly and abruptly.
Hence by finding the average value of the noise free pixels in a neighborhood using
neighborhood average filter we get a pixel value which is to be used as a target by the

particles of the swarm.

Each noisy pixel of the neighborhood is considered as a particle constituting the swarm
population and is given an initial velocity and position. These velocity and position
attributes are then updated by the DP-PSO algorithm and hence each noisy pixel
accelerates and converges towards the average pixel value of the neighborhood in each

iteration.

38

TABLE v1I

THE INITIALIZED COEFFICIENTS OF THE DP-PSQO

Coefficients

Value

w

0.4

Number of iterations

5

cl

1

c2

1

coefficients of DP-PSO.

For r_index = 1tox
Forc index = 1toy
Calculate average pixel value of the
neighborhood disregarding noisy pixels
End
End

% PSO Initialization of Position and Velocity

B. Pseudocode for each 3*3 neighbourhood

The steps of the proposed algorithm are given in the pseudocode below,

psoiterations = 5; % No of PSO iterations
x=y=3 %Dimensions of the Neighborhood
w=10.4

The distance measure from the neighborhood average value serves as the objective
function. When the pixel particle attains the /Best value of the neighborhood it is
subsequently removed from the swarm. The neighborhood average filter has been used
iteratively through the implementation of DP-PSO for removing the noise from the

corrupted image. Hence the neighborhood average filter has been optimized by DP-PSO.

We first initialize the coefficients of the DP-PSO approach. Table I gives the initialized

39

% Particles of the swarm are identified as the pixels which are containing noise

For r_index = 1tox
For c index = 1toy
If pixel is a noisy pixel
flag (r_index , c_index) = 1 %Set flag to identify particles in swarm
v (r_index , c_index) = 0 %For each particle
in the swarm set initial velocity
p (r_index , c_index) = current pixel value % Set initial position
End
End
End

% Initialization of pBest and [Best values

For r_index = 1tox
Forc index = 1toy
If (flag (r_index , c_index) = 1)
pBest (r_index , c¢_index) =current pixel value %Set
pBest value for each particle
End
End
End

IBest = average
% PSO Iterations

For loop =1 to psoiterations
For r_index = 1tox

Forc_index = I1toy

40

aF - e aEEe $#TR-

If (flag(r_index, c_index) =1)

v(r_index , c_index) = w*v (r_index , c_index) +
cl*rl*(pBest(r_index , c_index) — p(r_index, c_index)) +
c2*r2*([Best-p(r_index , c_index)
p(r_index , c_index) =p(r_index, c_index) +

v r_index, c_index)

If (p(r_index, c_index) - [Best<10) &&
(p(r_index , c¢_index)-IBest>-10)

% If the pixel has been corrected force convergence
Set flag(r_index, c_index) =0
% Remove this particle from the swarm as its pixel
value has been corrected and it has converged
pBest (r_index, c¢_index) = p(r_index, c_index)
End
End
End
End
End

41

C. Simulation And Results

Jslpimn gl

A T3k ard Prgosr oite

A0 Nokre
L.. ek i
“’”W“""’_J 0% 1ot l Run DRFSO Moss Care st Aorirvn
o8 o

Cortiptin rmga Guraetad i

PR it %‘

Fig. 16. DP-PSO Algorithm Simulator i

In the simulation of the DP-PSO algorithm for noise removal we have encoded the
current pixel grayscale values as the positions of the particles of the swarm. These
positions are corrected by the DP-PSO algorithm. The filtered value of the neighborhood
determined by the neighborhood average filter is the 1Best value of the neighborhood.
The position and velocity equations of the DP-PSO algorithm are then used in the
iterations of the algorithm to update the positions of the particles of the swarm. In each
iteration of the DP-PSO algorithm the particles try to improve their fitness values. Hence
in this way the algorithm has been and different simulations have been run on different

test images of different resolutions and having different levels of noise.

As the salt and pepper noise is homogeneous we have an equal number of pixels
corrupted with salt noise and pepper noise. If the level of noise is 30% then 15% of

articles are corrupted with salt noise and the other 15% are corrupted with pepper noise.
P p p PEpp

The objective value calculated by the objective function is given as obj. naf, is the

filtered value determined by the neighborhood average filter. The pixel value of pixel

42

as under

obj, = naf, —i, .

TABLE VIl

under consideration is given by ix,. The objective function used in the algorithm is given

SIMULATION RESULTS FOR DIFFERENT NOISE DENSITIES FOR OUR PROPOSED OPTIMIZED

NEIGHBORHOOD AVERAGE FILTER

Noise PSNR
Test Image MSE

Density (in dB)

5% 5.9862 40.3593

10% 11.5738 37.4961

Lena

512x512 20% 242272 342878
50% 65,5361 29.9660
80% 204.8423 25.0166

(c) Proposed algorithm

(b) Lena with

(d) PSO-CNN algorithm

(LU e

L

10% noise

Fig. 17. Comparative reconstructed images using Proposed Neighborhood average
filter utilizing DP-PSO and PSO-CNN

(b) Reconstructed image

(c) Lena with 20% Noise (d) Reconstructed image

Fig. 18. Noise cancellation results on Lena 128*128 image using Proposed

Neighborhood average filter utilizing DP-PSO |

(a) Lena with 20% Noise

(c) Lena with 50% Noise (d) Reconstructed image

Fig. 19. Noise cancellation results on Lena 5 12*512 image using Proposed

Neighborhood average filter utilizing DP-PSO

44

CHAPTER 4
CELLULAR NEURAL NETWORKS

4.1 Introduction

“A neural network is an interconnected assembly of simple processing elements,
units or nodes, whose functionality is loosely based on the animal neuron. The
processing ability of the network is stored in the inter-unit connection strengths, or
weights, obtained by a process of adaptation to, or learning from, a set of training

patterns.”

Leon O. Chua AND Yang first introduced the concept of the Cellular Neural Network in

1988 at IEEE transactions on Circuits and Systems. f
A Cellular Neural Network (CNN), also known as Cellular Nonlinear Network, is an I
array of dynamical systems (cells) with local interconnections only. The structure of !

cellular neural networks is similar to that found in cellular automata; i.e., any cell in a
cellular neural network is connected only to its neighbor cells. Adjacent cells can interact
directly with each other. Cells not directly connected together may affect each other
indirectly because of the propagation effects of the continuous-time dynamics of the
: network. Several configurations for cell arrangement exist; however, the most popular is
the two-dimensional CNNs organized in an eight-neighbor rectangular grid. Each cell has
an input, a state, and an output, -and it interacts directly only with the cells within its
radius of neighborhood r: when r = 1, which is a common assumption, the neighborhood
includes the cell itself and its eight nearest cells. By yarying the values of the connections

among cells (i.e., its interaction weights), a CNN can present a large number of
dynamics, as proven by Gilli et al. (2002).

