JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST-2 EXAMINATION- APRIL - 2018

B. Tech (VIIIth Semester) (ECE)

COURSE CODE: 11B1WEC834

MAX. MARKS: 25

COURSE NAME: OPTICAL COMMUNICATION SYSTEMS

COURSE CREDITS: 03

 Θ

(

MAX. TIME:1.5 HR

Note: All questions are compulsory. Carrying of mobile phone during examination will be treated as case of unfair means. Marks are indicated below each question

- Q1(a) Derive an expression for material dispersion parameter D_m for pure silica and the waveguide dispersion parameter D_w for single mode fibers. [4 Marks]
- (b) Differentiate between k, b and β . How are these three interrelated? [2 Marks]
- Q2(a) Calculate the maximum thickness of the guide slab of a symmetrical planar waveguide so that it supports the first 10 modes. Take $n_1 = 3.6$ and $n_2 = 3.58$ and $\lambda = 0.90 \mu m$. Also calculate the maximum and minimum values of the β .
- (b) Differentiate between multimode step index and graded index fiber. Also highlight the difference between multimode and single mode fibers. [2+2 = 4 Marks]
- Q3(a) A step index single mode fiber has a core index of 1.48, relative refractive index difference of 0.27%, and a core radius of 4.4μm. Estimate the waveguide dispersion for this fiber at a wavelength of 1.32μm.

 [2 Marks]
- (b) Calculate the injection efficiency of GaAs diode in which N_a = 10^{23} /m³ and N_d = 10^{21} /m³. Assume that at RT=300K, μ_e =0.85me/V/s, μ_h = 0.04m2/v/s and L_e=L_h. [2 Marks]
- Q4(a) With reference to single mode fibers explain the following

[4.5 Marks]

- (i) Birefringence
- (ii) Polarization Mode Dispersion
- (iii) Rayleigh Scattering
- (b) Using Maxwell's equations, derive the equations of TE mode for optical fibers. [3.5 Marks]