Image Processing is the most widespread among-the numerous applications of CNNs,

(for instance vision systems based on CNN computers are commercially available.

CNNs can be defined as “2D or 3D arrays of mainly locally connected nonlinear
dynamical systems called cells, whose dynamics are functionally determined by a small

set of parameters which control the cell interconnection strength” (Chua). These

45

parameters determine the connection pattern, and are collected into the so-called cloning

templates, which, once determined, define the processing of the whole structure.

Basic Characteristics of the CNN

e The CNN can be defined as an M x N type array of identical cells arranged in a
rectangular grid. Each cell is locally connected to its 8 nearest surrounding

neighbors.

Fig. 20. Two-dimensional CNNs organized in an eight-neighbor rectangular grid.

e Each cell C(i, j) is characterized by u;;, y;; and x;; being the input, the output and

the state variable of the cell respectively.

e The CNN dynamics is described by a system of nonlinear differential equations.
Using the simplest first-order cell dynamics and linear interactions, the state
equation of a cell in position (i,j) is as follows:

dx, ,(8)

=—x, O+ D AG S kD v, O+ DB, ik, 1) uy + 20, jik,1) (40)
dt (DENL) (IENG,)

where the indices k and / denote a generic cell belonging to the

neighborhood N(i,3) of the cell in position (i,j). All variables are

continuous and z is the threshold (bias) of the cell C(i,j).In general, the

46

]

state of each cell, and hence its output, depends only on the input and the

output of its neighbor cells, and the initial state of the network.

The set of matrices and the threshold {4,B,z}, which contain the weights of the
neural/nonlinear network, is called cloning template and it defines the operation
performed by the network. When the values of the cloning template do not depend
on the position of the cell, the CNN is called space-invariant. In this case, the
dynamic behavior of the network depends only on a few parameters; for instance,
for a two-dimensional CNN with a radius of neighborhood r=1, A and B are 3 * 3

matrices, while ‘z’ is a scalar; therefore, in total just 19 numbers determines the

CNN dynamics.

The output is related to the state by the nonlinear equation:

y,-,-(t‘)*f(xq-(f))=%(ng(f)ﬂI—Ix,,-(f)—l|) (41)

which corresponds to the nonlinear function in Fig. 17.

Fig. 21. Nonlinear Function.

The functional model of the CNN architecture

The output of a CNN model simulation is the final state reached by the network
after evolving from an initial state under the influence of a specific input and
boundary conditions. The block diagram in Fig 3 shows the state-transition and

output of a single cell.

In the most general case, the final state of one cell can be described by the
following equation: x(#) = x(#,) + Iﬂ(f)df =x(f) + _[f(x(r))d'r (42)
to l

47

r SE T

Bias 1

Control Template

Local Input TEE

sy

¥
¥

J
]

fix)

lntegrator

S el

Input from Feedback Template
Neighbotrhood

i
l
Feedback from Neighborhood

Fig. 22. Functional Model of CNN Architecture

4.2 A Simple Example

This example will help us to understand some of the dynamic behavior of cellular neural
networks and to derive some intuitive ideas on how to design cellular neural networks for
solving a specific practical image processing problem.
Suppose we wish to design a horizontal line detector to filter out the horizontal lines in
the input image by using a cellular neural network. In order to simplify our analysis, we
have chosen a very simple dynamic rule for this “horizontal line detector” circuit. The
circuit element parameters of the cell C(i, j) are chosen as follows for a 3 x 3

neighborhood system:

(Bias) I = O

We can code the feedback operators A(i, j ; k, /) as shown
A(-1,-1)=A(-1,0)=A(-1,1)=0

A(0,0)=2

A(,-1)=A(0,i=)1

48

A(1, -1) =A(1,0) =A(1,1) =0

00 | 00 | 00
1.0 | 20} 10
00| 00| 0.0

Fig. 23. A CNN Template

The indexes in the above interactive parameters indicate the relative positions with
respect to C(i, j) . The feedback operator of the cell shall be henceforth called a feedback
operator cloning template. The cloning template is constructed as follows: the center
entry of the cloning template corresponds to A(0,0); the upper left comer entry of the
cloning template corresponds to A(- 1, - 1); the lower right-hand corner entry of the
cloning template corresponds to A(1,l);and so forth. We can observe that it is extremely
convenient and clear to characterize the interactions of a cell with its neighbors by means
of a cloning template. Note that we have also chosen the control operator B(i, j ; k, /) =0
for all i, j, k, and | in this circuit. Hence from the corresponding state equation that shall
be generated we can observe that the derivative of the pixel values depends on their left
and right neighbors and themselves, but not on the upper and lower neighbors. This
particular dynamic rule will therefore enhance the detection of horizontal lines in the

original image.

49

- E

CHAPTER 5
PROJECT SIMULATOR

5.1 Building Graphical User Interfaces using GUIDE in Matlab I

Introduction

A graphical user interface (GUI) is a pictorial interface to a program. A good GUI can
make programs easier to use by providing them with a consistent appearance with the
help of inbuilt controls such as pushbuttons, list boxes, sliders, menus, and so forth. It can
also make it easier to adjust parameters and to visualize the program. Additionally, a

graphical user interface provides the user with a familiar environment in which to work

o

so that he or she can concentrate on using the application rather than on the mechanics
involved in doing things. GUI-based program respond to input events and are hence said

to be event driven.

= ==

The three principal elements required to create a MATLAB Graphical User Interface are:
1. Components.
Each item on a MATLAB GUI (pushbuttons, labels, edit boxes, etc.) is a |
graphical component. The types of components include graphical controls i
(pushbuttons, edit boxes, lists, .sliders, etc.), static elements (frames and text
strings), menus, and axes. Graphical controls and static elements are created by
the function uicontrol, and menus are created by the functions uimenu and
uicontextmenu. Axes, which are used to display graphical data, are created by the
function axes.
2. Figures.
The components of a GUI are arranged within a figure, which is a window on the
computer screen.
3. Callbacks.
A mouse click or a key press is an event, and the MATLAB program must
respond to each event if the program is to perform its function. For example, if a
user clicks on a button, that event must cause the MATLAB code that implements

the function of the button to be executed. The code executed in response to an

50

event is known as a call back. There must be a callback to implement the function
of each graphical component on the GUL The basic GUI elements are

summarized in Table 1.

GUIDE is Matlab’s Graphics User Interface (GUI) Design Environment
s GUIDE stores GUIs in two files, which are generated the first time the GUI is
saved or executed:
% .fig file - contains a complete description of the GUI figure layout and the
components of the GUIL. Changes to this file are made in the Layout Editor
% .m file - contains the code that controls the GUI. Here the callbacks can be

programmed using the M-file Editor.

Typical stages of creating a GUI are:
1. Designing the GUI

2. Laying out the GUI — Using the Layout Editor
3. Programming the GUI — Writing callbacks in the M-file Editor | "
4. Saving and Running the GUI :
Basic Controls

¢ Axes: Creates axes graphics object.

% Static Text: text that is stuck on the screen and which cannot be edited.

+ Edit Box: a white box for typing information into.

< Button: performs an action when user clicks on it.

The basic steps required to create a MATLAB GUI are:
1. Decide what elements are required for the GUI and the corresponding
functionality associated with each element. Make a rough layout of the

components by hand on a piece of paper.

2. Use Matlab’s guide (GUI Development Environment) to layout the Components
on a figure. Adjust size of the figure and the alignment and spacing of
components using the tools built in the guide.

3. Use a MATLAB tool called the Property Inspector (built in the guide) to give
each component a name (a "tag") and to set the characteristics of each component,

such as its color, the text it displays, and so on.

al

4. Save the figure to a file.

5. Write code to implement the behavior associated with each callback function

5.2 The Simulator

Salient Features

One main interface

Main interface provides access to the simulators of all the developed algorithms

MSE and PSNR calculator

Easy GUI to use

Has File Opions in the File menu

» Open

» Print .
» Close : |
Can run multiple GUI’s simultaneously from the main interface !
Helps in running an algorithm and simultaneously evaluating it using the MSE

and PSNR Calulator

Can run different algorithms simultaneously and compare them

Salient Features of MSE and PSNR Calculator

Uses standard formulae to calculate MSE and PSNR

l m-=1 n-l e e
MSE =—>> || 1(i, /)~ R(i,) | s
m i=0 j=0
MAX?
PSNR =101 - i
0g(MSE) (44

Even works for colour images

We just need an original and a corrupted image to compare

Has a simple and intuitive interface to use

hwnm:.ne\;mul-

LN
Medan based Liting Fiter |
MSE wid PSHR

Developed By

q\:;r._hrljd.fumt

Main Interface

Add Sk and Pepper Noise

LFSGW Simulator

53

Add St and Pépoer Nolse

Laoad Originai Imege.. 20% Nolso Run 0PSO hiorse Cancedation Algortin]

Dencised mage I

Terrplple A Temolsts B

Resut

CNN Line Detector Simulator

54

Add $at sad Peppér Nolzd

-
0% Noiss |

£0% Noiss

5% Noise

. Corrupled mage

MSE and PSNR Calculator

l Run inage Restorsion Algorthn

nsivms |

Dendissd imsge

55

CHAPTER 6

PROCESS DESCRIPTION

Level 0 DFED:

Biologically
Inspired Image

Hardware

Output
Device

(Monitor)

Processing

Level 1 DFD:

Processing

Hardware DeNoising

Output '
Device '
(Monito

Level 2 DFD: Lifting

Scheme Denoised
iiTTae

; utpu
External Image Quiput > ?)evli}c
Hardware Processmy Image (Monite
Introduction %
5.5
"y

Lifting
Scheme

Level 3 DFD:

I Outj
External : S
Hardware ; i

57

under consideration is given by ixy. The objective function used in the algorithm is given

as under

obj, = naf, —i,,. : (39)

TABLE VIII

SIMULATION RESULTS FOR DIFFERENT NOISE DENSITIES FOR OUR PROPOSED OPTIMIZED

NEIGHBORHOOD AVERAGE FILTER

Noise PSNR

Test Image MSE
Density (in dB)
5% 5.9862 40.3593
10% 11,5738 37.4961.

Lena

512x512 20% 242272 342878
50% 65.5361 29.9660
80% 204.8423 25.0166

e ; 5

(a) Original Lena - 128x128 (b) Lena with 10% noise

(c) Proposed algorithm (d) PSO-CNN algorithm

Fig. 17. Comparative reconstructed images using Proposed Neighborhood average
filter utilizing DP-PSO and PSO-CNN

43

(b) Reconstructed image

(c) Lena with 20% Noise (d) Reconstructed image

Fig. 18. Noise cancellation results on Lena 128*128 image using Proposed

Neighborhood average filter utilizing DP-PSO

(a) Lena with 20% Noise

(c) Lena with 50% Noise (d) Reconstructed image

Fig. 19. Noise cancellation results on Lena 512*512 image using Proposed

Neighborhood average filter utilizing DP-PSO

44

— s =

CHAPTER 4
CELLULAR NEURAL NETWORKS

4.1 Introduction

“A neural network is an interconnected assembly of simple processing elements,
units or nodes, whose functionality is loosely based on the animal neuron. The
processing ability of the network is stored in the inter-unit connection strengths, or
weights, obtained by a process of adaptation to, or learning from, a set of training

patterns.”

Leon O. Chua AND Yang first introduced the concept of the Cellular Neural Network in

1988 at IEEE transactions on Circuits and Systems.

A Cellular Neural Network (CNN), also known as Cellular Nonlinear Network, is an

array of dynamical systems (cells) with local interconnections only. The structure of

cellular neural networks is similar to that found in cellular automata; i.e., any cell in a
cellular neural network is connected only to its neighbor cells. Adjacent cells can interact
directly with each other. Cells not directly connected together may affect each other
indirectly because of the propagation effects of the continuous-time dynamics of the
network. Several configurations for cell arrangement exist; however, the most popular is
the two-dimensional CNNs organized in an eight-neighbor rectangular grid. Each cell has
an input, a state, and an output, and it interacts directly only with the cells within its
radius of neighborhood r: when r = 1, which is a common assumption, the neighborhood
includes the cell itself and its eight nearest cells. By varying the values of the connections

among cells (i.e., its interaction weights), a CNN can present a large number of

dynamics, as proven by Gilli et al. (2002).

Image Processing is the most widespread among the numerous applications of CNNs,
(for instance vision systems based on CNN computers are commercially available.

CNNs can be defined as “2D or 3D arrays of mainly locally connected nonlinear

dynamical systems called cells, whose dynamics are functionally determined by a small

set of parameters which control the cell interconnection strength” (Chua). These

45

parameters determine the connection pattern, and are collected into the so-called cloning

templates, which, once determined, define the processing of the whole structure.

Basic Characteristics of the CNN

e The CNN can be defined as an M x N type array of identical cells arranged in a
rectangular grid. Each cell is locally connected to its 8 nearest surrounding

neighbors.

e

Fig. 20. Two-dimensional CNNs organized in an eight-neighbor rectangular grid.

e Each cell C(i, j) is characterized by u;y, yi; and x;; being the input, the output and

the state variable of the cell respectively.

e The CNN dynamics is described by a system of nonlinear differential equations.
Using the simplest first-order cell dynamics and linear interactions, the state

equation of a cell in position (i,j) is as follows:

dx, (¢ :
”j()=—x,;(t)+ S AG, jik D)y @+ Y BG ik D) - uy + 2 ik, 1) (40)
dt (kDENG.) (kDN)
where the indices k and / denote a generic cell belonging to the

neighborhood N(1,3) of the cell in position (ij). All variables are
continuous and z is the threshold (bias) of the cell C(i,j).In general, the

46

state of each cell, and hence its output, depends only on the input and the

output of its neighbor cells, and the initial state of the network.

The set of matrices and the threshold {4,B,z}, which contain the weights of the
neural/nonlinear network, is called cloning template and it defines the operation

performed by the network., When the values of the cloning template do not depend

-on the position of the cell, the CNN is called space-invariant. In this case, the

dynamic behavior of the network depends only on a few parameters; for instance,
for a two-dimensional CNN with a radius of neighborhood r=1, A and B are 3 X 3
matrices, while ‘z’ is a scalar; therefore, in total just 19 numbers determines the

CNN dynamics.

The output is related to the state by the nonlinear equation:
|
y,-,-(f)=f(x,,»(f))=5(|xg(t)+1f’lej(t)—ll) (41)

which corresponds to the nonlinear function in Fig. 17.

Fig. 21. Nonlinear Function.

The functional model of the CNN architecture

The output of a CNN model simulation is the final state reached by the network
after evolving from an initial state under the influence of a specific input and
boundary conditions. The block diagram in Fig 3 shows the state-transition and

output of a single cell.
In the most general case, the ﬁnz}l state of one cell{ can be described by the

following equation: x(£) = x(1,) + [&2)d7 = x(¢,) + [f(x(r)d7 (42)

o

47

e

e
. ...

'i

Bias 1

Control Template

Local Input T Iox A y
=—= - —P@—" Integrator = (i) oni
|
T o
lnput from Feedback Template
Neighborhood

i
l
Feedback from Neighborhood

— =

Fig. 22. Functional Model of CNN Architecture

4.2 A Simple Example

This example will help us to understand some of the dynamic behavior of cellular neural
networks and to derive some intuitive ideas on how to design cellular neural networks for
solving a specific practical image processing problem.
Suppose we wish to design a horizontal line detector to filter out the horizontal lines in
the input image by using a cellular neural network. In order to simplify our analysis, we
have chosen a very simple dynamic rule for this “horizontal line detector” circuit. The
circuit element parameters of the cell C(i, j) are chosen as follows for a 3 x 3

neighborhood system:

(Bias) I = O

We can code the feedback operators A(i, j ; k, [) as shown
_ A(-1,-1)=A(-1,0)=A(-1,1)=0

’ A(0,0)=2

| A(,-1)=A(0,i=)1

48

|

A(1, -1) =A(1,0) =A(1,1) =0

00 | 00 | 0.0
1.0 | 2.0 1.0
00| 00| 00

Fig. 23. A CNN Template

The indexes in the above interactive parameters indicate the relative positions with
respect to C(i, j) . The feedback operator of the cell shall be henceforth called a feedback
operator cloning template. The cloning template is constructed as follows: the center
entry of the cloning template corresponds to A(0,0), the upper left comer entry of the
cloning template corresponds to A(- 1, - 1); the lower right-hand corner entry of the
cloning template corresponds to A(1,l);and so forth. We can observe that it is extremely
convenient and clear to characterize the interactions of a cell with its neighbors by means
of a cloning template. Note that we have also chosen the control bperator BG,j;k1)=0
for all i, .j, & and | in this circuit. Hence from the corresponding state equation that shall
be generated we can observe that the derivative of the pixel values depends on their left
and right neighbors and themselves, but not on the upper and lower neighbors. This
particular dynamic rule will therefore enhance the detection of horizontal lines in the

original image.

49

CHAPTER 5
PROJECT SIMULATOR

5.1 Building Graphical User Interfaces using GUIDE in Matlab

Introduction

A graphical user interface (GUI) is a pictorial interface to a program. A good GUI can
make programs easier to use by providing them with a consistent appearance with the |
help of inbuilt controls such as pushbuttons, list boxes, sliders, menus, and so forth. It can
also make it easier to adjust parameters and to visualize the program. Additionally, a
graphical user interface provides the user with a familiar environment in which to work
so that he or she can concentrate on using the application rather than on the mechanics
involved in doing things. GUI-based program respond to input events and are hence said

to be event driven.

- e

The three principal elements required to create a MATLAB Graphical User Interface are:

1. Components.
Each item on a MATLAB GUI (pushbuttons, labels, edit boxes, etc.) is a

graphical component. The types of components include graphical controls

(pushbuttons, edit boxes, lists, sliders, etc.), static elements (frames and text
strings), menus, and axes. Graphical controls and static elements are created by
the function uicontrol, and menus are created by the functions uimenu and

uicontextmenu. Axes, which are used to display graphical data, are created by the

2. Figures.

|

! function axes.

|

! The components of a GUI are arranged within a figure, which is a window on the

' computer screen.

3. Callbacks.
A mouse click or a key press is an event, and the MATLAB program must
respond to each event if the program is to perform its function. For example, if a
user clicks on a button, that event must cause the MATLAB code that implements

the function of the button to be executed. The code executed in response to an

50

_i
|

event is known as a call back. There must be a callback to implement the function
of each graphical component on the GUIL The basic GUI elements are

summarized in Table 1.

GUIDE is Matlab’s Graphics User Interface (GUI) Design Environment
e GUIDE stores GUIs in two files, which are generated the first time the GUI is
saved or executed:
% .fig file - contains a complete description of the GUI figure layout and the
components of the GUI. Changes to this file are made in the Layout Editor
% .m file - contains the code that controls the GUI. Here the callbacks can be

programmed using the M-file Editor,

Typical stages of creating a GUI are:
1. Designing the GUI
2. Laying out the GUI — Using the Layout Editor

_— L

3. Programming the GUI — Writing callbacks in the M-file Editor
4. Saving and Running the GUI
Basic Controls

% Axes: Creates axes graphics object.

» Static Text; text that is stuck on the screen and which cannot be edited.

B

+ Edit Box: a white box for typing information into.

*

%+ Button: performs an action when user clicks on it.

The basic steps required to create a MATLAB GUI are:

1. Decide what elements are required for the GUI and the corresponding
functionality associated with each element. Make a rough layout of the
components by hand on a piece of paper.

2. Use Matlab’s guide (GUI Development Environment) to layout the Components
on a figure. Adjust size of the figure and the alignment and spacing of
components using the tools built in the guide.

3. Use a MATLAB tool called the Property Inspector (built in the guide) to give
‘each component a name (a "tag") and to set the characteristics of each component,

such as its color, the text it displays, and so on.

51

S NS S TR

MSE and PSNR Calculator

hjllmlﬁ { i
lena_gray_saltipancer 10% H 1
ks orar_saitipepoe 209 | \ b RN
iens_g-ay _salidpapperS0%, i
&Jiena_geay_sahdpmmnersats i i
5 08
Fle et .
o fera_gmy Cpen l 07
Frrclboe [Fid ol teea |
- - s 05
05 05
04 04
03 03
02 02
01 01
0 i) i 9 N f |
; 0.2 0.4 05 08 1] L] 04 08 0.8 1

Wl 955 et

e ck_sotloepper 10%

Hiere_geay_sattpeopersh
1 Pliens_geav ssitomperaate
i'h-d_pmmz e}iena_grav_saitnompoers st
#)hosl_95% i

Hols ¢ Image

23

08

or

0’ : 02 0.4 06 o8 1

Feok Signal 10 Noise Retia (PSKR)

PEAR i

Loading Corrupted Image

67

|
|
I
|
|

Feak Signal fo Noiss fati) (PSHR)

330268

Calculating MSE and PSNR

68

g g ey

CHAPTER 8
' RESULTS AND CONCLUSION

—

Innovation in the Project: The project stimulates our minds and challenges us by letting
us develop novel methods for Image Processing tasks. Also it aims at developing better

methods than the existing methods which in itself is a daunting task.

Thus the project demands innovation and creativity. A strong and up to date knowledge
base is of utmost importance in the project. It also requires dexterity in programming so
as to implement both the developed and studied algorithms with the least {ime and space

complexity.

Main Achievements: As of now three algorithms have been developed for Image Noise

Cancellation. The research papers which introduce those algorithms are: f

1) Image Noise Cancellation by Lifting Filter using Second Generation Wavelets
(LFSGW) — Published in IEEE Xplore and IEEE CS Digital Library through the
Proceedings of IEEE International Conference on Advances in Recent
Technologies in Communication and Computing, ARTCom 2009,
! October 27" -28" 2009, Kottayam, Kerala, India.

2) Fast Image Restoration by Median Based Lifting Filter using Second Generation
Wavelets — Accepted to be published in IEEE International Conference on
Industrial Technology (ICIT), 14-17™ March 2010, Viiia del Mar - Valparaiso,
Chile.

3) An Evolutionary Approach to Image Noise Cancellation Utilizing Diminishing
Population Particle Swarm Optimization (DP-PSO)

69

l
|
!
i ‘

Apart from this GUI’s have been developed for simulating the developed algorithms.

| Thus the highlight of the project is:

! 1) It is a research based project with complete implementation

2) It has its application in the real world

3) The developed algorithms are giving great results, which is also appreciated by
the research community as can be seen from the acceptance of our papers in
reputed conferences.

4) The developed GUI’s enables us to better understand the algorithms

Hence it can be said that this project has achieved a lot more than what a normal project "
seeks to achieve through the effective implementation of novel algorithms developed by ‘{

us and the algorithms which we have studied. i

70

CONTRIBUTION OF THE PROJECT

The project contributes greatly to the Image Processing research community and the

Academia. The project may also be of great use to the Industry employing Image

processing.

1) Academia: People who are studying Image Processing will be greatly benefited

2)

3)

through this project. The project provides them with a pathway to understand
Image Processing, the various Image Processing tasks and different techniques
employed in Image Processing. They will be the ones who will benefit the most

from the Graphical User Interfaces (GUI’s) developed.

Image Processing Research Community: As the project aims at developing
novel algorithms for Image Processing tasks such as Image Noise Cancellation
the research community can also benefit from it. The algorithms will provide new
and efficient ways which are different from the existing works and will try to
open up a new frontier for researchers to work with by providing a different
approach to solving problems. This is evident from the development of novel
Noise Cancellation methods which employ the Lifting Scheme. This approach for

Noise Cancellation had not been adopted before.

Image Processing Industlzy: The algorithms developed can be directly used in
the Image Processing Industry or they can be further improved by adding
application specific features and then employed in the Image Processing Industry.
The developed algérithms can thus be used for Image Processing tasks in Image
Processing softwares. They can be used in digital cameras, scanners and other

Image Acquisition devices.

71

10.

BIBLIOGRAPHY

. MATLAB 7.0 Documentation

Rafael C. Gonzalez, Digital Image Processing, Prentice Hall, 2006.
Rafael C. Gonzalez, Digital Image Processing Using Matlab, Prentice Hall, 2006.

Jaiswal, T.; Rajesh, S., "Image Noise Cancellation by Lifting Filter Using Second
Generation Wavelets (LFSGW)," Advances in Recent Technologies in
Communication and Co_mputing, 2009. ARTCom '09. International Conference on ,
vol., no., pp.667-671, 27-28 Oct. 2009

Siddavatam Rajesh, K Sandeep and R K Mittal , "A Fast Progressive Image Sampling
Using Lifting Scheme And Non-Uniform B-Splines",Proceedings of IEEE_
International Symposium on Industrial Electronics ISIE -07, June 4-7, pp. 1645- 1650,
Vigo, Spain, 2007.

Chuen-Yau Chen and Chih-Wen Hsia, “Image Noise Cancellation by Adaptive Filter
with Weight-Training Mechanism (AFWTM)”, In the Proceedings of Information
Decision and Control, IDC 07, 12-14 Feb, pp. 332-335, Adelaide, 2007.

W.Swelden, “The Lifting scheme : A custom design construction of biorthogonal

wavelets”, Appl. Comput. Harmon. Anal., 3(2), pp. 186-200, 1996.

W.Swelden, “The Lifting Scheme: A Construction of second generation wavelets”,
Technical Report 1995; 6, Industrial Mathematics Initiative, Department of
Mathematics, University of South Carolina, 1995.

I. Pitas and A. N. Venetsanopoulos, Nonlinear Digital Filters: Principles and

Applications. Boston, MA: Kluwer, 1990.

D. R. K. Brownrigg, “The weighted median filter,” Commun. Ass. Comput. Mach.,
vol. 27, no. 8, pp. 807-818, Aug. 1984.

12

1,

12;

13.

14.

15.

16.

17

18.

T. Sun and Y. Neuvo, “Detail-preserving median based filters in image processing,”
Pattern Recognit. Lett., vol. 15, pp. 341-347, Apr. 1994,

D. Zhang and Z. Wang, “Impulse noise detection and removal using fuzzy
techniques,” Electron. Lett., vol. 33, pp. 378-379, Feb. 1997.

E. Abreu, M. Lightstone, S. K. Mitra, and K. Arakawa, “A new efficient approach for
the removal of impulse noise from highly corrupted images,” IEEE Trans. Image
Processing, vol. 5, pp. 1012-1025, June 1996.

Yue-Cheng Chen, Hsin-Chih Wang and Te-Jen Su, "Particle Swarm Optimization for
Image Noise Cancellation," Innovative Computing, Information and Control, 2006.
ICICIC '06. First International Conference on , vol.1, no., pp.587-590, Aug. 30 2006-
Sept. 1 2006.

Sheng-Fu Liang, Shih-Mao Lu, Jyh-Yeong Chang and Chin-Teng Lin, "A Novel
Two-Stage Impulse Noise Removal Technique Based on Neural Networks and Fuzzy
Decision," Fuzzy Systems, IEEE Transactions on , vol.16, no.4, pp.863-873, Aug.
2008.

Nallaperumal, K., Varghese, J., Saudia, S., Mathew, S.P., Krishnaveni, K., Annam,
S., "Adaptive Rank-ordered Switching Median Filter for Salt & Pepper Impulse Noise
Reduction," India Conference, 2006 Annual IEEE, vol., no., pp.1-6, 15-17 Sept.
2006.

Zhou Wang and David Zhang,” Progressive Switching Median Filter for the Removal
of Impulse Noise from Highly Corrupted Images”, IEEE Transactions on Circuits
And Systems—II: Analog And Digital Signal Processing, Vol. 46, No. 1, January
1999,

Wenbin Luo, Member, IEEE, “An Efficient Detail-Preserving Approach for
Removing Impulse Noise in Images”, IEEE Signal Processing Letters, Vol. 13, No. 7,
July 2006.

73

19.

20.

21.

22;

23,

24.

23

26:

Crnojevic, V.; Senk, V.; Trpovski, Z., "Advanced impulse Detection Based on pixel-
wise MAD," Signal Processing Letters, IEEE , vol.11,n0.7, pp. 589-592, July 2004.

Gouchol Pok; Jyh-Charn Liu; Nair, A.S., "Selective removal of impulse noise based
on homogeneity level information," Image Processing, IEEE Transactions on , vol.12,
no.1, pp. 85-92, Jan 2003.

Tao Chen; Hong Ren Wu, "Application of partition-based median type filters for

suppressing noise in images," IEEE Transactions on Image Processing, , vol.10, no.6,
pp.829-836, Jun 2001.

R. H. Chan, C. Hu, and M. Nikolova, ‘‘An iterative procedure for removing random-
valued impulse noise,’” IEEE Signal Process. Lett.,vol. 11, no. 12, pp. 921--924, Dec.
2004.

Te-Jen Su, Tzu-Hsiang Lin, Jia-Wei Liu, "Particle Swarm Optimization for Gray-
Scale Image Noise Cancellation," Intelligent Information Hiding and Multimedia
Signal Processing, 2008. ITHMSP '08 International Conference on , vol, no.,
pp.1459-1462, 15-17 Aug. 2008.

Christian Blum, Daniel Merkle, (Eds.) “Swarm Intelligence Introduction and

Applications”. Natural Computing Series, Springer‘Verlag, 2008.

M. Fatih Tasgetiren, P. N. Suganthan, Quan-Ke Pan,” A Discrete Particle- Swarm
Optimization Algorithm for- the Generalized Traveling Salesman Problem”,
Proceedings of the 9th annual conference on Genetic and evolutionary computation,
pp. 158 — 167, (2007).

Wachowiak, M.P., Smolikova, R., Yufeng Zheng, Zurada, J.M., Elmaghraby, A.S.,
"An approach to multimodal biomedical image registration utilizing particle swarm
optimization," Evolutionary Computétion, IEEE Transactions on , vol.8, no.3, pp.
289-301, June 2004,

74

27.H. Talbil, M. C. Batouche, "Particle swarm optimization for image registration”,
International Conference on Computer Theory and Applications, IEEE Press,

q Damascus, Syria, April 2004.

28. Wooi-Haw Tan, Rosli Besar, Gouenou Coatrieux and Basel Solaiman, “PSO based
parametric object recognition”, IEICE Electron. Express, Vol. 5, No. 24, pp.1080-
1087, (2008).

29. Yue-Cheng Chen , Hsin-Chih Wang , Te-Jen Su, Particle Swarm Optimization for
Image Noise Cancellation, Proceedings of the First International Conference on
Innovative Computing, Information and Control, p.587-590, August 30-September
01, 2006.

30. Soudan, B., Saad, M., "An Evolutionary Dynamic Population Size PSO i
Implementation," Information and Communication Technologies: From Theory to
Applications, 2008. ICTTA 2008. 3rd International Conference on , vol., no., pp.1-5,

7-11 April 2008.

31.J. Kenndy and R. C. Eberhart, “Particle Swarm Optimization,” Proceedings of IEEE
International Conference on Neural Networks, Pp. 1942-1948.(1995).

32.R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in

Proc. 6th Int. Symp. Micromachine Human Sci., Nagoya, Japan, 1995, pp. 39-43.

33. Frans Van Den Bergh, A. P. E}lgelbrecht, “An analysis of particle swarm optimizers”,

University of Pretoria, Pretoria, South Africa, 2002,

34. L. Chua and L. Yang, “Cellular Neural Networks: Theory,” IEEE Trans. on Circuits
and Systems, 35(10):1257-1272, 1988.

35.L. Chua and L. Yahg, “Cellular Neural Networks: Applications” IEEE Trans. on
Circuits and Systems, 35(10):1273:1290, 1988.

36. PSO tutorial by Xiachui Hu, Ph.D.

37. The Wavelet tutorial by Robi Polikar.

75

m

APPENDIX-I
SAMPLE CODES OF PROJECT

Noise Addition Code:
k=imread(‘lena_std.tif");

i=rgb2gray(k);
imwrite(i,'lena_gray.tif','Compression','none")
sizeA=size(i)

p3=0.1;

b=i;

X = rand(sizeA);

b(x <p3/2) = 0; % Minimum value

b(x >=p3/2 & x <p3) = 255; % Maximum (saturated) value &
imshow(b) |

imwrite(b,'lena_gray salt&pepperl0%.tif','Compression’,'none")

Image Noise Cancellation by Lifting Filter using Second Generation Wavelets
(LESGW)
i=imread('lena_clr salt&pepper10%.tif');

threshold=10;%Assuming that image data with a value of 0 or 255 will have neighbours
whose values will not vary more than +/-10 from 0 or 255
sizei=size(i);
=i
avg=i;
%j=-1*ones(sizei);%giving all the pixels the value -1 indicating it is image data
%avg=-1*ones(sizei);%giving all the pixels the value -1 indicating it is image data
data=i;
for m = 1:sizei(1,1)

for n = 1:sizei(1,2)

for o= 1:3

76

if(data(m,n,0)==0||data(m,n,0)==255)
j(m,n,0)=data(m,n,o0);
end;
end;
end;
end;
%j=i(data==0 | data==255);%lifting,storing the value of lifted pixel in j
sig=-1*ones(sizei);%significant pixels(pixel value(z)=0 or 255)-noise
insig=-1*ones(sizei); %insignificant pixels(pixel value(z)=0 or 255)-image data
%Top Left Corner Pixel
foro=1:3
avg(1,1,0)=uint8((uint16(j(1,2))+uint16(j(2,1))+uint16(j(2,2)))/3);
if((G(1,1,0) avg(1,1,0))>10 || (avg(1,1,0)-j(1,1,00)>10)&&(j(1,1,0)== 0 || j(1,1,0)==
255))%window for corner pixels will be 2*2
%Important - Matlab subtraction does not gives negative answer. Instead it gives 0. So
carry out subtraction in such a way that the result is positive, i.e. subtract smaller no.
from larger no.
% here detail=(j(1,1,0)-avg(1,1,0)) or (avg(1,1,0)-j(1,1,0)) depending on whether the
pixel has value 255 or 0(in case of noise) respectively so that the subtraction gives a
positive answer as negative answer is given as 0 by matlab.
sig(1,1,0)=j(1,1,0);%significant pixels(pixel value(z)=0 or 255)-noise
else
insig(1,1,0)=j(1,1,0);%insignificant pixels(pixel value(z)=0 or 255)-image data
end;

end;

Fast Image Restoration by Median Based Lifting Filter using Second Generation

Wavelets
start=cputime;

i=imread('lena_gray salt&pepperl0%.tif');

77

threshold=5;%Assuming that image data with a value of 0 or 255 will have neighbours
whose values will not vary more than +/-10 from 0 or 255
y sizei=size(i);
j=i;
med=i;
%j=-1*ones(sizei);%giving all the pixels the value -1 indicating it is image data
Yomed=-1*ones(sizei);%giving all the pixels the value -1 indicating it is image data
data=i;
for m = 1:sizei(1,1)
for n = 1:sizei(1,2)
if(data(m,n)==0||data(m,n)==255)
j(m,n)=data(m,n);
end; . |
end;
end;
%j=i(data==0 | data==255);%lifting,storing the value of lifted pixel in j
sig=-1*ones(sizei);%significant pixels(pixel value(z)=0 or 255)-noise
insig=-1*ones(sizei); %insignificant pixels(pixel value(z)=0 or 255)-image data
%Top Left Corner Pixel
med(1,1)=uint8(median([j(1,2) j(2,1) (2, 2)]):
if((((1,1)-med(1,1))>threshold || (med(1,1)-j(1,1))>threshold)&&(j(1,1)==0 || j(1,1)==
255))%window for corner pixels will be 2+2 | ‘
%Important - Matlab subtraction does not gives negative answer. Instead it gives 0. So
carry out subtraction in such'a way that the result is positive, i.€. subtract smaller no.
from‘ larger no.
% here detail=(j(1,1)-med(1,1)) or (med(1,1)-j(1,1)) depending on whether the pixel has
value 255 or 0(in case of noise) respectively so that the subtraction gives a positive
answer as negative answer is given as 0 by matlab.
sig(1,1)=j(1,1);%significant pixels(pixel value(z)=0 or 255)-noise
else :

insig(1,1)=j(1,1);%insignificant pixels(pixel value(z)=0 or 255)-image data

78

end;

An Evolutionary Approach to Image Noise Cancellation Utilizing Diminishing !

Population Particle Swarm Optimization (DP-PSQ)

i=imread('lena_gray salt&pepper5%.tif');
sizei=size(i);
=
avg=uint8(0); %Dummy Value for Initialization. '0' has no significance
psoiterations=5; % No of PSO iterations
cl=l;
c2=1;
rl=1; % Can generate this randomly
r2=1; % Can generate this randomly
w=1;
temp 1=uint8(0);
temp2=uint8(0);
indices=-1*ones(3,3); % -1 Indicates that this index points to a pixel which is not a
swarm
particle
for m = 1:3:sizei(1,1)
total=uint16(0);
cntr=uint8(0);
for n = 1:3:sizei(1,2)
iflm==(sizei(1,1)-1)) && (n~=(sizei(1,2)-1))
templ=m-1;
temp2=n;
elseif (n==(sizei(1,2)-1))&&(m~=(sizei(1,1)-1))
temp2=n-1;
templ=m;
elseif (m==(sizei(1,1)-1)) && (n==(sizei(1,2)-1))

79

templ=m-1;
temp2=n-1,
else
templ=m,;
temp2=n;
end;
forp=0:2
for q=0:2
if((i(temp1+p,temp2+q)~=0)&&(i(temp 1 +p,temp2+q)~=255))
cntr=cntr+1;
total=total+uint16(i(temp 1 +p,temp2-+q));
eng,
end,; .
end;
avg=uint8(total/uint1 6(cntr)); %Filter
totai=uint1 6(0);
cntr=uint8(0);
% PSO
% Initialization of Position and Velocity

% Particles of the swarm are those pixels which have noise.

Improved Evolutionary Approach to Image Noise Cancellation Utilizing Diminishing

Population Particle Swarm Optimization (DP-PSO)
i=imread('lena_gray_salt&pepper5%.tif");

sizei=size(i);

=i ,

avg=uint8(0); %Dummy Value for Initialization. '0' has no significance
psoiterations=5; % No of PSO iterations

cl=1;

c2=1;

r1=1; % Can generate this randomly

80

12=1; % Can generate this randomly
w=1;
temp1=uint8(0);
temp2=uint8(0);
indices=-1*ones(3,3); % -1 Indicates that this index points to a pixel which is not a
swarm particle
for m = 1:3:sizei(1,1)
total=uint16(0);
cntr=uint8(0);
for n = 1:3:sizei(1,2)
if{m==(sizei(1,1)-1)) && (n~=(sizei(1,2)-1))
templ=m-1;
teinp2=n; .
elseif (n==(sizei(1,2)-1))&&(m~=(sizei(1,1)-1))
temp2=n-1;
templ=m;
elseif (m==(sizei(1,1)-1)) && (n==(sizei(1,2)-1))
templ=m-1,
temp2=n-1;
else
templ=m;
temp2=n;

end;

forp=0:2
for q=0:2
if((i(temp 1 +p,temp2+q)~=0)&&(i(temp | +p,temp2+q)~=255))
cntr=cntr+1;
total=total+uint1 6(i(temp1+p,temp2-+q));

end;

81

end;

end;

if(cntr~=0)
avg=uint8(totai/uint16(cntr)); %Filter
end;

total=uint16(0);

cntr=uint8(0);

% PSO

% Initialization of Position and Velocity

% Particles of the swarm are those pixels which have noise.

CNN Line Detector

global AB Bulmn;
global Im1,;

axes(handles.axes2)
if (isrgb(Im1))
Iml=rgb2gray(Ilm1l);
end

imshow(Im1);

Ta=zeros(3,3);

Ta(1,1)=str2double(get(handles.al,'String"));
Ta(1,2)=str2double(get(handles.a2,'String"));
Ta(1,3)=str2double(get(handles.a3,'String"));
Ta(2,1)=str2double(get(handles.a4,'String"));
Ta(2,2)=str2double(get(handles.as,'String"));
Ta(2,3)=str2double(get(handles.a6,'String"));
Ta(3,1)=str2double(get(handles.a’7,'String'));

82

Ta(3,2)=str2double(get(handles.a8,'String'));
Ta(3,3)=str2double(get(handles.a9,'String'));

Tb=zeros(3,3);

Tb(1,1)=str2double(get(handles.b1,'String"));
Tb(1,2)=str2double(get(handles.b2,'String"));
Tb(1,3)=str2double(get(handles.b3,'String"));
Tb(2,1)=str2double(get(handles.b4,'String"));
Tb(2,2)=str2double(get(handles.b5,'String"));
Tb(2,3)=str2doublefget(handles.b6,'String"));
Tb(3,1)=str2double(get(handles.b7,'String"));
Tb(3,2)=str2double(get(handles.b8,'String'));
Tb(3,3)=str2double(get(handles.b9,'String'));

I=str2double(get(handles.bias,'String"));

A=Ta

B=Tb

u = im2double(Iml);

uu = im2double(max(max(u)));
ul = im2double(min(min(u)));
u = (u-ul)/(uu-ul)*2-1;

x0=u;
colormap(gray(64))
t=0;

Xt =x0;

tf = str2double(get(handles.timel,'String"));
dtime = str2double(get(handles.dt1,'String"));

&3

m=0;
n=0;

global Im2;

while(t<tf)
Im2=image((pwlsig(Xt)+1)*32);
%axis('image");

drawnow

tnext = min([tf,t+dtime]);

Atem = A;

Bu= conV2(u,B,'same');

[m,n] = size(x0);

x0 =x0(:);

[t,y] = ode23(‘cnnderiv', [0, tf/2, tf], x0);
ly = size(y,1);

x0 = reshape(y(ly,:),m,n);

Xt=x0;

t = tnext
set(handles.showtime1,'Strin g',misttr(t));
%pause(0.01);

end;

Project Main Interface

function varargout = BTechProject Tushar_OutputFen(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure

84

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

function FileMenu_Callback(hObject, eventdata, handles)
% hObject handle to FileMenu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

function OpenMenultem_Callback(hObject, eventdata, hémdles)
% hObject handle to OpenMenultem (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
file = uigetfile('*.fig");
if ~isequal(file, 0)

open(file);

end

% o s R S D U S T e e s st
function PrintMenuItemeallback(hObject, eventdata, handles)

% hObject handle to PrintMenultem (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

printdlg(handles.figurel)

85

function CloseMenultem_Callback(hObject, eventdata, handles)

% hObject handle to CloseMenultem (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

selection = questdlg(['Close ' get(handles.figurel,'Name') '7'],...
['Close ' get(handles.figurel,'Name') '..."],...

'Yes','No','Yes");
if stremp(selection,™No')
return; 3
end

delete(handles.figurel)

% --- Executes during object creation, after setting all properties.
function figurel CreateFen(hObject, eventdata, handles)

% hObject handle to figurel (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFens called

% - Executes on selection change in listbox1.

function listbox1_Callback(hObject, eventdata, handles)

% hObject handle to listbox1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

86

A % Hints: contents = get(hObject,'String") returns listbox 1 contents as cell array

% contents {get(hObject,'Value')} returns selected item from listbox 1

% --- Executes during object creation, after setting all properties.
function listbox1_CreateFen(hObject, eventdata, handles)

% hObject handle to listbox1 (sec GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% héndles empty - handles not created until after all CreateFcns called

% Hint: listbox controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white'");

end

% --- Executes on button press in pushbuttonl.

function pushbuttonl_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttoni (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA) !

val = get(handles.listbox1,'Value');
str = get(handles.listbox1,'String');
switch str{val}
case 'LFSGW'
Ifsgw_gui
case 'Improved DP-PSO'

87

b | T —

dppso_gui

case 'Median based Lifting Filter'
medIf gui

case 'CNN'
gui_test .

case 'MSE and PSNR'
mse_psnr_gui

otherwise ,
disp('No Selection has been mage.")

end

88

